NAME: (print!) Alexandra Feldler

E-Mail address: arras @ scalet mail. Rutgers. edu

MATH 436 Exam II for Dr. Z.'s, Spring 2017, April 24, 2017, 10:20-11:40am, SEC 211

No Calculators! No Cheatsheets! YOU MAY USE YOUR HISTORY NOTE-BOOK (But not your Math Notebook).

Show your work! An answer without showing your work will get you zero points. continued from #5.

Do not write below this line (office use only)

1. 10 (out of 10)

- 5 (out of 10)
- 3. (out of 10)
- 4. $\int (\text{out of } 10)$
- 5. (out of 10)
- 6. [/) (out of 10)
- 7. (out of 10)
- 8. () (out of 10)
- 9. (out of 10)
- 10. () (out of 10)
- 11. (out of 10)

we have only two possibilities ait 1 a; H = Ø or ait = q; H. Moreover from Lemma & [IF h, and hz are z district elements from H then ah, and other are also distinct, since otherwise ahi=ahi=>a-lahi= a-lahz=7hi=hz, which is a contradiction. 50 if ne multiply all elements of H by a, we obtain the same H elements which means that laH = 1H]. It follows that all corets have exactly 1H1 number of elements. Therefore |a|=|H|+|H|+...+/H| => |a| = a/H| and $a = \frac{161}{141}$ is always an integer. OED.

total: (out of 110)
5-8 • | 134=66

(a) (6 pts.) For any position P in the (n^2-1) -puzzle, let [i,j] be the location of the blank (that we call n^2) (In other words, i is the row-number and j is the column-number), and let $\pi(P)$ be the permutation of $\{1,2,3,\ldots,n^2\}$ obtained by reading it from left-to-right and top-to-bottom (like in English). Define

$$S(P) = i + j + inv(\pi(P))$$

where $inv(\pi)$ is the number of inversions of the permutation π .

Prove that if Q is any position reachable from P by a finite number of legal moves, then the parity of S(P) equals the parity of S(Q). In other words, they are either both even or both odd.

Note: You may use the lemma that if you exchange any two elements in a permutation, the number of inversions always changes by an odd integer.

$$S(P_0) \equiv S(P_{n-1}) \mod 2$$

 $S(P')$ has the same parity as $S(P)$ [$S(P) = inv(\pi) + i + j$]

-for $P_0, P_1, P_2, ..., P_n$.

 $S(P_n) \equiv S(P_{n-1}) \mod 2$

By the lemma,

(b) (4 pts) Let

$$P = \begin{pmatrix} 1 & 2 & 3 \\ 5 & 4 \\ 6 & 7 & 8 \end{pmatrix} \quad , \quad Q = \begin{pmatrix} 4 & 2 & 1 \\ 3 & 5 & \\ 6 & 7 & 8 \end{pmatrix} \quad .$$

Can you reach position \not from position P, by a sequence of legal moves? Explain! \sim

$$P = 123594678_{-}$$
 $1NV(P) = 0+0+0+1+4+0+0+0+0$
 $= 5$
 $i = 2, j = 2$
 $T = 5+1+2=9$

It is impossible be TT(P) is odd and TT(Q) is even.

5. (10 points)

Prove Lagrange's theorem that if H is any subgroup of a group G, and |H| and |G| are their number of elements, respectively, then |G|/|H| is always an integer.

Let |G|= t and [a1H1azHr...,aiH] be the family of all cosets of H in Mile G. Then, G=a1H UazH U... UalH because G= fa11az,...,aef and I th. By
The lenma [let ah nbH ≠ Ø, then there exists on element x w/ xeath nbH from ah => ah = x=bh2=>b'a=hzhi 6th i at = bt], for any two cosets alt and ait -> lowers

(4)

6ED.

V

or, in fuller notation

$$u_x=v_y$$
 , $u_y=-v_x$, $rac{\partial u}{\partial x}=rac{\partial v}{\partial y}$, $rac{\partial u}{\partial y}=-rac{\partial v}{\partial x}$. $/$

system of two equations?

7. (10 points) Who discovered the quaternions? What city did that person live in?

8. (10 points) What is Heron's formula, what century did Heron live in?

9. (10 points) Where did Isaac Newton study? Who was his teacher? What unusual action did that teacher do? What was Newton's position after he left Cambridge?

10. (10 points) In what city was Leibnitz born? Where did he spend most of his life? What King of England was once the employer of Leibnitz?.

11. (10 points total)

(a) (5 points) State Viète's infinite product for $\frac{2}{\pi}$.

$$\cos \frac{\pi}{4} \cos \frac{\pi}{8} \cos \frac{\pi}{16} \cos \frac{\pi}{32} \dots$$

(b) (5 points) State the names of two people who initiated the use of logarithms John Napler ond Briggs

NAME: (print!) CASSANDRA SANCHEZ

E-Mail address: CMS. 548 @ ScaletMail, (utgs, edu)

MATH 436 Exam II for Dr. Z.'s, Spring 2017, April 24, 2017, 10:20-11:40am, SEC 211

No Calculators! No Cheatsheets! YOU MAY USE YOUR HISTORY NOTEBOOK (But not your Math Notebook).

Show your work! An answer without showing your work will get you zero points.

Do not write below this line (office use only)

- 1. 1 *D* (out of 10)
- 2. $\mathcal{O}_{\text{(out of 10)}}$
- 3. 4 (out of 10)
- 4. (out of 10)
- 5. 6 (out of 10)
- 6. (*O* (out of 10)
- 7. (Qout of 10)
- 8. \ \mathcal{D}_{a} \ \ (\text{out of 10})
- 9. **(0)** (out of 10)
- 10. **(**0 (out of 10)
- 11. (0 (out of 10))

total: (out of 110)

97 1,134 = 110

5 Let | HI = M, 161=1 HCG. Then I on elevert $g_2 \in G$ St $g_2 \notin H$, Let $g_2 H = g_2 h_1 \dots g_2 h_m g$ Lemma, gahi = gahi than 9=(9 2 hi) = 9= (92 hj) but by associativity, (g=g)hi=g=g so thi=ehj=> hi=hj gahi=his the gahilher)=hihi and ge = his how 9 & H -> Contradion so, 924114=0 We can built a set ont reflect fing the 1) [W => [=] = [] not clean to are the lammas?

4. (10 pts. total) (a) (6 pts.) For any position P in the (n^2-1) -puzzle, let [i,j] be the location of the blank (that we call n^2) (In other words, i is the row-number and j is the column-number), and , let $\pi(P)$ be the permutation of $\{1, 2, 3, ..., n^2\}$ obtained by reading it from left-to-right and top-to-bottom (like in English). Define $S(P) = i + j + inv(\pi(P))$ where $inv(\pi)$ is the number of inversions of the permutation π . Prove that if Q is any position reachable from P by a finite number of legal moves, then the parity of S(P) equals the parity of S(Q). In other words, they are either both even or both odd. Note: You may use the lemma that if you exchange any two elements in a permutation, the number of inversions always changes by an odd integer. Proof By Induction a Assume (A) to bettime: Mot clean Base Case: If there is only one inversion then you are only exchaging two elemants so the number or investis charges by todd, and lorg amongst Industive Step! Let Q be the New Position obtained by a finde numbrof moves, and the moves From iP to the Q-1st Position humenot Changel the parity. Then by the lemma, one more move to Q Charges the number (b) (4 pts) OF investins by an odd integer and $C = C \pm 1$ and Can you reach position of from position P, by a sequence of legal moves? Explain! NO P= 12 35941678 INV(P)=5 == 2 == 2 50 S=5+2+2=9 Q=L|21359678 Fnu(a)=3+1+3=6+1=7 i=2,j=3 (3, (1, (0) (0) (0) (3) (6(40) S. 7.12+3=12 It is impossible because 9 is old but 12' is ever, and by Part (a) we know this is im possible

their number of elements, respectively, then |G|/|H| is always an integer.

Prove Lagrange's theorem that if H is any subgroup of a group G, and |H| and |G| are

5./(10 points)

6. (10 points) What is the name of the following famous equation-pair?
or, in fuller notation
$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} , \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$ What is special about the function $u(x,y) + iv(x,y)$ where $u(x,y), v(x,y)$ satisfy the above system of two equations?
- Name. Cauchy-Riemann Equations
7. (10 points) Who discovered the quaternions? What city did that person/live in? To FUNCTION,
- Manilton - Dublin V () analytic
8. (10 points) What is Heron's formula, what century did Heron live in?
Airenta 1 ", A= 15 (5-91 (5-6) (5-6)) 1st Century AD (19)
9. (10 points) Where did Isaac Newton study? Who was his teacher? What unusual action did that teacher do? What was Newton's position after he left Cambridge?
- Cambridge / - Barrow gave Newton his Photessorship
- Issac Bairon - Warden/Master Of the mint (10)
10. (10 points) In what city was Leibnitz born? Where did he spend most of his life? What King of England was once the employer of Leibnitz?.
- Leipzig - Most life near Court of flanouer
11. (10 points total) (a) (5 points) State Viète's infinite product for $\frac{2}{\pi}$.
$\frac{2}{M} = \frac{1}{1000} = \frac{1}{1$
(b) (5 points) State the names of two people who initiated the use of logarithms
(1) John Napler Cana John Neper) V (5)
(L) 15 riggs

