
Probability distributions

1 Discrete distributions

When we toss a coin, we have no idea whether
it will land heads or tails. However, there is a
different sense in which the behaviour of the coin
is highly predictable: if it is tossed many times,
then the proportion of heads is very likely to be
close to 1/2.

In order to study this phenomenon mathemat-
ically, we need to model it, and this is done by
defining a sample space, which represents the set
of possible outcomes, and a probability distribu-

tion on that space, which tells you their proba-
bilities. In the case of a coin, the natural sample
space is the set {H, T }, and the obvious distribu-
tion assigns the number 1/2 to each element. Al-
ternatively, since we are interested in the number
of heads, we could use the set {0, 1} instead: af-
ter one toss, there is a probability of 1/2 that the
number of heads is 0 and a probability of 1/2 that
it is 1. More generally, a (discrete) sample space is
simply a set Ω, and a probability distribution on Ω
is a way of assigning a non-negative real number to
each element of Ω, such that the sum of all these
numbers is 1. The number assigned to a particular
element of Ω is then interpreted as the probability
that that some corresponding outcome will occur,
the total probability being 1.

If Ω is a set of size n, then the uniform dis-

tribution on Ω is the probability distribution that
assigns a probability of 1/n to each element of Ω.
However, it is often more appropriate to assign dif-
ferent probabilities to different outcomes. For ex-
ample, given any real number p between 0 and 1,
the Bernoulli distribution with parameter p on the
set {0, 1} is the distribution that assigns the num-
ber p to 1 and 1 − p to 0. This can be used to
model the toss of a biased coin.

Suppose now that we toss an unbiased coin n
times. If we are interested in the outcome of ev-
ery toss, then we would choose the sample space
consisting of all possible sequences of 0s and 1s of
length n. For instance, if n = 5, a typical element
of the sample space is 01101. (This particular el-
ement represents the outcome tails, heads, heads,
tails, heads, in that order.) Since there are 2n

such sequences and they are all equally likely, the
appropriate distribution on this space will be the
uniform one, which assigns a probability of 1/2n

to each sequence.

But what if we are interested not in the particu-
lar sequence of heads and tails but just in the total

number of heads? In that case, we could take as
our sample space the set {0, 1, 2, . . . , n}. The prob-
ability that the total number of heads is k is 2−n

times the number of sequences of 0s and 1s that
contain exactly k 1s. The latter is

(

n
k

)

= n!
k!(n−k)! ,

so the probability we assign to k is pk =
(

n
k

)

2−n.

More generally, for a sequence of n independent
experiments, each with the same probability p of
success, the probability of a given sequence of k
successes and n − k failures is pk(1 − p)n−k. So,
the probability of having exactly k successes is
pk =

(

n
k

)

pk(1 − p)n−k. This is called the binomial

distribution with parameters n and p. It models
the number of heads if you toss a biased coin n
times, for example.

Suppose we perform such experiments for as
long as we need to in order to obtain one success.
When k experiments are performed, the probabil-
ity of getting k − 1 failures followed by a success
is pk = (1 − p)k−1p. Therefore, this formula gives
us the distribution of the number of experiments
up to the first success. It is called the geomet-

ric distribution of parameter p. In particular, the
number of tosses of a fair coin needed to get the
first head is geometric of parameter 1/2. Notice
that our sample space is now the set of all non-
negative integers—in particular, it is infinite. So
in this case the condition that the probabilities add
up to 1 is that a certain infinite series (the series
∑∞

k=1 pk) converges to 1.

Now let us imagine a somewhat more compli-
cated experiment. Suppose we have a radioactive
source that occasionally emits an alpha particle.
It is often reasonable to suppose that these emis-
sions are independent, and equally likely to occur
at any time. If the average number of emissions
per minute is λ, say, then what is the probabil-
ity that during any given minute there will be k
particles emitted?

One way to think about this question is to di-
vide up the minute into n equal intervals, for some
large n. If n is large enough, then the probability
of two emissions occurring in the same interval is
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so small that it can be ignored, and therefore, since
the average number of emissions per minute is λ,
the probability of an emission during any given in-
terval must be approximately λ/n. Let us call this
number p. Since the emissions are independent,
we can now regard the number of emissions as the
number of successes when we do n trials, each with
probability p of success. That is, we have the bino-
mial distribution with parameters n and p, where
p = λ/n.

Notice that as n gets larger, p gets smaller. Also,
the approximations just made become better and
better. It is therefore natural to let n tend to infin-
ity and study the resulting “limiting distribution.”
It can be checked that, in the limit as n → ∞, the
binomial probabilities converge to pk = e−λλk/k!.
These numbers define a distribution on the set of
all non-negative integers, known as the Poisson

distribution of parameter λ.

