
Dr. Z.’s Probability Lecture 21 Handout: Moment Generating Functions

By Doron Zeilberger

Version of Dec. 7, 2017 ( Thanks to Vincent Wang) Version of Nov. 30, 2017 ( Thanks to

Riya Prabhudesai)

Important Definition If X is a random variable, and t is a real variable (or an abstract symbol),

the Moment Generating Function of X, denoted by MX(t) is defined by

MX(t) = E[ etX ] .

Problem 21.1: The value of a piece of factory equipment after five years of use is 1000 (0.3)X ,

where X is a random variable having moment generating function

MX(t) =
1

1− 3t
, for t <

1

3
.

Calculate the expected value of this piece of equipment after five years of use.

Sol. of 21.1: Recall the important identity (from precalc)

a = eln a ,

that enables you to express any at in terms of the exponential function

aX = e(ln a)X .

We need E[ 1000(0.3)X ], which is he same 1000E[ eln(0.3)X ], so

E[1000(0.3)X ] = 1000E[(0.3)X ] = 1000E[ eln(0.3)X ] = 1000MX( ln(0.3) ) .

Since ln(0.3) = −1.203972804 < 1
3 , we can use the given expression for MX(t), and we get

MX(ln(0.3)) =
1

1− 3(ln(0.3))
= 0.2168295080 ,

so finally

E[ 1000(0.3)X ] = 1000 ·MX(ln(0.3)) =
1000

1− 3(ln(0.3))
= 216.8295080 . . . .

Answer to 21.1: The expected value of this piece of equipment after five years of use is 1000
1−3(ln(0.3)) =

216.8295080 . . .

Important Reminders from Calc2:
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• The Maclaurin series of a function f(x), alias, the Taylor series around x = 0, is

∞∑
n=0

f (n)(0)

n!
xn .

the sum of the series, when it makes sense (i.e. converges) is equals to f(x) .

• The Maclaurin series of f(x) = ex is

∞∑
n=0

1

n!
xn .

• The Maclaurin series of f(x) = (1 + x)a, for any number a is

∞∑
n=0

(
a

n

)
xn ,

where
(
a
n

)
= a(a−1)···(a−n+1)

n!

Applying the Expectation operation to

eXt =

∞∑
i=0

1

n!
(Xt)n =

∞∑
i=0

1

n!
Xntn ,

We get the important property

MX(t) =

∞∑
i=0

1

n!
E[Xn]tn .

Equivalently E[Xn] = M
(n)
X (0), i.e. the n-th moment of X is the n-th derivative of MX(t) evaluated

at t = 0.

Maple Tip: To find the first n terms of the Maclaurin expansion of a function f of a variable t,

in Maple, you do the command

taylor(f,t=0,n+1) ;

For example to get the first ten terms of et+t
2

, you do

taylor(exp(t+t**2),t=0,11) ; .

Useful Notation: if we denote E[Xn] by mn, then the important property is written:

MX(t) =

∞∑
i=0

mn
tn

n!
.
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This gives an important recipe, for finding the first few moments. In particular, the first moment,

E[X], (expectation, alias mean), and the second moment E[X2]. This enables you to find the

variance using the famous formula

V ar(X) = E[X2] − E[X]2 = m2 −m2
1 .

Here goes:

Do the Maclaurin expansion and look up the coefficients of t (and multiply by 1), the coefficient of

t2 (and multiply by 2! = 2), the coefficient of t3 (and multiply by 3! = 6),etc.

Problem 21.2: Find the first three moments, and the variance, of a random variable X whose

moment generating function is given by

MX(t) =
1√

1− 2t)
.

Sol. of 21.2: Writing MX(t) as (1− 2t)−1/2, and using the Binomial theorem, we have

(1− 2t)−1/2 = 1 +

(
−1/2

1

)
(−2t) +

(
−1/2

2

)
(−2t)2 +

(
−1/2

3

)
(−2t)3 + . . .

1+(−1/2)(−2t)+((−1/2)(−3/2)/2)(−2t)2+((−1/2)(−3/2)(−5/2)/6)(−2t)3+. . . = 1+t+(3/2)t2+(5/2)t3+. . .

Hence

m1 = 1 ,
m2

2
=

3

2
,

m3

6
=

5

2
,

so

m1 = 1 , m2 = 3 , m3 = 15 .

Also V ar(X) = m2 −m2
1 = 3− 12 = 3− 1 = 2.

Ans. to 21.2: E[X] = 1, E[X2] = 3, E[X3] = 15 and V ar(X) = 2.

Problem 21.3: Find the first four moments, and the variance, of a random variable X whose

moment generating function is given by

MX(t) = et
2/2+t3/6 .