. \

E-Mail address: Slotsvin @ gmail.com MATH 436 Exam II for Dr. Z.'s, Spring 2017, April 24, 2017, 10:20-11:40am, SEC 211 No Calculators! No Cheatsheets! YOU MAY USE YOUR HISTORY NOTE-BOOK (But not your Math Notebook). Show your work! An answer without showing your work will get you zero points. Do not write below this line (office use only) 1. 10 (out of 10) 2. 6 (out of 10) 4. 8 (out of 10) 4. 8 (out of 10) 5. 9 (out of 10) 6. 6 (out of 10) 6. 6 (out of 10) 7. 10 (out of 10) 8. 10 (out of 10) 9. 10 (out of 10) 10. 10 (out of 10) 11. 10 (out of 10) 12. 11. 12. 13. 14. 15. 16. 16. 16. 16. 16. 16. 16. 16. 16. 16		
MATH 436 Exam II for Dr. Z.'s, Spring 2017, April 24, 2017, 10:20-11:40am, SEC 211 No Calculators! No Cheatsheets! YOU MAY USE YOUR HISTORY NOTE-BOOK (But not your Math Notebook). Show your work! An answer without showing your work will get you zero points. Do not write below this line (office use only) 1. 10 (out of 10) 2. 6 (out of 10) 3. 7 (out of 10) 4. 8 (out of 10) 5. 9 (out of 10) 6. 6 (out of 10) 7. 10 (out of 10) 8. 10 (out of 10) 9. 10 (out of 10) 10. 10 (out of 10) 10. 10 (out of 10) 10. 10 (out of 10) 11. 10 (out of 10) 12. 2 (out of 10) 13. 3 (out of 10) 14. 5 (out of 10) 15. 10 (out of 10) 16. 6 (out of 10) 17. 10 (out of 10) 18. 10 (out of 10) 19. 10 (out of 10) 19. 10 (out of 10) 10. 10 (out of 10) 10. 10 (out of 10)	NAME: (print!)	Shmuel Lotsuin
No Calculators! No Cheatsheets! YOU MAY USE YOUR HISTORY NOTE-BOOK (But not your Math Notebook). Show your work! An answer without showing your work will get you zero points. Do not write below this line (office use only) 1. 10 (out of 10) 2. 6 (out of 10) 3. 7 (out of 10) 4. 8 (out of 10) 5. 9 (out of 10) 6. 6 (out of 10) 6. 6 (out of 10) 7. 10 (out of 10) 8. 10 (out of 10) 9. 10 (out of 10) 10. 10 (out of 10) 11. 10 (out of 10) 12. 10 (out of 10) 13. 10 (out of 10) 14. 10 (out of 10) 15. 10 (out of 10) 16. 10 (out of 10) 17. 10 (out of 10) 18. 10 (out of 10) 19. 10 (out of 10) 19. 10 (out of 10) 10. 10 (out of 10) 10. 10 (out of 10)	E-Mail address:	slotsvin@gmail.com
BOOK (But not your Math Notebook). Show your work! An answer without showing your work will get you zero points. Do not write below this line (office use only) 1. 10 (out of 10) 2. 6 (out of 10) 3. 7 (out of 10) 4. 8 (out of 10) 4. 8 (out of 10) 5. 9 (out of 10) 6. 6 (out of 10) 7. 10 (out of 10) 8. 10 (out of 10) 9. 10 (out of 10) 10. 10 (out of 10) 11. 10 (out of 10) 12. 10 (out of 10) 13. 10 (out of 10) 14. 8 (out of 10) 15. 10 (out of 10) 16. 10 (out of 10) 17. 10 (out of 10) 18. 10 (out of 10) 19. 10 (out of 10) 19. 10 (out of 10) 10. 10 (out of 10)		or Dr. Z.'s, Spring 2017, April 24, 2017, 10:20-11:40am,
1. 10 (out of 10) 2. 6 (out of 10) 3. 7 (out of 10) 4. 8 (out of 10) 5) Let H be a subgroup of group G, and let the order of H be H and the order of G be G . We want to show G _{H } = n for some ne Z. Pick an reG. Then, Hr, = H . If Hr, = G, therefore and Hr, \(\Omega \) Horder = \(\Omega \) so they and the condition of the proof of G be G . Pick an reG. Then, Hr, = H . If Hr, = G, therefore \(\Omega \) (out of 10) 10. Omega \(\Omega \) (out of 10) 11. Omega \(\Omega \) (out of 10) 12. Omega \(\Omega \) (out of 10) 13. Omega \(\Omega \) (out of 10) 14. Omega \(\Omega \) (out of 10) 15. Omega \(\Omega \) (out of 10) 16. Omega \(\Omega \) (out of 10) 17. Omega \(\Omega \) (out of 10) 18. Omega \(\Omega \) (out of 10) 19. Omega \(\Omega \) (out of 10) 10. Omega \(\Omega \) (out of 10) 10. Omega \(\Omega \) (out of 10) 10. Omega \(\Omega \) (out of 10)	BOOK (But not your Show your work! An	Math Notebook).
2. 6 (out of 10) the order of H be 1H1 and the order of G be 16]. 3. 7 (out of 10) 4. 8 (out of 10) Pick an TeG. Then, Hr. = 1H1 IP Hr. = G there 5. 8 (out of 10) 6. 6 (out of 10) lemma, we know that Hr. 1 Hr. = D, so they of the content of this way, picking denerts from G that are not in an cosets we have already made, with we reach	Do not write below this l	ine (office use only)
total: 94 × (out of 110) have $\frac{ G }{ H } = n$ for some $n \in \mathbb{Z}^+$, as desired. Note: By lemma, no elements in Hr, should be equal, i.e, for $x_i, x_j \in Hr_i$, $i \neq j$, we have $x_i \neq x_j$. So, $ Hr_i = H $. This true for Hr_i for $i = 1,, n$.	2. 6 (out of 10) 3. 7 (out of 10) 4. 8 (out of 10) 5. 9 (out of 10) 6. 6 (out of 10) 7. 10 (out of 10) 8. 10 (out of 10) 9. 15 (out of 10) 10. 10 (out of 10) 11. 10 (out of 10)	the order of H be 1H1 and the order of 6 be 161. We want to show 16/141 = n for some ne Zt. Pick an reG. Then, Hr, = 1H1 The Hr, = G, there BIGI/1H1 = 1=n. Otherwise, we choose re G \ Hr. By and lemma, we know that Hr, n Hrz = D, so they a disjoint and Hr, U Hrz = 2H1. If H, U Hrz = G, we are done and 18/141 = 2=n. Otherwise, we continue in this way, picking dements from G that are not in an cosets we have already made, with we reach Hr, U Hz U U Hrz = G. Then 161 = 1H1 School and lead

(a) (6 pts.) For any position P in the (n^2-1) -puzzle, let [i,j] be the location of the blank (that we call n^2) (In other words, i is the row-number and j is the column-number), and let $\pi(P)$ be the permutation of $\{1,2,3,\ldots,n^2\}$ obtained by reading it from left-to-right and top-to-bottom (like in English). Define

$$S(P) = i + j + inv(\pi(P)) \quad ,$$

where $inv(\pi)$ is the number of inversions of the permutation π .

Prove that if Q is any position reachable from P by a finite number of legal moves, then the parity of S(P) equals the parity of S(Q). In other words, they are either both even or both odd.

Note: You may use the lemma that if you exchange any two elements in a permutation, the number of inversions always changes by an odd integer.

Suppose Q is reachable from P in a finite number of legal moves. Each legal move thances the parity of P S(P), by an even number is this, is because:

changes the parity of P, S(P), by an even number of this is because:

moving the n2 tile changes , parity n by an odd number

· the i and j are now inverted, changing parity by +1 or +1.

· odd +1 = even, odd -1 = even, so the moves always change parity by even

$$P = \begin{pmatrix} 1 & 2 & 3 \\ 5 & q & 4 \\ 6 & 7 & 8 \end{pmatrix} \quad , \quad Q = \begin{pmatrix} 4 & 2 & 1 \\ 3 & 5 & q \\ 6 & 7 & 8 \end{pmatrix} \quad .$$

Can you reach position P, from position P, by a sequence of legal moves? Explain!

$$S(p) = (1+4) + 2+2 = 9$$
, $S(Q) = (3+1+3) + 3+2 = 12$

Q is not reachable from P through a series of legal mover because the parity of P, S(P), is odd while the parity of Q, S(Q), is even. I since every legal move changes the parity of the position by an even amount, S(P) will be odd within a finite number of moves and will not reach S(Q).

5. (10 points) Prove Lagrange's theorem that if H is any subgroup of a group G, and |H| and |G| are their number of elements, respectively, then |G|/|H| is always an integer.

NAME: (print!)	Sarah Teklinski
E-Mail address:	acal tollings of the are ada
MATH 436 Exam l SEC 211	II for Dr. Z.'s, Spring 2017, April 24, 2017, 10:20-11:40am,
BOOK (But not yo	o Cheatsheets! YOU MAY USE YOUR HISTORY NOTE- our Math Notebook). An answer without showing your work will get you zero
Do not write below th	is line (office use only)
1. [O (out of 10) 2. (O (out of 10) 3. (out of 10) 4. (O (out of 10) 5. (out of 10) 6. (O (out of 10) 7. (O (out of 10) 8. (O (out of 10) 9. (O (out of 10)	There are k cosets total and m elements in each coset of H. Singe G is the disjoint union of all k cosets, n = mik. Thus 101=1H (1) 161 = k, which is always an integer.
10. O (out of 10) 11. (i) (out of 10)	

total: 90 x 1.134= 102, 1

are similar. Thus the the terms, for some $k \in \mathbb{Z}^+$, $k \in \mathbb{Z}^-$ is a $2 + k b^2$.

Thus $a^2 + b^2 = c^2$.

2. (10 pts.) Prove that $\sqrt{3}$ is irrational. 2. (10 pts.) Prove that v3 is irrational.

Pt. Spoose not Thus for min & m is climsible by 3 => m is a mis and for pt Z + m = y (30) = 3m => m is climsible by 3 => m is a mis climsible by 3 => mis climsible by 5 => mis climsible by 5 => mis climsible by since mis climsible by side length C: a to be we know triangles ABC; BCD, and ACD the square is (070)2. The auco the lare of the 4 total plus square with/sade wigth c. b Draw on althock onto how consider the square of sick length atb: 1. (10 pts.) Give two proofs of the Pythagorean theorem. Give two prous we consider the triangle of c Thus 2/3 15 mathonal. $Thw (a+b)^2 = 4(\frac{1}{2}ab) + c^2$ pf 2: Consider the triangle a a2+2ab+b2 - 2ab+C2 ed so equals the ones of aztbz = c2

 $z \to z^2 + C$, $(z^4 + c) \to (z^2 + c)^2 + C$ $(z^2 + c)^2 + C$ $(z^2 + c)^2 + C$. do not get infinitely large $(z^2 + c)^2 + C$ 3. (10 pts. total) (a) (5 points) Define the Mandelbrot set.

The Mandelbrot set M Consists of gel complex numbers c

Such that Z->2-+C, where the iterations of

11m rn-rn-1 2 4.669... Wates r? the formula Xn+1 = r Xn (1-Xn), the Feigenbaum (b) (5 points) Define the Feigenbaum constant. Explain everything! My - Ku constant is lim For

((a)) (6 pts.) For any position P in the (n^2-1) -puzzle, let [i,j] be the location of the blank (that we call n^2) (In other words, i is the row-number and j is the column-number), and let $\pi(P)$ be the permutation of $\{1, 2, 3, \dots, n^2\}$ obtained by reading it from left-to-right and top-to-bottom (like in English). Define

$$S(P) = i + j + inv(\pi(P)) ,$$

where $inv(\pi)$ is the number of inversions of the permutation π .

Prove that if Q is any position reachable from P by a finite number of legal moves, then the parity of S(P) equals the parity of S(Q). In other words, they are either both even or both odd.

Note: You may use the lemma that if you exchange any two elements in a permutation,

the number of inversions always changes by an odd integer.

MPF! In any ugal move, we exchange the blank space with a relighboring space. So either i increases by 1 or decreases by 1 from the comma, if we exchange any 2 elements in a permutation that number of inversions always changes by an odd integer. So inv (S(6))= 2pt/1 for pEZ, thus the next more will have aparity of even, see since odd ±1 is an even integer. If the parity of S(P) is even, Isince even + even is even, S(G) will have (b) (4 pts) even parity. If the parity of S(P) is odd) since odd + even is odd, S(G) will have odd parity. Thus theither case Let $P = \begin{pmatrix} 1 & 2 & 3 \\ 5 & 9 & 4 \\ 6 & 7 & 8 \end{pmatrix}, Q = \begin{pmatrix} 4 & 2 & 1 \\ 3 & 5 & 9 \\ 6 & 7 & 8 \end{pmatrix} parity of S(P) equals$

Can you reach position from position P, by a sequence of legal moves? Explain! itj + inv (s(P)) = 2+2+ 5 = 9 SCA) = i + j + inv(S(P)) = 2+3+7 = 12

from part (a), in order for a to be a position reachable athrik number of legal moves, the parity of SP) must be equal. But the party of SCP) is odd and the parity of S(Q) is even iso Q is not reach able from position P by a sequence of ugal moves. 5. (10 points)

Prove Lagrange's theorem that if H is any subgroup of a group G, and |H| and |G| are their number of elements, respectively, then |G|/|H| is always an integer.

pf: let H <6. let 161=n, 1H=m, and H=\{\frac{1}{2}}h,\frac{1}{1}n_2,...,\text{bm}\{\frac{1}{2}}. let H have K cosets. let 013927..., 9k EB. The cosets of A are: 9, H= & g, h1, g, h2, ..., g, hm }, 92 H = & gz h1, gzhz, ..., gzhm }, ... (see Frent Page)

NAME: (print!) Jennifer Head
E-Mail address: jennifer, moad @ rutgers. ecly
MATH 436 Exam II for Dr. Z.'s, Spring 2017, April 24, 2017, 10:20-11:40am, SEC 211
No Calculators! No Cheatsheets! YOU MAY USE YOUR HISTORY NOTE-BOOK (But not your Math Notebook). Show your work! An answer without showing your work will get you zero points.
Do not write below this line (office use only)
1. 16 (out of 10)
2. (O (out of 10)
3. 4 (out of 10)
4. (D (out of 10)
5. (Out of 10)
6. (out of 10)
7. 10 (out of 10)
8. 10 (out of 10)
9. \(\tag{\text{out of 10}} \)
10. 10 (out of 10)
11. (O (out of 10)
total: (out of 110)

total: $\begin{cases} 9 & \text{(out of 110)} \\ 1 & \text{(34 = 10)} \end{cases}$

$$(a+b)^2 = C^2 + 4ab$$

$$\Rightarrow a^{2}+b^{2}+\frac{4ab}{2}=c^{2}+\frac{4ab}{2}$$

$$a^{2}+b^{2}=c^{2}$$

Area of I + Area of II = Area of III
$$ka^{2} + kb^{2} = kc^{2}$$

$$a^{2}+b^{2}=c^{2}$$

2. (10 pts.) Prove that $\sqrt[7]{3}$ is irrational.