2 Probability spaces

Suppose that I throw a dart at a dartboard. Not
being very good at darts, I am not able to say very
much about where the dart will land, but I can at
least try to model it probabilistically. The obvious
sample space to take consists of a circular disk,
the points of which represent where the dart lands.
However, now there is a problem: if I look at any
particular point in the disk, the probability that
the dart will land at precisely that point is zero.
So how do I define a probability distribution?

A clue to the answer lies in the fact that it seems
to be perfectly easy to make sense of a question
such as “What is the probability that I will hit the
bull’s eye?” In order to hit the bull’s eye, the dart
has to land in a certain region of the board, and
the probability of this happening does not have to
be zero. It might, for instance, be equal to the area
of the bull’s eye region divided by the total area of
the board.

What we have just observed is that even if we
cannot assign probabilities to individual points in
the sample space, we can still hope to give proba-
bilities to subsets. That is, if Ω is a sample space
and A is a subset of Ω, we can try to assign a
number P(A) between 0 and 1 to the set A. This
represents the probability that the random out-
come belongs to the set A, and can be thought of

as something like a notion of “mass” for the set A.
For this to work, we need P(Ω) to be 1 (since

the probability of getting something in the sam-
ple space must be 1). Also, if A and B are
disjoint subsets of Ω, then P(A ∪ B) should be
P(A)+P(B). From this it follows that if A1, . . . , An

are all disjoint, then P(A1∪, . . . ,∪An) is equal to
P(A1) + · · · + P(An). Actually, it turns out to be
important that this should be true not just for fi-
nite unions but even for countably infinite ones
as well. (Related to this point is the fact that one
does not attempt to define P(A) for every subset A
of Ω but just for measurable subsets. For our
purposes, it is sufficient to regard P(A) as defined
whenever A is a set we can actually define.)

A probability space is a sample space Ω together
with a function P, defined on all “sensible” subsets
A of Ω, that satisfies the conditions mentioned in
the previous two paragraphs. The function P itself
is known as a probability measure or probability dis-

tribution. The term probability distribution is often
preferred when we specify P concretely.

3 Continuous probability distribu-

tions

There are three particularly important distribu-
tions defined on subsets of R, of which two will
be discussed in this section. The first is the uni-

form distribution on the interval [0, 1]. We would
like to capture the idea that “all points in [0, 1] are
equally likely.” In view of the problems mentioned
above, how should we do this?

A good way is to take seriously the “mass”
metaphor. Although we cannot calculate the mass
of an object by adding up the masses of all the in-
finitely small points that make up the object, we
can assign to those points a density, and integrate
it. That is exactly what we shall do here. We as-
sign a probability density of 1 to each point in the
interval [0, 1]. Then we determine the probability
of a subinterval, [1/3, 1/2] say, by calculating the

integral P([1/3, 1/2]) =
∫ 1/2

1/3 1dx = 1/6. More gen-

erally, the probability associated with an interval
[a, b] will just be its length b − a. The probability
of a union of intervals will then be the sum of the
lengths of those intervals, and so on.

This “continous” uniform distribution some-
times arises naturally from requirements of sym-
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metry, just like its discrete counterpart. It can also
arise as a limiting distribution. For instance, sup-
pose that a hermit lives deep in a cave, away from
any clocks or sources of natural light, and that
each “day” he spends lasts for a random length
of time between 23 and 25 hours. To start with,
he will have some idea of what the time is, and
be able to make statements such as, “I’m having
lunch now, so it’s probably light outside,” but after
a few weeks of this regime, he will no longer have
any idea: any outside time will be just as likely as
any other.

Now let us look at a rather more interesting den-
sity function, which depends on the choice of a
positive constant λ. Consider the density func-
tion f(x) = λe−λx, defined on the set of all non-
negative real numbers. To work out the probability
associated with an interval [a, b], we now calculate

∫ b

a

f(x)dx =

∫ b

a

λe−λxdx = e−λa − e−λb.

The resulting probability distribution is called the
exponential distribution with parameter λ. The ex-
ponential distribution is appropriate if we are mod-
elling the time T of a spontaneous event, such as
the time it takes for a radioactive nucleus to decay,
or for the next spam email to arrive. The reason
for this is based on the assumption of memoryless-

ness : for example, if we know that the nucleus re-
mains intact at time s, the probability that it will
remain intact until a later time s+ t is the same as
the original probability that it would remain intact
to time t. Let G(t) represent the probability that
the nucleus remains intact up to time t. Then the
probability that it remains intact up to time s + t
given that it has remained intact up to time s is
G(s+ t)/G(s), so we are requiring that this equals
G(t). Equivalently, G(s + t) = G(s)G(t). The
only decreasing functions which have this property
are exponential functions, that is, functions of
the form G(t) = e−λt for some positive λ. Since
1−G(t) represents the probability that the nucleus

decays before time t, this should equal
∫ t

0 f(x)dx,

from which it is easy to deduce that f(x) = λe−λx.