Sol. of 21.3: (Corrected Dec. 7, 2017, thanks to Vincent Wang)

Writing et
2/2+t3/6 = et

2/2 · et3/6, and expanding up to the power t4, (whenever we encounter a

power larger than 4 we ignore it, i.e. replace it by . . ., since we only care about the first four

moments.) we get

MX(t) = et
2/2 · et

3/6 =

(
1 + t2/2 +

1

2
(t2/2)2 + . . .

)
·
(
1 + t3/6 + . . .

)
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1 +
1

2
t2 +

1

8
t4 + . . .+

1

6
t3(1 +

1

2
t2 + . . .)

= 1 +
1

2
t2 +

1

6
t3 +

1

8
t4 + . . .

Hence

m1 = 0 ,
m2

2
=

1

2
,

m3

6
=

1

6
,

m4

24
=

1

8
.

So

m1 = 0 , ,m2 = 1 , m3 = 1 , m4 = 3 .

Also V ar(X) = m2 −m2
1 = 1− 02 = 1.

Ans. to 21.3: E[X] = 0, E[X2] = 1, E[X3] = 1, E[X4] = 3, and V ar(X) = 1.

Problem 21.4: An actuary determines that the claim size for a certain class of accidents is a

random variable X, with moment generating function

MX(t) =
1

(1− 100t)3
.

Determine the standard deviation of the claim size for this class of accidents.

Sol. to 21.4: By the binomial theorem applied to (1− 100t)−3 we get

MX(t) = 1 + (−3) · (−100t)1 + ((−3)(−4)/2) · (−100t)2 + . . .

= 1 + 300 t + 60000 t2 .

Hence

m1 = 300 ,
m2

2
= 60000 .

Hence

m1 = 300 , m2 = 120000 .

Hence

V ar(X) = m2 −m2
1 = 120000− 3002 = 120000− 90000 = 30000 .

Finally, the standard deviation is
√
V ar(X) =

√
30000 =

√
3 · 100 = 173.2050808 . . . .

Ans. to 21.4: The standard deviation of the claim size for this class of accidents is
√

3 · 100 =

173.2050808 . . ..

Warning: Do not confuse variance and standard deviation! Read the question carefully.

Moment Generating Functions of Famous Distributions

• If X is a binomial random variable with parameters n and p, then

MX(t) = (pet + 1− p)n .
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• If X is a Poisson random variable with parameter λ,

MX(t) = eλ (et−1) .

• If Z is a the standard normal random variable then

MZ(t) = et
2/2 .

In particular, m2 = 1,m4 = 3,m6 = 15, and, in general m2r = (2r)!/(2rr!). Of course, the

expectation, and all the odd moments are all always zero.

• If X is a a normal random variable with parameters µ and σ2,

MX(t) = e
σ2 t2

2 +µt .

Important property of Moment Generating Functions

If X and Y are independent random variables, then

MX+Y (t) = MX(t)MY (t) .

More generally, if X1, X2, . . . Xk are mutually independent then

MX1+...+Xk(t) = MX1
(t) · · ·MXk(t) .

Note: This implies the following facts that the we already know (but now we have a slick proof).

• The sum of two independent binomial random variables of parameters (n, p) and (m, p) is a a

binomial random variable with parameter (m+ n, p)

Proof:

(pet + 1− p)n · (pet + 1− p)m = (pet + 1− p)n+m .

(This is also obvious from common sense: If you toss a coin whose prob. of Heads is p, m times,

and then n times, at the end it is like tossing it m+ n times).

• The sum of two independent Poisson random variables with parameters λ1 and λ2 is a Poisson

random variable with parameter λ1 + λ2

Proof:

eλ1 (et−1) · eλ2 (et−1) = e(λ1+λ2) (e
t−1)

• The sum of two independent Normal random variables with parameters (µ1, σ
2
1) and (µ2, σ

2
2) is

a Normal random variable with parameters (µ1 + µ2 , σ
2
1 + σ2

2).
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Proof:

e
σ2
1
t2

2 +µ1t · e
σ2
2
t2

2 +µ2t = e
(σ2

1
+σ2

2
) t2

2 +(µ1+µ2)t .

Problem 21.5: A company insures homes in three cities, New York, Chicago and LA. Since

sufficient distance separates the cities, it is reasonable to assume that the losses occurring in these

cities are independent.

The moment generating functions for the loss distributions of the cities are

MNY (t) = (1− 3t)−1.5 ,

MCHICAGO (t) = (1− 3t)−2.5 ,

MLA(t) = (1− 3t)−3 .

Let X represent the combined losses from the three cities. Calculate the standard deviation of X

and E[X3].

Sol. to 21.5: By independence,

MX(t) = (1− 3t)−1.5 · (1− 3t)−2.5 · (1− 3t)−3 = (1− 3t)−7 .