Suppose 2/3 is national. Then 2/3 = m , god (m,n) = 32 m => 3n?:m?

Then 31m. => 31m.m.m.m.m.m 80 81m Thus in can be written as m=3p -,3n = (3p)

り=3677 = 36/n7 = 36/nn·n·n·n·n = 28/n = D8/n Thus n' can be written as n=39

But then m + n have a common factor of 3, but we assumed gcd(mn)=1. Thus 273 is irrational.

3. (10 pts. total) (a) (5 points) Define the Mandelbrot set.

The Mandelbrot set 10 the set Of c's Por which 2-DZ+C does not diverge.

(a) (6 pts.) For any position P in the (n^2-1) -puzzle, let [i,j] be the location of the blank (that we call n^2) (In other words, i is the row-number and j is the column-number), and let $\pi(P)$ be the permutation of $\{1,2,3,\ldots,n^2\}$ obtained by reading it from left-to-right and top-to-bottom (like in English). Define

$$S(P) = i + j + inv(\pi(P)) ,$$

where $inv(\pi)$ is the number of inversions of the permutation π .

Prove that if Q is any position reachable from P by a finite number of legal moves, then the parity of S(P) equals the parity of S(Q). In other words, they are either both even or both odd.

Note: You may use the lemma that if you exchange any two elements in a permutation, the number of inversions always changes by an odd integer.

Given SCP), 5(0) takes on mores to reach. For each more, thu(P)-mv(Pij) is odd and it; changes by ±1. Thus, for each more intotal (inv(P)-mv(Pij)+itj) is even. Thus for each more an even number will be odded to SCP) until we reach SCO), thereby preserving the party.

$$P = \begin{pmatrix} 1 & 2 & 3 \\ 5 & 4 \\ 6 & 7 & 8 \end{pmatrix} \quad , \quad Q = \begin{pmatrix} 4 & 2 & 1 \\ 3 & 5 \\ 6 & 7 & 8 \end{pmatrix} \quad .$$

Can you reach position P from position P, by a sequence of legal moves? Explain! |P| = |P

No, The parities of SCPI and SCOI are not the same.

5. (10 points)

Prove Lagrange's theorem that if H is any subgroup of a group G, and |H| and |G| are their number of elements, respectively, then |G|/|H| is always an integer.

Let $H: \{h_1, h_2, h_3, ..., h_m\}$ |H|=m, $G: \{g_1, g_2, ..., g_n\}$ |G|=n |HCG|.

we can And a, $\not\in H$ and create coset $H_1 = \{a_1h_1, a_1h_2, ..., a_nh_m\}$ All elements of H are distinct (if $a_1h_1=a_1h_1 \rightarrow b_1$ $a_1h_1=a_1h_1 \rightarrow b_1$ $a_1h_1=b_1$ $a_$

Were 15 this?? (a) (10 points) What or, in fuller notation What is special about system of two equation 7. (10 points) Who company the system of two equations are specially as the system of two equa

$$u_x = v_y \quad , \quad u_y = -v_x \quad ,$$

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 , $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$

What is special about the function u(x,y)+iv(x,y) where u(x,y),v(x,y) satisfy the above system of two equations?

- 7. (10 points) Who discovered the quaternions? What/city did that person live in?

 William Rowan Hamilton

 Dublin, Ireland
- 8. (10 points) What is Heron's formula, what century did Heron live in?

 1st century AD

 Arca of a triangl: A = \(8(\omega-a)(s-to)(s-c) \)
- 9. (10 points) Where did Isaac Newton study? Who was his teacher? What unusual action did that teacher do? What was Newton's position after he left Cambridge?

Isaac Barrow Studied at Cambridge University U

- 10. (10 points) In what city was Leibnitz born? Where did he spend most of his life? What King of England was once the employer of Leibnitz?.

 Born in Leipzia, spent life near Hanorer, under King George T
 - 11. (10 points total)
 - (a) (5 points) State Viète's infinite product for $\frac{2}{\pi}$.

NAME: (print!) Reven Ros

E-Mail address: PSQUI @ SCAQUETMALL RUTGERS. EDU

MATH 436 Exam II for Dr. Z.'s, Spring 2017, April 24, 2017, 10:20-11:40am, SEC 211

No Calculators! No Cheatsheets! YOU MAY USE YOUR HISTORY NOTEBOOK (But not your Math Notebook).

Show your work! An answer without showing your work will get you zero points.

Do not write below this line (office use only)

- 1. 5 (out of 10)
- 2. 5 (out of 10)
- 3. (Out of 10)
- 4. \nearrow (out of 10)
- 5. **U** (out of 10)
- 6. 6 (out of 10)
- 7. (U (out of 10)
- 8. (() (out of 10)
- 9. 6 (out of 10)
- 10. (*O* (out of 10)
- 11. (out of 10)

5. $G = \{ \begin{pmatrix} 123 \\ 123 \end{pmatrix}, \begin{pmatrix} 123 \\ 122 \end{pmatrix}, \begin{pmatrix} 123 \\ 213 \end{pmatrix}, \begin{pmatrix} 123 \\ 231 \end{pmatrix}, \begin{pmatrix} 123 \\ 312 \end{pmatrix}, \begin{pmatrix} 123 \\ 321 \end{pmatrix} \}$ $H = \{ \begin{pmatrix} 123 \\ 123 \end{pmatrix}, \begin{pmatrix} 123 \\ 231 \end{pmatrix}, \begin{pmatrix} 123 \\ 231 \end{pmatrix}, \begin{pmatrix} 123 \\ 231 \end{pmatrix} \}$

COSET (123) H = {(123), (123), (123)}

[#j

ghi=ghj

(g-1ghi) = (g-1ghi)

ehi=ehi

んごっんう

ghi-hj

9=んらんご

hi=ghi

nj-1/1=9

HMBH= P

total: 84 (out of 110)

1. (10 pts.) Give two proofs of the Pythagorean theorem.

$$a^{2}+b^{2}=4\left(\frac{1}{2}ab\right)=(a+b)^{2}$$
 $a^{2}+2ab+b^{2}=a^{2}+b^{2}+2ab$

$$c^{2}+4\left(\frac{1}{2}ab\right)=(a+b)^{2}$$
 $a^{2}+b^{2}=c^{2}$

2. (10 pts.) Prove that $\sqrt[7]{3}$ is irrational.

LEMMA: EVERY INTEGER IN CAN BE WRITTEN AS 310 WHERE OFICE, 31=1 FOR SOME INTEGER 120

$$\sqrt[2]{3} = \frac{m}{\eta}$$

$$(3^{(a)})^{0} = 3(3^{5}b)^{0}$$

POWER OF 3 ON THE LEFT SIDE IS ODD AND THE

3. (10 pts. total) (a) (5 points) Define the Mandelbrot set.

MANDELBROT SOT 13 A SOT THAT GEHIBITS A REPEATING PATTERN

DISDLAYED AT GUERY SCALE Se(Z) = 27+0 DOOS. NOT DIVERAGE

WHEN INTEGRATED FROM Z=0.

(b) (5 points) Define the Feigenbaum constant. Explain everything!

FEIGNBAUM CONSTANT IS THE LIMITING RATIO OF GACH BIFURCATION INTEGRAL TO THE NEXT BETWEEN EVERY PORTOD DOUBLING OF A

ONG-PARAMETER MAP Zi+, = S(Xi).

(a) (6 pts.) For any position P in the (n^2-1) -puzzle, let [i,j] be the location of the blank (that we call n^2) (In other words, i is the row-number and j is the column-number), and let $\pi(P)$ be the permutation of $\{1,2,3,\ldots,n^2\}$ obtained by reading it from left-to-right and top-to-bottom (like in English). Define

$$S(P) = i + j + inv(\pi(P)) ,$$

where $inv(\pi)$ is the number of inversions of the permutation π .

Prove that if Q is any position reachable from P by a finite number of legal moves, then the **parity** of S(P) equals the **parity** of S(Q). In other words, they are either both even or both odd.

Note: You may use the lemma that if you exchange any two elements in a permutation, the number of inversions always changes by an odd integer.

CEMMA. IF YOU GCHANGE ANY TWO FLEMENTS: IN A DERMUTATION THE NUMBERO OF INVERSIONS ALWAYS CHANGES BY AN GOD WIGGER.

SUDING HONZONTAL PARITY OF PERMUTATION AND TOXI CAS DISTANCE CHANGED SUDING VORTICAL NZ CHANGED WITH ANOTHER, NUMBER OF INVERSIONS CHANGED, PARITY OF NUMBER OF INVERSIONS LROW+COLUMN NUMBER REMAINS SAME.
THUS 175 IMPOSSIBLE TO GOT IT.

(b) (4 pts) Let

$$P = \begin{pmatrix} 1 & 2 & 3 \\ 5 & 4 \\ 6 & 7 & 8 \end{pmatrix} \quad , \quad Q = \begin{pmatrix} 4 & 2 & 1 \\ 3 & 5 \\ 6 & 7 & 8 \end{pmatrix} \quad .$$

Can you reach position P from position P, by a sequence of legal moves? Explain!

$$S(p) = h_{i} (\pi) + (+j)$$
 $i = 2, j = 2$
 $i = 2, j = 3$
 $\pi = 123594679$
 $f = 123594679$
 $f = 123594679$
 $f_{i} = 123594679$

S(p) = 5 + 2 + 2 = 9 $S(Q) = \Pi + 2 + 3 = 12$

what is the answer? Yes or No?

5. (10 points)

Prove Lagrange's theorem that if H is any subgroup of a group G, and |H| and |G| are their number of elements, respectively, then |G|/|H| is always an integer.

you did an

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 , $\frac{\partial u}{\partial y} \neq -\frac{\partial v}{\partial x}$.

 $u_x = v_y \quad , \quad u_y = -v_x \quad ,$

What is special about the function u(x,y)+iv(x,y) where u(x,y),v(x,y) satisfy the above system of two equations?

IT'S EUER'S BOURHON: COSO4(SINO

7. (10 points) Who discovered the quaternions? What city did that person live in?

DUBLIN

8. (10 points) What is Heron's formula, what century did Heron live in?

1 ST CONTURY

9. (10 points) Where did Isaac Newton study? Who was his teacher? What unusual action did that teacher do? What was Newton's position after he left Cambridge?

ISARC BARROW

10. (10 points) In what city was Leibnitz born? Where did he spend most of his life? What King of England was once the employer of Leibnitz?.

