Dr. Z.'s Intro to Probability Homework assignment 11

1. The density function of a continuous random variable, X, is given by

$$
f(x)= \begin{cases}\frac{x}{20} \quad \text { if } \quad 3 \leq x \leq 7 \\ 0 & \text { otherwise } .\end{cases}
$$

(i) What is the probability that X is between 4 and 6 ?
(ii) What is the probability that X is between 3 and 5 , if it is known that it is between 4 and 6 .
2. Let X be the continuous random variable with density function

$$
f(x)= \begin{cases}\frac{c}{x^{2}}, & 1<x<2 \\ 0^{2}, & \text { otherwise }\end{cases}
$$

for some constant c.
(a) Calculate $E[X]$,
(b) Calculate $\operatorname{Var}(X)$.
3. Let X be the continuous random variable with density function

$$
f(x)=\left\{\begin{array}{l}
\frac{|x|}{10}, \quad-2<x<4 ; \\
0, \text { otherwise } .
\end{array}\right.
$$

Calculate the expected value of X. Also calculate its variance
4. The lifetime of a machine part has continuous distribution on the interval $(0,40)$, with probability density function f, where $f(x)$ is proportional to $(10+x)^{-2}$. What is the probability that the lifetime of the machine part is less than 5 ?
5. The distribution of the size of claims paid under an insurance policy has probability density function

$$
f(x)=\left\{\begin{array}{l}
c x^{a} \quad, \quad 0<x<5 \\
0, \text { otherwise }
\end{array}\right.
$$

where $a>0$ and $c>0$.
For a randomly selected claim, the probability that the size of the claim is less than 3.75 is 0.487 . Calculate the probability that the size of the claim is greater than 4 .
6. Damage to a car in a crash is modeled by a random variable with density function

$$
f(x)=\left\{\begin{array}{l}
c\left(x^{2}-60 x+800\right) \quad, \quad 0<x<20 \\
0, \text { otherwise } .
\end{array}\right.
$$

where c is a constant.
A particular car is insured with a deductible of 2 . This car was involved in a crash with damage exceeding the deductible. Calculate the probability that the damage exceeded 10.
7. The lifetime in hours of a certain light bulb is given by

$$
f(x)=\left\{\begin{array}{l}
0, \quad 0<x<100 \\
\frac{20000}{x^{3}}, \\
, x>100
\end{array}\right.
$$

What is the probability that exactly 3 out of 6 light bulbs will have to be replaced within the first 200 hours?
8. The continuous random variable X has probability density function

$$
f(x)=\left\{\begin{array}{lc}
\frac{1}{5}, & 0<x<1 \\
\frac{2}{5} & , 1<x<3 \\
0 & \text { elsewhere }
\end{array}\right.
$$

Let n be a positive integer, find $E\left[X^{n}\right]$.
9. The monthly profit of Company I can be modeled by a continuous random variable with density function f. Company II has a monthly profit that is three times that of of Company I.

Determine the probability density function of the monthly profit of Company II.
10. A company agrees to accept the highest of four sealed bids on property. The four bids are regarded as four independent random variables with common cumulative distribution function

$$
F(x)=x^{3} \quad, 0<x<1 .
$$

What is the expected value of the accepted bid?