By the Binomial theorem

(1− 3t)−7 = 1 + (−7)(−3t) + ((−7)(−8)/2)(−3t)2 + ((−7)(−8)(−9)/6)(−3t)3 + . . . .

= 1 + 21 t + 252 t2 + 2268 t3 + . . . .

Hence

m1 = 21 ,
m2

2
= 252 ,

m3

6
= 2268 .

Hence

m1 = 21 , m2 = 504 , m3 = 13608 .

It follows that the variance, V ar(X), is m2−m2
1 = 504−212 = 63 and hence the standard deviation

is
√

63.

Ans. to 21.5: The standard deviation of X is
√

63 and E[X3] is 13608.

Important Definition: A continuous random variable with mean µ is symmetric if its density

function f(t) satisfies f(µ + t) = f(µ − t). In particular if the mean is 0, f(t) must be an even

function, i.e. it satisfies

f(−t) = f(t) ,

i.e., replacing t by −t (and simplifying) gives you the same thing.
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Obvious but Important Fact: If X is a continuous symmetric random variable with mean 0,

0, then all its odd moments are zero. In other words, the moment generating function MX(t) is

also even (i.e. only contains even powers).

Not so obvious but Important Fact: If X is a continuous random variable whose moment

generating function, MX(t) is an even function of t (in other words MX(−t) = MX(t)), then it is

a symmetric random variable with mean 0. In particular P{X ≥ 0} = P{X ≤ 0} = 1
2 .

Problem 21.6: Let X and Y be identically distributed independent random variables such that

the moment generating function of X + Y is

M(t) = 0.1 e−3t + 0.8 + 0.1 e3t , for −∞ < t <∞ .

Calculate P{X ≥ 0}.

Sol. to 21.6: Superficially, it looks like insufficient information. In general, there is no direct

quick way (at least for you!) to deduce directly probabilities like P{X ≥ a} for arbitrary a. But

“by symmetry”, for P{X ≥ 0}, a reasonable guess would be 1
2 .

Let’s justify this guess. We have (by independence) MX+Y (t) = MX(t)MY (t) and since they are

identically distributed MX(t) = MY (t),

MX(t)2 = 0.1 e−3t + 0.8 + 0.1 e3t , for −∞ < t <∞ ,

that implies

MX(t) =
√

0.1 e−3t + 0.8 + 0.1 e3t .

Since MX(t) = MX(−t), MX(t) is an even function, and hence X is symmetric random variable

with mean 0, and so P{X ≤ 0 } = P{X ≥ 0 }. Since they add-up to 1 we get that P [X ≤ 0] = 1
2 .

Ans. to 21.6: P{X ≥ 0} = 1
2 .

Important Concept: Joint Moment Generating Function: If X1 and X2 are two random

variables then the joint moment generating function M(t1, t2) (that depends on two variables)

is defined by

M(t1, t2) = E[ et1X1+t2X2 ] .

Warning: In general it is false that M(t1, t2) = MX1(t1)MX2(t2). This happens only to be true if

X1 and X2 are independent. In fact, that’s how you can tell whether or not they are independent.

Note: Obviously M(t1, 0) = MX1(t1) and M(0, t2) = MX2(t2).

Note: If you have k random variables, X1, . . . , Xk; then the joint moment generating function is

the k-variable function

M(t1, . . . , tk) = E[ et1X1 + ...+tkXk ] .
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Problem 21.7: X and Y are independent random variables with common moment generating

function M(t) = et
2/2. Let W = X+2Y and Z = Y −3X. Determine the joint moment generating

function, M(t1, t2) of W and Z.

Sol. to 21.7: By definition:

M(t1, t2) = E[ et1W+t2Z ] .

Let’s simplify t1W + t2Z:

t1W + t2Z = t1(X + 2Y ) + t2(Y − 3X) = (t1 − 3t2)X + (2t1 + t2)Y .

Hence

M(t1, t2) = E[ e(t1−3t2)X +(2t1+t2)Y ] .

Since X and Y are independent, we have

M(t1, t2) = E[ e(t1−3t2)X ]E[e(2t1+t2)Y ] .

= MX(t1 − 3t2)MY (2t1 + t2) .

Recall that MX(t) = MY (t) = et
2/2, hence

M(t1, t2) = e(t1−3t2)
2/2 e(2t1+t2)

2/2 = e((t1−3t2)
2+(2t1+t2)

2)/2

= e(t
2
1−6t1t2+9t22+4t21+4t1t2+t

2
2)/2 = e(5t

2
1−2t1t2+10t22)/2 = e

5
2 t

2
1−t1t2+5t22 .

Ans. to 21.7: The joint moment generating function of W and Z is e
5
2 t

2
1−t1t2+5t22 .
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