KING GGORGE I

11. (10 points total)

(a) (5 points) State Viète's infinite product for $\frac{2}{\pi}$.

$$\frac{2}{\pi} = \cos\left(\frac{\pi}{4}\right)\cos\left(\frac{\pi}{8}\right)\cos\left(\frac{\pi}{16}\right)\cos\left(\frac{\pi}{72}\right)...$$

(b) (5 points) State the names of two people who initiated the use of logarithms

JOHN NEPER

HENRY BRIGGS

3. W (out of 10) $g_1 H = \{g_1 h_1, g_2 h_2, \dots, g_1 h_m\}$ 4. q (out of 10) $g_2 H = \{g_1 h_1, g_2 h_2, \dots, g_2 h_m\}$ 5. W (out of 10) $g_1 H = \{g_1 h_1, g_2 h_2, \dots, g_2 h_m\}$
MATH 436 Exam II for Dr. Z.'s, Spring 2017, April 24, 2017, 10:20-11:40am, SEC 211 No Calculators! No Cheatsheets! YOU MAY USE YOUR HISTORY NOTE-BOOK (But not your Math Notebook). Show your work! An answer without showing your work will get you zero points. Do not write below this line (office use only) 1. ib (out of 10) 2. lb (out of 10) 3. lb (out of 10) 4. q (out of 10) 5. lb (out of 10) 4. q (out of 10) 5. lb (out of 10) 6. lb (out of 10) 7. lb (out of 10) 8. lb (out of 10) 9. lb = Eghi, gha,, ghhas 1. lb (out of 10) 9. lb = Eghi, gha,, ghhas 1. lb (out of 10) 9. lb = Eghi, gha,, ghhas 1. lb (out of 10)
No Calculators! No Cheatsheets! YOU MAY USE YOUR HISTORY NOTE-BOOK (But not your Math Notebook). Show your work! An answer without showing your work will get you zero points. Do not write below this line (office use only) 1. W (out of 10) 2. W (out of 10) 3. W (out of 10) 4. q (out of 10) 5. W (out of 10) 9. H= \(\frac{1}{2} \) hi, \(\frac{1}{2} \) hin \(
BOOK (But not your Math Notebook). Show your work! An answer without showing your work will get you zero points. Do not write below this line (office use only) 1. W (out of 10) 2. W (out of 10) 3. W (out of 10) 4. 9 (out of 10) 5. W (out of 10) 5. W (out of 10) 6. Hi define the following your work will get you zero points. 5. W (out of 10) 6. Hi define the following your work will get you zero points.
1. 10 (out of 10) 2. 10 (out of 10) 3. 10 (out of 10) 4. 9 (out of 10) 5.) Suppose that 6 75 % a group and that the following a subgroup of G. He define the following colors: 3. 10 (out of 10) 3. H= Egin, gaha,, gahas 4. 9 (out of 10) 5. 10 (out of 10) 3. H= Egaha, gaha,, gahas 5. 10 (out of 10) 3. H= Egaha, gaha,, gahas 6. He define the following a subgroup of G. He define the f
3. W (out of 10) $g_1 H = \{g_1 h_1, g_2 h_2, \dots, g_1 h_m\}$ 4. q (out of 10) $g_2 H = \{g_1 h_1, g_2 h_2, \dots, g_2 h_m\}$ 5. W (out of 10) $g_1 H = \{g_1 h_1, g_2 h_2, \dots, g_2 h_m\}$
3. W (out of 10) $g_1 H = \{g_1 h_1, g_2 h_2, \dots, g_1 h_m\}$ 4. q (out of 10) $g_2 H = \{g_1 h_1, g_2 h_2, \dots, g_2 h_m\}$ 5. W (out of 10) $g_1 H = \{g_1 h_1, g_2 h_2, \dots, g_2 h_m\}$
3. 10 (out of 10) $3 \text{ H} = \{g n_1, g_1h_2, \dots, g_1h_n\}$ 4 q (out of 10) $5 \text{ H} = \{g n_1, g_1h_2, \dots, g_2h_n\}$ $5 \text{ H} = \{g n_1, g_2h_2, \dots, g_nh_n\}$ 6 q (out of 10)
4. q (out of 10) $j_2 H = \{j_1, h_1, j_2 h_2,, j_2 h_m\}$ 5. 10 (out of 10) $g_1 H = \{j_2, h_1, j_2 h_2,, j_m h_m\}$
6. O (out of 10) Y_{annoy} 1: $H \cap A : H = \emptyset$.
6. O (out of 10) Zemmal: HngiH = Ø. Suppose that he zgihs
8 10 (out of 10) hexhj = jihjth; = gi \$ H
9. 8 (out of 10) Tennal: Cach gihj is diffract.
10. 10 (out of 10) Suppose that gifty = Jihk
11. 6 (out of 10) Suppose wat. Job of fight = Jigih = Jigihk hi=kee, bhichis a contrad
P. The Dinner there are allerents in G and my

5.) Suppose that Good of Go Widefine the following 9, H= {gini, gaha, --, gihm} g2 H= \{ j, h, g2h2,..., g2 hm} gnH= Egnhi, gnhz, ..., gnhmg Zemmal: HrgiH = Ø. Suppose that he = gihs hity = gitH this is a contradiction because het hiteH, but joitH. Tennal: Each gity & diffict. Suppose that gity= yithe

gity= jigihk by the lumas, there man elements in G and m elements of total:

(out of 110)

W. H. So we have $|G| = m \times n = |H| \times n$,

Which is a contradition.

By the lumas, there man elements in G and m elements

in H. So we have $|G| = m \times n = |H| \times n$,

Which is a contradition.

By the lumas, there is no lements in G and m elements

which is a contradition.

By the lumas, there is no lements in G and m elements

which is a contradition.

By the lumas, there is no lements in G and m elements

who have $|G| = m \times n = |H| \times n$,

which is a contradition.

1. (10 pts.) Give two proofs of the Pythagorean theorem. 1.) Henry cowiger 400 shows with side light atb. ABC~ACD~ACBD Thereisa- theorn that says that there with a constant & Such that if similar triangles have layest The right triongles within both squire side A, the trought means KA2. have by lengths a, b, and hypodenuse Using this theorem, he have Ukaz+kb2= kc2; which implus that n3+b3=c3. of lingth c. the areas of both squares (Since a is the longest side of ZADC, bitch layer tright must be equal, so we have a2+62+4(\$ab) = C2+4(\$ab), which implies that a 2+62 2. C2 13the Sun of the two smaller troughed. 2. (10 pts.) Prove that $\sqrt[3]{3}$ is irrational. Suppose that $\sqrt[3]{3}$ is restonal. Then $\sqrt[3]{3} = \frac{m}{n}$, for some integers m, n. So $3 \times \frac{m7}{n7}$ and $3n^7 \times m^7$. Snowwy integer conse written as a product of primes, M=3'm, here i is a nonregame irrigin and mit not divisible by 3. 'Also n=357, where is a nonregame integer and of is not dirotale by 3. thin we have 3(3) n) = (3° m) Since on 15 not divisible by 3, nether is in? Inviller for it. The number of factors of & stitle left isherathin whod? Is! The number of factor of 3 and 10 when the state cannot be equal.

3. (10 pts. total) (a) (5 points) Define the Mandelbrot set. The Mandedbrot Set is the set of all a synthet 2->2°+6 conneyes to one fixed point or anorbit. (b) (5 points) Define the Feigenbaum constant. Explain everything! The Figur bourn constant is lim ration = 4,669, where re is the ith pointat which the period of X-> rx(1-x) doubles.

(a) (6 pts.) For any position P in the (n^2-1) -puzzle, let [i,j] be the location of the blank (that we call n^2) (In other words, i is the row-number and j is the column-number), and let $\pi(P)$ be the permutation of $\{1, 2, 3, \dots, n^2\}$ obtained by reading it from left-to-right and top-to-bottom (like in English). Define

$$S(P) = i + j + inv(\pi(P)) ,$$

where $inv(\pi)$ is the number of inversions of the permutation π .

Prove that if Q is any position reachable from P by a finite number of legal moves, then the parity of S(P) equals the parity of S(Q). In other words, they are either both even or both odd.

Note: You may use the lemma that if you exchange any two elements in a permutation,

the number of inversions always changes by an odd integer.

Suppose that Q is reachable from P. Then their one a first number of lythrones that an transfor P into Q. In my legal more; the blink is swapped with (additional title, so (i+j) changes by \pm 1. "

Lemma: if you exchange only two lements in permutation, it to form new permutation π_j ;

this mil(π_i i) -inv(π) 3 odd.

Consider quantitation π corresponding to p. Alegal more swaps two illumits of the permutation to form a new permutation π_i i. Set p' be the point of the me lyal more. Then $S(p') = S(p) \pm 1 + a$, to form a new permutation π_i i. Set p' be the point of the new 1. So S(p) and S(p') have the some where a is odd, by our lumina. Spile a is over. So S(p) and S(p') have the some (b) (4 pts) pointy. This proof con be replaced for the pointy of S.

Let $P = \begin{pmatrix} 1 & 2 & 3 \\ 5 & 4 \\ 6 & 7 & 8 \end{pmatrix}$, $Q = \begin{pmatrix} 4 & 2 & 1 \\ 3 & 5 & \Box \\ 6 & 7 & 8 \end{pmatrix}$. $i = 2, \exists 3$ $Q = \begin{pmatrix} 4 & 2 & 1 \\ 3 & 5 & \Box \\ 6 & 7 & 8 \end{pmatrix}$. $i = 2, \exists 3$

Can you reach position P from position P, by a sequence of legal moves? Explain! S(p) = inv(123594678) + 2 + 2 inv(Q) = inv(421359678) + 3 + 4 = 5 + 4 = 9

No Yes, your Reach Q from I because the party of Sfor each board of the same; they are both add.

Tight Way!

5. (10 points)

Prove Lagrange's theorem that if H is any subgroup of a group G, and |H| and |G| are their number of elements, respectively, then |G|/|H| is always an integer.

In fine

6. (10 points) What is the name of the following famous equation-pair?
$u_x = v_y$; $u_y = -v_x$,
or, in fuller notation $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} , \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} .$
What is special about the function $u(x,y)+iv(x,y)$ where $u(x,y),v(x,y)$ satisfy the above system of two equations?
Hamiltonian System × (0)
7. (10 points) Who discovered the quaternions? What city did that person live in?
Jaymy, Twih × 6
8. (10 points) What is Heron's formula, what century did Heron live in?
A = \sls-a)(s-b)(s-c)
9. (10 points) Where did Isaac Newton study? Who was his teacher? What unusual action did that teacher do? What was Newton's position after he left Cambridge?
Cambridge University. His teacher has I same Borrow. He said that Menton was his superior and
gownmhis professoriship words of the mint
What King of England was once the employer of Leibnitz?.—George I. He was born in Leipzig. Spend most of his life? He was born in Leipzig. Spend most of his life?
the was born in Leipzig. Spina most of his life in thonough.
11. (10 points total) (a) (5 points) State Viète's infinite product for $\frac{2}{\pi}$.
$\frac{2}{\pi} = \frac{1.3.3.5.5.7.7.}{2.2.4.4.6.6.8.8.}$
TT = 2.2.4.4.6.6.8.8

NAME: (print!) Tyler	Volpe
<u> </u>	polpe @ rutgers edu
e-wan address:	
MATH 436 Exam II for Dr. Z SEC 211	.'s, Spring 2017, April 24, 2017, 10:20-11:40am,
BOOK (But not your Math N	ets! YOU MAY USE YOUR HISTORY NOTE- otebook). without showing your work will get you zero
Do not write below this line (office	use only)
1. 1 <i>U</i> (out of 10)	Troup G. Then if H-O, 16-1, and
2. (<i>O</i> (out of 10)	we are done. Otherwise, pick of eG/H.
3. 8 (out of 10)	Then & notice that 9, h; for
4. 10 (out of 10)	hithi. To see this, nonice gihi-Shihi =)
5. <i>(O</i> (out of 10)	gi'gihi=gi'gihj => hi=hj. Also notice
6. (out of 10)	g, hi & his far any hi & his . This is true
7. O (out of 10)	because 9, hi = hj => 9, - hjhi' But
8. 10 (out of 10)	His agour, so gr=hjh? eH, which is not lossible. It follows that 19H1 = 1H1, and
9. 3 (out of 10)	since they do not snare elements, IH ug.H = 2
10. \gt (out of 10)	since they do not snare elements, IH ugitt=2 If Hugh = 6, then again 161 = 2, and
11. \O (out of 10)	taking 9 & Collingth). Repeat this
	lintil there are no remaining elements
total: \ \ \ (out of 110)	Of G, and notice that then G=HUS.HUgztu.ugnH, witheach
	gith not overlapping with gith. So
91.85	J'H NOT ONE MATING SOUTH JUNE 15 Can 1
	161=n/H1. That is, 161 is an
	I integer. 5

(a) (6 pts.) For any position P in the (n^2-1) -puzzle, let [i,j] be the location of the blank (that we call n^2) (In other words, i is the row-number and j is the column-number), and let $\pi(P)$ be the permutation of $\{1, 2, 3, \dots, n^2\}$ obtained by reading it from left-to-right and top-to-bottom (like in English). Define

$$S(P) = i + j + inv(\pi(P))$$

where $inv(\pi)$ is the number of inversions of the permutation π .