We shall come to the third, and most important,
distribution below.

4 Random variables, mean and vari-

ance

Given a probability space, an event is defined to be
a (sufficiently nice) subset of that space. For ex-
ample, if the probability space is the interval [0, 1]
with the uniform distribution, then the interval
[1/2, 1] is an event, which represents the result that
a randomly chosen number between 0 and 1 is at
least 1/2. It is often useful to think not just about
random events, but also about random numbers

associated with a probability space. For example,
let us look once again at a sequence of tosses of
a biased coin that has probability p of coming up
heads. The natural sample space associated with
this experiment is the set Ω of all sequences ω of
0s and 1s. Earlier, we showed that the probability
of obtaining k heads is pk =

(

n
k

)

pk(1 − p)k, and
we described that as a distribution on the sample
space {0, 1, 2, . . . , n}. However, it is in many ways
more natural, and often far more convenient, to
regard the original set Ω as the sample space and
to define a function X from Ω to R to represent
the number of heads: that is, X(ω) is the number
of 1s in the sequence ω. We then write

P(X = k) = pk =

(

n

k

)

pk(1 − p)k.

A function like this is called a random variable. If
X is a random variable and it takes values in a
set Y , then the distribution of X is the function
defined on subsets of Y by P(A) = P(X(ω) ∈ A).

For many purposes, it is enough to know the
distribution of a random variable. However, the
notion of a random variable defined on a sample
space captures our intuition of a random quan-
tity, and it allows us to ask further questions.
For example, if we were to ask for the probabil-
ity that there were k heads, given that the first
and last tosses had the same outcome, then the
distribution of X would not provide the answer,
whereas our richer model of regarding X as a func-
tion defined on sequences would do so. Further-
more, we can talk of independent random vari-
ables, X1, . . . , Xn say, meaning that the subset of
Ω where Xi(ω) ∈ Ai for all i has probability given
by the product P(X1 ∈ A1)×· · ·×P(Xn ∈ An) for
all possible sets of values Ai.

Associated with a random variable X are two
important numbers that begin to characterize it,
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called the mean or expectation E(X) and the vari-

ance var(X). Both these numbers are determined
by the distribution of X . If X takes integer values,
with distribution P(X = k) = pk, then

E(X) =
∑

k

kpk, var(X) =
∑

k

(k − µ)2pk,

where µ = E(X). The mean tells us how big X
is on average. The variance, or more precisely its
square root, the standard deviation σ =

√

var(X),
tells us how far away X lies, typically, from its
mean. The useful formula var(X) = E(X2) −
E(X)2 is an easy exercise.

As we discussed at the start of this article, it is
known from experience that the “expected” num-
ber of heads in a sequence of n tosses of a fair coin
is around n/2, in the sense that the proportion is
usually close to 1/2. It is not hard to work out
that, if X models the number of heads in n tosses,
that is, if X has binomial distribution of param-
eters n and 1/2, then E(X) = n/2. The variance
of X is n/4, so the distribution is spread out on a
scale of σ =

√
n/2. This allows us to see that X/n

is close to 1/2 with probability close to 1 for large
n, in accordance with experience.

To understand the importance of the variance,
consider the following situation. Suppose that 100
people take an exam and you are told that their
average mark is 75%. This gives you some useful
information, but by no means a complete picture of
how the marks are distributed. For example, per-
haps the exam consisted of four questions of which
three were very easy and one almost impossible,
so that all the marks were clustered around 75%.
Or perhaps about 50 people got full marks and 50
got around half marks. To model this situation let
the sample space Ω consists of the 100 people and
let the probability distribution be the uniform dis-
tribution. Given a random person ω, let X(ω) be
that person’s mark. Then in the first situation, the
variance will be small, since almost everybody’s
mark is close to the mean of 75%, whereas in the
second it is close to 252 = 625, since almost every-
body’s mark was about 25 from the mean. Thus,
the variance helps us to understand the difference
between the two situations.

A useful fact about variance is that if
X1, X2, . . . , Xn are independent random variables,
then var(X1 + · · ·+Xn) = var(X1)+ · · ·+var(Xn).

It follows that if all the Xi have the same distribu-
tion with mean µ and variance σ2, then the vari-
ance of the sample average X = n−1(X1+· · ·+Xn)
is n−2(nσ2) = σ2/n, which tends to zero as n tends
to infinity. This observation can be used to prove
that for any ǫ > 0 the probability that |X −µ| > ǫ
tends to zero as n tends to infinity. Thus, the sam-
ple average “converges in probability” to the mean
µ.