Prove that if Q is any position reachable from P by a finite number of legal moves, then the parity of S(P) equals the parity of S(Q). In other words, they are either both even or both odd.

Note: You may use the lemma that if you exchange any two elements in a permutation,

the number of inversions always changes by an odd integer.

Notice that any legal move does not change the parity of SCP). In a row-move, $j'=j\pm 1$, i'=i, $inv(\pi(P))=ink\pi(P))\pm odd number.$ 最 50 S(P) = 是inv(T(P))+i'+j'= inv(T(P))+i+j =1±odd number= S(P) + even number, so parity is preserved. Similarly for a Column more Chere i'=i±1, i'=j). Since this is the foreach more, then offer any number of moves we still have faity at 5 (PI = parity af-E(0) (b) (4 pts) Let

$$P = \begin{pmatrix} 1 & 2 & 3 \\ 5 & 4 \\ 6 & 7 & 8 \end{pmatrix} \quad , \quad Q = \begin{pmatrix} 4 & 2 & 1 \\ 3 & 5 \\ 6 & 7 & 8 \end{pmatrix} \quad .$$

Can you reach position P' from position P, by a sequence of legal moves? Explain! $(\pi(P)) = (\pi(P)) = (\pi(P)) = (\pi(P)) = 5$

inv(T(a1) - 19v(421359678) = 7

S(P)=2+2+5=9 (odd).

S(a) = 2+3+7=12 (even). Since Perity of S(a) & parity of S(P), this is not reachable 5. (10 points) by any # of legal mores.

Prove Lagrange's theorem that if H is any subgroup of a group G, and |H| and |G| are their number of elements, respectively, then |G|/|H| is always an integer.

by the lemma

NAME: (print!)	Ke	Vin	Lin		-	
E-Mail address:	its.k	eunlin	@ ruger	s.edu		
MATH 436 Exam SEC 211	II for D	r. Z.'s, Sp	ring 2017, Ap	ril 24, 2017,	, 10:20-11:40ar	n,
No Calculators! No BOOK (But not your work! points.	our Mat	h Noteboo	ok).	our work w	ill get you ze:	ro
Do not write below th	his line (d	office use onl	(y)		= { g,g2 += { h, h2	•
1. \(\) (out of 10)	6	Let .	19 1= m	", H su	grup of G	/14) =n
2. Q (out of 10)		Let gie	G, The t	te Coset		•
3. \(\tag{out of 10}\)			lg.h., g. 1			
4. (Out of 10)			giki's c	_	· , .	•
5. (out of 10)			Assume no		ıh: =- a -	54.
6. (out of 10)		The	9194	he fall a	, ht	č≠¥.
7. (Out of 10)			eh,	= e h;		
8. (out of 10)	. \	A .11 .			a contraductor	<i>'</i>
9. (out of 10)		Allso H	hey do not	overlep		
10. 4 (out of 10)		Pt Th	f. Assume a	ist. that	giti = hj	
11. (Out of 10)		(*	- Fring	he = hy	トピー	
			Ji	e = hy	hi '	
total: (out of	f 110)	·	Since 91 = hail	Nicagn	p and closed which is a cont	Hen
	134	71.00			which is a cent	ochehn
		THE TTO	r eom of	no overle	pping, he law	Count
= 87.5		- { 9, H 9, H	1	Se."_	1G1 - m	5 Z

¥ , y'

(a) (6 pts.) For any position P in the (n^2-1) -puzzle, let [i,j] be the location of the blank (that we call n^2) (In other words, i is the row-number and j is the column-number), and let $\pi(P)$ be the permutation of $\{1,2,3,\ldots,n^2\}$ obtained by reading it from left-to-right and top-to-bottom (like in English). Define

$$S(P) = i + j + inv(\pi(P)) ,$$

where $inv(\pi)$ is the number of inversions of the permutation π .

Prove that if Q is any position reachable from P by a finite number of legal moves, then the parity of S(P) equals the parity of S(Q). In other words, they are either both even or both odd.

Note: You may use the lemma that if you exchange any two elements in a permutation,

the number of inversions always changes by an odd integer.

et Pie a position. Then let P' be the possition after moving the blanks

Spece are hile. By lemma an estationage of any time element in a

permutation changes the inversions by an odd integer. Now if we
muset whichly, it to ad it stuys the same. If we muse however tally,

if and a strys the same. Thur is delited according.

So if i S(P) is evan, then S(P) z evan and if SCPI odd, SCPI) odd

Since party preserved. Now cafter a finite amount of moves from assistion P'

we can reach position Q. Using the same stops, the parity of S(P) is preserved.

(b) (4 pts)

$$P = \begin{pmatrix} 1 & 2 & 3 \\ 5 & 4 \\ 6 & 7 & 8 \end{pmatrix} \quad , \quad Q = \begin{pmatrix} 4 & 2 & 1 \\ 3 & 5 \\ 6 & 7 & 8 \end{pmatrix} \quad .$$

Can you reach position R' from position P, by a sequence of legal moves? Explain!

$$S(p) = 5 + 242 = 9$$

$$T_{\alpha} = 421359675$$
(3)(1)(6)(6)(6)(6)(6)(7)

$$T = \omega \pi \lambda \lambda \lambda \lambda$$

She they are different partners, impossable

5. (10 points)

Let

Prove Lagrange's theorem that if H is any subgroup of a group G, and |H| and |G| are their number of elements, respectively, then |G|/|H| is always an integer.

6. (10 points) What is the name of the following famous equation-pair?
or, in fuller notation
$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} , \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} . $
What is special about the function $u(x,y)+iv(x,y)$ where $u(x,y),v(x,y)$ satisfy the above system of two equations?
Can't find in notes: "Characteristic / principe!"
7. (10 points) Who discovered the quaternions? What city did that person live in?
Cultican Roman Hamilton Dusha (10)
8. (10 points) What is Heron's formula, what century did Heron live in? Arce Inergle A= \(\sigma \
9. (10 points) Where did Isaac Newton study? Who was his teacher? What unusual action did that teacher do? What was Newton's position after he left Cambridge? It should "fluxions" But what he referred to as calculus
teacher /professor?
10. (10 points) In what city was Leibnitz born? Where did he spend most of his life? What King of England was once the employer of Leibnitz?.
but Leipzeg 15 part most of life (besides meth) promoting the many of Germany
11. (10 points total) (a) (5 points) State Viète's infinite product for $\frac{2}{\pi}$. $\frac{2}{11} = \cos \frac{\pi}{4} \cos \frac{\pi}{6} \cos \frac{\pi}{6}$
(b) (5 points) State the names of two people who initiated the use of logarithms John Weper Henry Brygs

NAME: (print!) Joshua Pomevantz E-Mail address: jmp 510 @Scarlet mail. rutgers. wly MATH 436 Exam II for Dr. Z.'s, Spring 2017, April 24, 2017, 10:20-11:40am, **SEC 211** No Calculators! No Cheatsheets! YOU MAY USE YOUR HISTORY NOTE-BOOK (But not your Math Notebook). Show your work! An answer without showing your work will get you zero points. Do not write below this line (office use only) (out of 10) 2. (i) (out of 10) 9. \(\) (out of 10) 10. () (out of 10) 11. (out of 10)

total: (out of 110) $77 \cdot 1.134 = 77.5$

(10 pts.) Give two proofs of the Pythagorean theorem. Geometric proof #1 The are-of- the second square is Drawa square thatis (utb) x (urb) (a+5)2 E2+4. Area of triangles Thus 92+ b2+ 4. Area of tripingles = E2+4. Area of Winners Thus 02+62= 62 cull the diagonals of the axb tectangles c. The total area of this (GOHS) XXA+b) square is (a+b)2 = a2 + b2 + 4. Area of triangles Draw another square with at side fright the length of the side of the inscribed squareis 2. (10 pts.) Prove that $\sqrt{3}$ is irrational.

Geometric Proof #2 Lemma: For a family of similar triangles, there is a constant k such that the avea of each triangle is Ktimes the tength of the triangles lenges+ side, i.e.

Alea = KA2

Take 3 similar brianges whose longest sides are a, b and construct a thind whose longest Side is &

Then the areas f the figure is Ku2 + Kb2 = Ke2 Thus 02 + 12 = c2

Smee all natural numbers can be written as multiples of primes, we can write m = 3° m , n=30 n where n, m are not multiples of 3,

Th hs

$$M^{7} = (3^{1} \overline{n})^{7} = 3^{71} \overline{n}^{7} \text{ and } n^{7} = (3^{1} \overline{n})^{7} = 3^{71} \overline{n}^{7}$$

Thus by substitution

3.375 = 3 f m . This implies that 3 = 3 , implying further that 7it1= 7j. But this is impossible! Thus \$3 is not vational,

3. (10 pts. total) (a) (5 points) Define the Mandelbyot set.

Assume 73 = M for some mintin, Then 3 n7 = m7

The set of all c such that the sequence = = 0; Zk+1 = Zx+6 does not go to infinity

(b) (5 points) Define the Feigenbaum constant. Explain everything!

$$\lim_{n\to\infty} \frac{r_n - r_{n-1}}{r_{n+1} - r_n} = 4.6642$$

Chaxis

(6 pts.) For any position P in the (n^2-1) -puzzle, let [i,j] be the location of the blank (10 pts. total) (that we call n^2) (In other words, i is the row-number and j is the column-number), and let $\pi(P)$ be the permutation of $\{1,2,3,\ldots,n^2\}$ obtained by reading it from left-to-right and top-to-bottom (like in English). Define

$$S(P) = i + j + inv(\pi(P)) \quad ,$$

where $inv(\pi)$ is the number of inversions of the permutation π .

Prove that if Q is any position reachable from P by a finite number of legal moves, then the parity of S(P) equals the parity of S(Q). In other words, they are either both even

Note: You may use the lemma that if you exchange any two elements in a permutation, the number of inversions always changes by an odd integer.

Starting from P, ball of our legal moves (of which there are at least 2 and at most u) involve exchanging two elements of the permutation IT associated with P. Thusif we can reach pt from P in one legal move, culling TT the permutation associated with px, inv (T) = innv (TT) + K where Kis an odd number, This follows from the lower a. In each legal move, we echange the row or column index by 1. Thus it +jt = i+j± 1 There are S(px) = with + i+j= inv(11)+k+ (+j±1= S(P)+k±1. Thus for any single legal more, we change 5 by an even number, Inductively, any faite number of legal never resulting my position Q tenders 5 CQ) = S(P) + Some even number, 7445 S(P) and S(Q) have the same parity, (b) (4 pts)

 $P = \begin{pmatrix} 1 & 2 & 3 \\ 5 & 4 \\ 6 & 7 & 8 \end{pmatrix} \quad , \quad Q = \begin{pmatrix} 4 & 2 & 1 \\ 3 & 5 \\ 6 & 7 & 8 \end{pmatrix} \quad .$

Can you reach position P from position P, by a sequence of legal moves? Explain!

TT 4 2 1 3 5 9 6 7 8
(3) (1) (1) (0) (0) (3) (0) (1) (1) T= 1 2 3 5 9 4 6 7 8

F = (+17) VAI. MV(TT)= 5

5(Q)= 7+ 2+3= 12 S(P)= 5+ 2+2= 9

By the result of (a), we cannot reach a from P by a sequence of legal moves, since the parities are not the summe,

Prove Lagrange's theorem that if H is any subgroup of a group G, and |H| and |G| are 5. (10 points) their number of elements, respectively, then |G|/|H| is always an integer.

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial u}$$
 , $\frac{\partial u}{\partial u} = -\frac{\partial v}{\partial x}$.

 $u_x = v_y \quad , \quad u_y = -v_x \quad ,$

What is special about the function u(x,y)+iv(x,y) where u(x,y),v(x,y) satisfy the above system of two equations?

7. (10 points) Who discovered the quaternions? What city did that person live in?

8. (10 points) What is Heron's formula, what century did Heron live in?

(10 points) Where did Isaac Newton study? Who was his teacher? What unusual action did that teacher do? What was Newton's position after he left Cambridge?

Wensen stadied at Cambridge under I saac Barrow whom 1669 yould the Lucusian Motosership to his Pupilo-Afther leaving cambridge, Newton became warden, and later master, of the MM.

10. (10 points) In what city was Leibnitz born? Where did he spend most of his life? What King of England was once the employer of Leibnitz?.

Leipzig. He spent mest of his life near the court of Hahaver in solvice of the Dukes, one of whom became King George I of England.

(a) (5 points) State Viète's infinite product for $\frac{2}{\pi}$.

$$\frac{2}{1} = (0) \frac{1}{4} (0) \frac{1}{8} (0) \frac{1}{16} (0) \frac{1}{32} ...$$

(b) (5 points) State the names of two people who initiated the use of logarithms John Neper, Henry Briggs, and further Ezechial De Decker, who published the first house

NAME: (print!) André Siva Dias 24-4-17
E-Mail address: aas 20 DScarletmail. rutgers. edu
MATH 436 Exam II for Dr. Z.'s, Spring 2017, April 24, 2017, 10:20-11:40am, SEC 211
No Calculators! No Cheatsheets! YOU MAY USE YOUR HISTORY NOTE-BOOK (But not your Math Notebook). Show your work! An answer without showing your work will get you zero points.
Do not write below this line (office use only)
1. \leq (out of 10)
2. 1 O(out of 10)
3. 6 (out of 10)
4. (Out of 10)
5. \leq (out of 10)
6. O (out of 10)
7. (out of 10)
8. () (out of 10)
9. (0ut of 10)
10. 10 (out of 10)
11. (Out of 10)
total: (out of 110) 76.1.134=86.5

1. (10 pts.) Give two proofs of the Pythagorean theorem.

2. (10 pts.) Prove that $\sqrt[7]{3}$ is irrational.

Suppose not, suppose \$3 = m for some relatively prime integers mm. Then 3 = m, and 3m = m? Since any number can be written as a product of primes by the theorem discussed in class, let n=3°a and m=312 for inj=0,12:.. and ity. Then 3(3'a) = (316) -> 3(3"a) = 3"b" -> 3"16" -> 3"16" · Ti+1= Ty is a contradiction, so 3/3 must be irrational.

3. (10 pts. total) (a) (5 points) Define the Mandelbrot set.

The Mandelbrot set is a fredal shape an the complex plane that is found by using the mapping 3 -> 32+c for a given parameter c.

(b) (5 points) Define the Feigenbaum constant. Explain everything!

The Feigenhaum constant is the limiting value of the ratio between the two consecutive integrals in period doubling: lim \(\frac{\chi_{1}}{\chi_{1}} = 4.6679...\)

(a) (6 pts.) For any position P in the (n^2-1) -puzzle, let [i,j] be the location of the blank (that we call n^2) (In other words, i is the row-number and j is the column-number), and let $\pi(P)$ be the permutation of $\{1,2,3,\ldots,n^2\}$ obtained by reading it from left-to-right and top-to-bottom (like in English). Define

$$S(P) = i + j + inv(\pi(P)) ,$$

where $inv(\pi)$ is the number of inversions of the permutation π .

Prove that if Q is any position reachable from P by a finite number of legal moves, then the **parity** of S(P) equals the **parity** of S(Q). In other words, they are either **both even** or **both odd**.

Note: You may use the lemma that if you exchange any two elements in a permutation, the number of inversions always changes by an odd integer.

In the [m²-1)-puzzle, there are two legal moves: a horizontal slide and a vertical clide. In a horizontal slide, if changes by ± 1, and the number of inversions changes by an odd number, by the lemma, therefore, $S(\Omega)$ has the same parity as S(P). In a vertical slide, i charges by ± 1 'odd), and the number of inversions changes by a odd number again, the remna; therefore, $S(\Omega)$ again has the same parity as S(P). Thus, either S(P) and $S(\Omega)$ are both even or both odd.

$$P = \begin{pmatrix} 1 & 2 & 3 \\ 5 & 4 \\ 6 & 7 & 8 \end{pmatrix} \quad , \quad Q = \begin{pmatrix} 4 & 2 & 1 \\ 3 & 5 \\ 6 & 7 & 8 \end{pmatrix} \quad .$$

Can you reach position \mathcal{P} from position P, by a sequence of legal moves? Explain!

$$\mathcal{E}(P) = 2 + 2 + (1 + 4) = 4 + (3) = 9$$

$$\mathcal{E}(Q) = 2 + 3 + (3 + 1 + 3) = 5 + (7) = 12$$
Position of cannot be reached from position P
Since $\mathcal{E}(P)$ does not have the same parity as $\mathcal{E}(Q)$.

5. (10 points)

Prove Lagrange's theorem that if H is any subgroup of a group G, and |H| and |G| are their number of elements, respectively, then |G|/|H| is always an integer.

Emprose
$$g = \{i, g_2, ..., g_m\}$$
 and $H = \{h, h_2, ..., h_n\}$. For all elements of the little for ity. There is also no overlap between the and its passess gift, god, etc.

Because of this, $\frac{[H]}{|H|} = \frac{m}{m} = \text{an integer.}$

Pourl it

than 19 Wivafrz

roduna

NAME: (print!) Suitiang Ma
E-Mail address: SM 1659 @ Scarletmail rutgers.edy
MATH 436 Exam II for Dr. Z.'s, Spring 2017, April 24, 2017, 10:20-11:40am, SEC 211
No Calculators! No Cheatsheets! YOU MAY USE YOUR HISTORY NOTE-BOOK (But not your Math Notebook). Show your work! An answer without showing your work will get you zero points.
Do not write below this line (office use only)
1. \ \(\text{0} \) (out of 10)
2. O (out of 10)
3. 9 (out of 10)
4. \ \ \ (out of 10)
5. 6 (out of 10)
6. 5 (out of 10)
7. 10 (out of 10)
8. (out of 10)
9. 6 (out of 10)
10. (out of 10)
11. (out of 10)
total: (out of 110) (\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

n = 6.35 for 5>0, 5ez

< ACB = 900

Since ACD, BCD, ABC are Stmilar to each other, there is a constant k. Independent to The choice of triangles that ASAACO = bo. k SOABC = C. R

· Note that R+O.

1 Smce SOABC = SOACD + SOBCD Then $c^2 = 0^2 + h^2$ Notice that Suabe represents the area of triangle ABE

Note that a b are NOT divisible by 3. So Smce m= = 3 in?.

 $\Rightarrow a^{7} \cdot 3^{7} = b^{7} \cdot 3^{7} + 1 \quad \text{This is}$ Mandelbrot set.

Impossit

3. (10 pts. total) (a) (5 points) Define the Mandelbrot set. impossible! Mandelbrot set is a set of points satisfying the mapping = Z+Tr

So The is NOT are rational number So \$73 is irrational.

(b) (5 points) Define the Feigenbaum constant. Explain everything! Fjeigenbaum constant c= 1tm Tn+1-rn
n-20 rn-1 Every iteration, you have a Ti (ieN), it was discovered

by Feigenbaum and named after it.

(a) (6 pts.) For any position P in the (n^2-1) -puzzle, let [i,j] be the location of the blank (that we call n^2) (In other words, i is the row-number and j is the column-number), and let $\pi(P)$ be the permutation of $\{1,2,3,\ldots,n^2\}$ obtained by reading it from left-to-right and top-to-bottom (like in English). Define

$$S(P) = i + j + inv(\pi(P))$$
 ,

where $inv(\pi)$ is the number of inversions of the permutation π .

Prove that if Q is any position reachable from P by a finite number of legal moves, then the parity of S(P) equals the parity of S(Q). In other words, they are either both even or both odd.

Note: You may use the lemma that if you exchange any two elements in a permutation,

the number of inversions always changes by an odd integer.

proof: According to the Lemma, if you exchange any two elements in a permutation. The number of inversions always changes by an odd integer. Let the location of blank in Q would be (i,j). Then the location of blank in Q would be either $(i\pm 1,j)$ or $(i,j\pm 1)$. Therefore, S(Q) preverses the same parity of S(P)

(b) (4 pts) Let

$$P = \begin{pmatrix} 1 & 2 & 3 \\ 5 & 4 \\ 6 & 7 & 8 \end{pmatrix} \quad , \quad Q = \begin{pmatrix} \frac{3}{4} & \frac{1}{2} & 1 \\ 3 & 5 \\ 6 & 7 & 8 \end{pmatrix} \quad .$$

Can you reach position P' from position P, by a sequence of legal moves? Explain!

According to (a), $S(p) = 2+2+inv(\pi(p)) = 4+1=5$ $S(\alpha) = 2+3+inv(\pi(\alpha)) = 2+3+4=9$ (9) Yes, Q is reachable from P, since $S(\alpha)$ and S(p) have the same parity.

5. (10 points)

Prove Lagrange's theorem that if H is any subgroup of a group G, and |H| and |G| are their number of elements, respectively, then |G|/|H| is always an integer.

NAM	E: (print!)		5:	Xu		····		
E-Ma	il address: _	X	j4714	97008	@gma	il.com.		
MATH 436 Exam II for Dr. Z.'s, Spring 2017, April 24, 2017, 10:20-11:40am, SEC 211								
No Calculators! No Cheatsheets! YOU MAY USE YOUR HISTORY NOTE-BOOK (But not your Math Notebook). Show your work! An answer without showing your work will get you zero points.								
Do not	write below	this line (off	ice use o	nly)				
1. \ 0	(out of 10)			,`	;	· · · · ·	•*	
6	(out of 10)						• ,	
3.	(out of 10)							
4. 8	(out of 10)					•	4	
5.4	(out of 10)							
6.	(out of 10)							
7.	(out of 10)		`					
8. 10	(out of 10)							
9. 8	(out of 10)							
10. 7	(out of 10)					•	•	
11. 9	(out of 10)					• •	• •	
total	\	of 110)	3					

ļ

(10)

1. (10 pts.) Give two proofs of the Pythagorean theorem.

 $a^2 + b^2 = C^2$

(I)

From the graph above, we can take the graph below.

$$(a+b)^2 = c^2 + 2ab.$$

therefore, $a^{2} + 101b + b^{2} = C^{2} + 2ab$. $a^{2} + b^{2} = C^{2}$.

For every similar triangles whose largest side is. a. there is a constant that owner = ka^2 .

area of a BCD = ka^2 . area of SADD $+kb^2$

$$40 \ kc^{2} = ka^{2} + kb^{2}.$$

$$c^{2} = a^{2} + b^{2}.$$

2. (10 pts.) Prove that $\sqrt[7]{3}$ is irrational.

let 7/3 = M. M and n are positive integers

$$m = \sqrt{13} n$$
.
 $m^7 = 3 n^7$

For positive integor m and n. we can write

$$(2^{i}m)^{7} = 3(2^{i}n)^{7}$$

$$2^{7i} m^7 = (2 \cdot 2^{7i} + 2^{7i}) n^7 = (2^{7i+1} + 2^{7i}) n^7$$

27i ≠ 27i+1+27i

so this is contradiction, there is no integer in and in firm = 73.

For 33 is irradical

3. (10 pts. total) (a) (5 points) Define the Mandelbrot set.