This result is called the weak law of large num-

bers. The argument sketched above implicitly as-
sumes that the random variables have finite vari-
ance, but this assumption turns out not to be nec-
essary. There is also a strong law of large numbers,
which states that, with probability 1, the sample
average of the first n variables converges to µ as n
tends to infinity. As its name suggests, the strong
law is stronger than the weak law, in the sense that
the weak law can be deduced from the strong law.
Both laws give a rigorous backing for our initial
notion that the probability of an event (such as
a roll of a die coming up as a six) represents the
average proportion of times that the event would
occur over a large number of independent trials.

5 The normal distribution and the

central limit theorem

As we have seen, for the binomial distribution with
parameters p and n, the probability pk is given by
the formula

(

n
k

)

pk(1− p)n−k. If n is large and you
plot the points (k, pk) on a graph, then you will
notice that they lie in a bell-shaped curve that has
a sharp peak around the mean np. The width of
the tall part of the curve has order of magnitude
√

np(1 − p), the standard deviation of the distri-
bution. Let us assume for simplicity that np is
an integer, and define a new probability distribu-
tion qk by qk = pk+np. The points (k, qk) peak at
k = 0. If you now rescale the graph, compressing
horizontally by a factor of

√

np(1 − p) and expand-
ing vertically by the same factor, then the points
will all lie close to the graph of

f(x) =
1√
2π

e−x2/2.

This is the density function of a famous distribu-
tion known as the standard normal distribution on
R.
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To put this differently, if you toss a biased coin a
large number of times, then the number of heads,
minus the mean and divided by the standard devi-
ation, is close to a standard normal random vari-
able.

The function 1√
2π

e−x2/2 occurs in a huge va-

riety of mathematical contexts, from probability
theory to Fourier analysis to quantum mechan-
ics. Why should this be? The answer, as it is for
many such questions, is that there are properties
that this function has that are shared by no other
function.

One such property is rotational invariance. Sup-
pose once again that we are throwing a dart at a
dartboard and aiming for the bull’s eye. We could
model this as the result of adding two indepen-
dent normal distributions at right angles to each
other: one for the x-coordinate and one for the y-
coordinate (say each having mean 0 and variance
1). This would make the two-dimensional “den-

sity function” be 1
2π e−x2/2e−y2/2, which can con-

veniently be written as 1
2π e−r2/2, where r denotes

the length of (x, y). In other words, the density
function depends only on the distance from the
origin. (This is why it is called “rotationally in-
variant.”) This very appealing property holds in
more dimensions as well. And it turns out to be
quite easy to check that 1

2πe−r2/2 is the only such
function: more precisely, it is the only rotation-
invariant density function (of variance 1, say) that
can be decomposed into separate independent ran-
dom variables of x and y. Thus, the normal distri-
bution has a very special symmetry property.

Properties like this go some way towards ex-
plaining the ubiquity of the normal distribution
in mathematics. However, the normal distribu-
tion has an even more remarkable property, which
makes it ubiquitous in nature. The central limit

theorem states that, for any sequence of indepen-
dent and identically distributed random variables
X1, X2, . . . (with finite mean µ and non-zero finite
variance σ2), we have

lim
n→∞

P(X1+· · ·+Xn ≤ nµ+
√

nσx) =

∫ x

−∞

1√
2π

e−y2/2dy

for every real number x. The expected value of
X1 + · · · + Xn is nµ and its standard deviation is√

nσ, so another way of thinking about this is to
let Yn = (X1 + · · ·+Xn −nµ)/

√
nσ. This rescales

X1 + · · ·+ Xn to have mean 0 and variance 1, and
the probability becomes the probability that Yn ≤
x. Thus, whatever distribution we start with, the
limiting distribution (after appropriate rescaling)
is normal. Many natural processes can realistically
be modelled as accumulations of small independent
random effects, and this is why many distributions
one observes, such as the distribution of heights of
adults in a given town, have a familiar bell-shaped
curve.

A very useful application of the central limit
theorem is to simplify what look like impossibly
complicated calculations. For example, when the
paramenter n is large, the calculation of binomial
probabilities becomes prohibitively complicated,
but we may instead write a binomial random vari-
able X , of parameters n and say 1/2, in the form
X = Y1 + · · · + Yn, with Y1, . . . , Yn independent
Bernoulli of parameter 1/2. Then, by the central
limit theorem,

lim
n→∞

P(X ≤ n/2 +
√

nx/2) =

∫ x

−∞

1√
2π

e−y2/2dy.