The Mandelbrot set is the set of complex numbers C for which the function $f_c(z) = z^2 + c$ closs not diverge. When iterated from z = 0.

(b) (5 points) Define the Feigenbaum constant. Explain everything!

The Feigenbaum constant are the mathmatical constants which both express routions in a bifuration diagram for a non-linear map. more leters by

(a) (6 pts.) For any position P in the (n^2-1) -puzzle, let [i,j] be the location of the blank (that we call n^2) (In other words, i is the row-number and j is the column-number), and let $\pi(P)$ be the permutation of $\{1, 2, 3, \dots, n^2\}$ obtained by reading it from left-to-right and top-to-bottom (like in English). Define

$$S(P) = i + j + inv(\pi(P)) ,$$

where $inv(\pi)$ is the number of inversions of the permutation π .

Prove that if Q is any position reachable from P_{i} by a finite number of legal moves, then the parity of S(P) equals the parity of S(Q). In other words, they are either both even or both odd.

Note: You may use the lemma that if you exchange any two elements in a permutation, the number of inversions always changes by an odd integer.

for every more exchanges the blank with a neighboring. inv (Tv) changes by an odd number and its changes by ±1.

$$P = \begin{pmatrix} 1 & 2 & 3 \\ 5 & 4 \\ 6 & 7 & 8 \end{pmatrix} \quad , \quad Q = \begin{pmatrix} 4 & 2 & 1 \\ 3 & 5 \\ 6 & 7 & 8 \end{pmatrix} \quad .$$

Can you reach position \mathcal{E} from position P, by a sequence of legal moves? Explain! 100 the blank be 9.

$$S(P) = inv(\pi_P) + 2+2$$
 $S(Q) = inv(\pi_Q) + 2+3$
= $5+2+2$ = $7+2+3$

5. (10 points)

Prove Lagrange's theorem that if H is any subgroup of a group G, and |H| and |G| are their number of elements, respectively, then |G|/|H| is always an integer.

heir number of elements, respectively, then
$$|G|/|H|$$
 is always an integer let $\{H\} = M \cdot \{G\} = M \cdot \{G\} = M \cdot \{G\} \cdot \{G\}$

flah hahz, ahz, ah, ..., ahmishas no overlop with H. hi= bi.

$u_x = v_y$, $u_y = -v_x$,
or, in fuller notation $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} , \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} .$
What is special about the function $u(x, y) + iv(x, y)$ where $u(x, y), v(x, y)$ satisfy the above system of two equations?
Name: Cauchy-Demann Equartions. the whole function is analytic on a domain.
the whole function is analytic on a domain.
7. (10 points) Who discovered the quaternions? What city did that person live in?
Jean Je Rond d'Alembert, X
Pairs. France 8. (10 points) What is Heron's formula, what century did Heron live in? Area of thampe, $A = \int S(S-a)(S-b)(S-c)$
first century.
9. (10 points) Where did Isaac Newton study? Who was his teacher? What unusual action did that teacher do? What was Newton's position after he left Cambridge? He study in Trinity College! teacher: Isaac Barow. After he left Cambridge, he served as Warden (1696-1700) and Master (1700-1721)
of the Royal Mint, as well as president of the Royal Society (1703-17>7)
10. (10 points) In what city was Leibnitz born? Where did he spend most of his life? What King of England was once the employer of Leibnitz?. City: Leipzing He spend most of his life in Gorman Hanna king Goorge L.
11. (10 points total)
(a) (5 points) State Viète's infinite product for $\frac{2}{\pi}$. $\frac{2}{\pi} = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{2+\sqrt{2}}}{2} \cdot \frac{\sqrt{2+\sqrt{2}+\sqrt{2}}}{2}$
(b) (5 points) State the names of two people who initiated the use of logarithms
John Mapier, Jost Burgi.

6. (10 points) What is the name of the following famous equation-pair?

NAME: (print!) Alicia Sukhram E-Mail address: asukhram 1@gmail.com MATH 436 Exam II for Dr. Z.'s, Spring 2017, April 24, 2017, 10:20-11:40am, **SEC 211** No Calculators! No Cheatsheets! YOU MAY USE YOUR HISTORY NOTE-BOOK (But not your Math Notebook). Show your work! An answer without showing your work will get you zero points. Do not write below this line (office use only) 1. () (out of 10) 2. \(\) (out \(\text{of } 10 \) 3. (out of 10) 4. \(\int\) (out of 10) 5. 5 (out of 10)

6. () (out of 10)

7. 10 (out of 10)

() (out of 10)

(Out of 10)

11. (out of 10)

total:

(out of 10)

5. Let H have m elements Let G have r elements that are not in H. H= Eh, , ... , hm3. Salhis...,aikm3 is a coset une eachlehenent in this set is different and there is no overlap with H. | Proof: Reppose there one to evenents tat are fore some in the coset: a, hi = a, hi i #j. Then a 11 (a, hi) = a - 1 (a, hi) $(a_i^{-1}a_i)h_i = (a_i^{-1}a_i)h_i$ e hi = ehi contradiction. Herefore, nowho everens Proof: Suppose there is overlap between coset and H. a, hi = hi ai ((hi) = a - 1 hi (aitai)hizaithi ehi =ai'hi But a k H and at the contradiction, Thomaters, nowerlap Eaghin ains then we have all the elements 10 G, 50 161= r*m

Therefore [G] = 17tm = 1 F. F.

(a) (6 pts.) For any position P in the (n^2-1) -puzzle, let [i,j] be the location of the blank (that we call n^2) (In other words, i is the row-number and j is the column-number), and let $\pi(P)$ be the permutation of $\{1, 2, 3, \dots, n^2\}$ obtained by reading it from left-to-right and top-to-bottom (like in English). Define

$$S(P) = i + j + inv(\pi(P)) ,$$

where $inv(\pi)$ is the number of inversions of the permutation π .

Prove that if Q is any position reachable from P by a finite number of legal moves, then the parity of S(P) equals the parity of S(Q). In other words, they are either both even or both odd.

Note: You may use the lemma that if you exchange any two elements in a permutation, the number of inversions always changes by an odd integer. 1. . . / 11 . 11

Casel, horizontal move

the blank is exchanged with element to the defit or night
which changes the garity to the number of movering
The column number of the blank changes by 1

which changes the painty. The Parity changes three, so it is

Case 2. rettical move.

The blank is exchanged with element to the pop or bottom

The blank is exchanged with element to the pop or bottom

The row number of the blank: empering twice so it is the save

(b) (4 pts)

Let $P = \begin{pmatrix} 1 & 2 & 3 \\ 5 & 4 \\ 6 & 7 & 8 \end{pmatrix}, Q = \begin{pmatrix} 4 & 2 & 1 \\ 3 & 5 \\ 6 & 7 & 8 \end{pmatrix}$ Takes the case the parity

Can you reach position of from position P by a sequence of level moves? The religion

Can you reach position of from position P by a sequence of level moves? The religion

$$P = \begin{pmatrix} 1 & 2 & 3 \\ 5 & 4 \\ 6 & 7 & 8 \end{pmatrix} , Q = \begin{pmatrix} 4 & 2 & 1 \\ 3 & 5 \\ \dot{6} & 7 & 8 \end{pmatrix}$$

Can you reach position Z from position P, by a sequence of legal moves? Explain

T(P)=123 59 4 678 (nv(T)=5 818)= 2+2+5= 9.

T(0)=421359678 inv(1)=7 S(0)=2+3+7=12.

Parity changes from odd to even. Goingfrom & to Q Is impossible.

5. (10 points)

Prove Lagrange's theorem that if H is any subgroup of a group G, and |H| and |G| are their number of elements, respectively, then |G|/|H| is always an integer.

) See front page nil

	6. (10 points) What is the name of the following famous equation-pair?
	$u_x = v_y$, $u_y = -v_x$,
	or, in fuller notation
	$rac{\partial u}{\partial x} = rac{\partial v}{\partial y} , rac{\partial u}{\partial y} = -rac{\partial v}{\partial x} .$
	What is special about the function $u(x,y)+iv(x,y)$ where $u(x,y),v(x,y)$ satisfy the above
	system of two equations?
	equation of dynamics: Humilton-Taxobi equation: transformation establish relation between dynamics and contact transformation
	establish relation between dynamics and contact lighter or
	\sim (0)
	7 (10 points) Who discovered the sustaint 2 Miles to 111 is
	7. (10 points) Who discovered the quaternions? What city did that person live in?
	Hamilton
-	lived in Dublin
	8. (10 points) What is Heron's formula what conturn did Honor line in 2
	8. (10 points) What is Heron's formula, what century did Heron live in?
	17th century (6)
	9. (10 points) Where did Isaac Newton study? Who was his teacher? What unusual
	action did that teacher do? What was Newton's position after he left Cambridge?
	studied at Cambridge, fellow of Trinity calege
	Isage Barrow was his teacher (1)
	Barrow appointed Newton for Barrows position, whose geometry
	After cambridge, he was appointed (ucosian professor. and cambridge until 1606 as worden, later master of mint 10. (10 points) In what city was Leibnitz born? Where did he spend most of his life?
	10. (10 points) In what city was Leibnitz born? Where did he master of aire
	What King of England was once the employer of Leibnitz?
	(2)07\n'\a\"
j	Exert mest of the in Greenman
	Huygens tredona.
	11. (10 points total)
	(a) (5 points) State Viète's infinite product for $\frac{2}{\pi}$.
	$\frac{2}{\pi} = \cos \frac{\pi}{4} \cos \frac{\pi}{8} \cos \frac{\pi}{8} \cos \frac{\pi}{8}$
	11 200 to 8 200 10 cm 35 - 17
	(b) (5 points) State the manual of the second of the secon
	(b) (5 points) State the names of two people who initiated the use of logarithms
	John Napie (7)
	V

.

NAME: (print!) LYNNE RICHMAN		
E-Mail address:		
MATH 436 Exam II for Dr. Z.'s, Spring 2017, April 24, 2017, 10:20-11:40am, SEC 211		
No Calculators! No Cheatsheets! YOU MAY USE YOUR HISTORY NOTE-BOOK (But not your Math Notebook). Show your work! An answer without showing your work will get you zero points.		
Do not write below this line (office use only)		
1. \$ (out of 10) 5 let G= \$9, 9n 7 161		
1. 5 (out of 10) 5. Let G= \{g_1,, g_n\}, \{G\} 2. 5 (out of 10) Let H= \{h_1,, h_m\}, \{H\}=m		
3. 7 (out of 10) (ase I; $H = 6$. Then $n = m$		
1/7/		
4. $O \text{ (out of 10)}$ 5. $O \text{ (out of 10)}$ $O \text{ (out of 10)}$ $O \text{ (out of 10)}$		
6. 10 (out of 10) Case II: H+6. Then Jg; E (g; 4H. Look at g; H= Egihi, Claim: Each element of g; H 8. 10 (out of 10)		
7. 0 (out of 10) g; &H. Look at g; H-2gihi)		
8. 10 (out of 10) Ref: Assume not. Then Igihi,		
0 (0) t of 10)		
$eh_{i} = eh_{j}. Thus h_{i} = h_{j}.$		
claim: There is no overlap		
H and gri		
67 · 1.154= 76 His a group, highit EH. a contradiction, becomes		
on can do better the gitt with diverit over		

ut showing your work will get you zero ly) Let G= {g1, ..., gn}, 161=n. et H= {h,, ..., hm}, 1H1=m. ase I: H=6. Then n=m, 80/ $\frac{|G|}{|H|} = \frac{N}{m} = 1.$ ase II: H+G. Then Jg; EG s.t. g: &H. Look at g: H={gihi, ..., g, h,]. Claim: Each element of git is different Pf: Assume not. Then Jgihi, gihij s.t. gihi = gihj. So gigihi = gigihj. Thus ehi, = ehj. Thus hi=hj. This is a claim: There is no overlap between Pf: Assume not. Then Jhi Ett and gibij EgiH sit. hi=gibij. Then hij-thi=gibijhij-1. So hijhij-gie. Since His a group, highit EH. This eis a contradiction, because get H. The gitt U.H. diesent over 6, 1 look at git, for gis,6, gift, gi +gj. No overlap between giH and claim! No overlap between giH and

1. (10 pts.) Give two proofs of the Pythagorean theorem. $a = c^2 + b^2 = c^2$ (1) LOOK at: V a Let Tah at clearly the , area (a+6)? which is also 6 a the area of square 2. Since A(squerre 1) = (a+b)^2 = C^2 + 4. A(T) and A(squerre 2) = (a+b)^2 = · a2+62+4·A(T), and A (squerre 1)=A(square 2); then c2+4.A(T)= 2+62+4.A(T), Thus c2=a2+62. (2) Don't remember the second proof using similar triangles. ; (odd and even are 2. (10 pts.) Prove that $\sqrt[7]{3}$ is irrational. Assume it's rational. Then In, m & I st. i reliant $(3)^{1/4} = \frac{n}{m}$. So $3 = \frac{n^{\frac{1}{4}}}{m^{\frac{1}{4}}}$ and $3m^{\frac{1}{4}} = n^{\frac{1}{4}}$. Let n=31.a, n=34.6, sit. i,je{0,1,2,...} and 3/a and 5) 3 x b. Thus 3 (31.6) = (31.a) , so 3 (371.67) = 37. a7. Therefore 37itl. b7 = 37. at. Sing. 3xa and 3xb, thus 3 x at and 3 x bt. Thus we have a contradiction as it to impossible to have a number which is the product of an leven thouser of 3 and a number 3. (10 pts. total) (a) (5 points) Define the Mandelbrot set. not divisible by 3 AND S={ c: z > 22+c does not diverge? 3 and a number divisible by $\int f_{z}(z) = Z_{n-1}^{2} + C, \quad Z_{0} = 0.$ (b) (5 points) Define the Feigenbaum constant. Explain everything! (X-1), $X \in (0,1)$ =4.6..., where r is the doubling
period of f(x) (so that

to double the

- **4.** (10 pts. total)
- (a) (6 pts.) For any position P in the (n^2-1) -puzzle, let [i,j] be the location of the blank (that we call n^2) (In other words, i is the row-number and j is the column-number), and let $\pi(P)$ be the permutation of $\{1, 2, 3, \dots, n^2\}$ obtained by reading it from left-to-right and top-to-bottom (like in English). Define

 $S(P) = i + j + inv(\pi(P)) ,$

where $inv(\pi)$ is the number of inversions of the permutation π .

Prove that if Q is any position reachable from P by a finite number of legal moves, then the parity of S(P) equals the parity of S(Q). In other words, they are either both even or both odd.

Note: You may use the lemma that if you exchange any two elements in a permutation, to get to position (). the number of inversions always changes by an odd integer.

Exertain Morizontal slide. Then i does Lase 1. Perform Moritoriae since. Iven I were loves of changes by 1 (either positive or negative). By lemma stated above, the # of inversion changes by an odd integer, Zint+1. Thus $S(Q) = S(P) \pm 1 + 2nt + 1$ So S(Q) has some parity as S(P).

Case To Perform vertical slide, to ge to position Q. Then I changes by ± 1 , I doesn't change, inv $(\pi(Q)) = inv[\pi(P)] + 2n + 1$ (b) (4 pts) So $S(Q) = S(P) \pm 1 + 2n + 1$. So S(Q) has the name parity as S(P).

$$P = \begin{pmatrix} 1 & 2 & 3 \\ 5 & 4 \\ 6 & 7 & 8 \end{pmatrix} \quad , \quad Q = \begin{pmatrix} 4 & 2 & 1 \\ 3 & 5 \\ 6 & 7 & 8 \end{pmatrix} \quad .$$

Can you reach position R from position P, by a sequence of legal moves? Explain!

$$S(P) = 2 + 2 + 1 + 4 = 9$$

Since S(P) is odd and S(Q) is even, there is no way to reach Q from P using legal sliding mores; as proved in (a).

5. (10 points)

Prove Lagrange's theorem that if H is any subgroup of a group G, and |H| and |G| are their number of elements, respectively, then |G|/|H| is always an integer.

NAME: (print!) POORVA SAMPAT
hans sampat a range
E-Mail address: pos cos MATH 436 Exam II for Dr. Z.'s, Spring 2017, April 24, 2017, 10:20-11:40am,
SEC 211
SEC 211 No Calculators! No Cheatsheets! YOU MAY USE YOUR HISTORY NOTE- No Calculators! No Cheatsheets! YOU MAY USE YOUR HISTORY NOTE- No Calculators! No Cheatsheets! YOU MAY USE YOUR HISTORY NOTE- No Calculators! No Cheatsheets! YOU MAY USE YOUR HISTORY NOTE- No Calculators! No Cheatsheets! YOU MAY USE YOUR HISTORY NOTE- No Calculators! No Cheatsheets! YOU MAY USE YOUR HISTORY NOTE- No Calculators! No Cheatsheets! YOU MAY USE YOUR HISTORY NOTE- No Calculators! No Cheatsheets! YOU MAY USE YOUR HISTORY NOTE- No Calculators! No Cheatsheets! YOU MAY USE YOUR HISTORY NOTE- No Calculators! No Cheatsheets! YOU MAY USE YOUR HISTORY NOTE- No Calculators! No Cheatsheets! YOU MAY USE YOUR HISTORY NOTE- No Calculators! No Cheatsheets! YOU MAY USE YOUR HISTORY NOTE- No Calculators! No Cheatsheets! YOU MAY USE YOUR HISTORY NOTE- No Calculators! No Cheatsheets! YOU MAY USE YOUR WORK WILL get you zero
No Calculators! No Cheatshooth. BOOK (But not your Math Notebook). Show your work! An answer without showing your work will get you zero.
$_{ m points}.$
Do not write below this line (office use only)
3 Set G= 28. 192,83, gn3
1 is A (out of 10) de His a subgroup, than
$\mathcal{H} \sim \{h_1, h_2, h_3, \dots, h_m\}$
o of (out of 10)
3. 9 (out of 10) gi H= {gih, gihz gihz gihm} gi H= {gih, gihz gihz gihm} such Ket gih, i, gihz gihz gihm such Ket gih, i, gihz gihz gihm such Ket gih, i gihz gihz gihm such Ket gih, i gihz gihz gihm
such that gih, &, gihz gihm
5. 5 (Out of 10) because of closure brokers of chame runbers delement
6. 0 (out of 10) Ly (15 10) My = Eg. h, gih gih con he created
7. (O (out of 10)
8. \bigcap (out of 10) G=HUH, G=HUH, [G]=IHIn \Longrightarrow [G] is an integer \bigcap [HI]
9. 0 (out of 10)
10. (out of 10)
10. () (out of 10) 11. () (out of 10) 11. () (out of 10) 12. () (out of 10) a subgroup, it is a coset 1. 134 = 75
of harmon it is
((out of 110)
total: 6 6 (out of 110) 1.134 = 75

1. (10 pts.) Give two proofs of the Pythagorean theorem.
If we cut the two squares & the 4 D's in the second picture & place it on the first it is a perfect fit
4 Bs + a2+b2 = 4 Ss + c2 = a2+b2=c2
BOX CICRETE CABC MARCO CARD CON. EX
So, $\frac{C_2}{a} = \frac{d}{c} \Rightarrow a^2 = c_c$ LDAC = $\angle ABC = 90^\circ - \times$ $\frac{C_1}{a} = \frac{b}{c} \Rightarrow b^2 = c_i c$ Abo $\triangle ABC = \triangle ADB$ $\frac{C_2}{a} = \frac{d}{c} \Rightarrow a^2 = c_i c$ Abo $\triangle ABC = \triangle ADB = 70^\circ$
$a^{2}+b^{2}=c_{2}c+c, c=c^{2}$ $\angle ABD=\angle ABD=y$ $\angle ACB=\angle PAB=90^{\circ}-y$
2. (10 pts.) Prove that √3 is irrational. Assure √3 is radonal → √3 = m where ged (m,n) = 1 & n ≠0
Every number n con be writen uniquely es n= 3 m Swrite a comp, prog
So let $m = 3 m$ $3n^2 = 36 m$ i, j are unique ble of lemmed while $n > 0$ & $n = n/3$ $n = n/3$
dear sim = 3th But i + 5th Clear This is not boundle Hence broved by contraduction. (3** i) * The providence of matter
3. (10 pts. total) (a) (5 points) Define the Mandelbrot set.
$Z_0=0$, $Z_n=Z_n^2+C$. C is in Mandelbrot set when the above equation converges.
c is in Mandelbrot set when the above equation converges
(3)
(b) (5 points) Define the Feigenbaum constant. Explain everything!
Feigenbaum constant is the ratio b/w the distance of historication of limiting books in the function $\lambda = 9.996$ Lon $\frac{a_{n-1}-a_{n-2}}{a_{n-1}-a_{n-2}}$ What is 0.2
$\lim_{n\to\infty}\frac{a_{n-1}-a_{n-2}}{a_n-a_{n-1}}\qquad \text{what is } q^2.$

(a) (6 pts.) For any position P in the (n^2-1) -puzzle, let [i,j] be the location of the blank (that we call n^2) (In other words, i is the row-number and j is the column-number), and let $\pi(P)$ be the permutation of $\{1, 2, 3, \dots, n^2\}$ obtained by reading it from left-to-right and top-to-bottom (like in English). Define

$$S(P) = i + j + inv(\pi(P)) ,$$

where $inv(\pi)$ is the number of inversions of the permutation π .

Prove that if Q is any position reachable from P by a finite number of legal moves, then the parity of S(P) equals the parity of S(Q). In other words, they are either both even or both odd.

Note: You may use the lemma that if you exchange any two elements in a permutation,

the number of inversions always changes by an odd integer

There are two types of legal moves allowed i) hopizontally - if we more horizontally then j will change . But for each change in j, there will be an equal change in inv(T(P)) by the known as exchanging any two claments causes #of inv to change by on odd integer Thus, the change will always be an oven number. But for each change in i, Vertically - if we more vertically then i will change. But for each change in the H of inv. by lemma, Thus, the brackage is always an even amount. If SOP) is even to begin with then adding / subtracking an even almount will red to an even SOD. Similarly, if SOP) begins as odd, SOD will also be ext.

(b) (4 pts) Let

 $P = \begin{pmatrix} 1 & 2 & 3 \\ 5 & 4 \\ 6 & 7 & 8 \end{pmatrix} , Q = \begin{pmatrix} 4 & 2 & 1 \\ 3 & 5 & \\ 6 & 7 & 0 \end{pmatrix} .$

S(P)=2+2+5=9

S(Q)=2+3+7=12

No, it is not possible to reach Q from bosition P as the parity of SCP) is different from the partity of SCQ). odd's even.

5. (10 points)

Prove Lagrange's theorem that if H is any subgroup of a group G, and |H| and |G| are their number of elements, respectively, then |G|/|H| is always an integer.

incomplete and particelly wrong

11. (10 points total) (a) (5 points) State Viète's infinite product for $\frac{2}{\pi}$.

$$\frac{2}{\pi} = \frac{\cos \pi}{4} \cos \frac{\pi}{8} \cos \frac{\pi}{16} \cos \frac{\pi}{32} ...$$

(b) (5 points) State the names of two people who initiated the use of logarithms

NAME: (print!)Yang		
E-Mail address: JY410@9carletmail.rutgers.		
MATH 436 Exam II for Dr. Z.'s, Spring 2017, April 24, 2017, 10:20-11:40am, SEC 211		
No Calculators! No Cheatsheets! YOU MAY USE YOUR HISTORY NOTE-BOOK (But not your Math Notebook). Show your work! An answer without showing your work will get you zero points.		
Do not write below this line (office use only)		
1. 5 (out of 10)		
2. Q (out of 10)		
3. 4 (out of 10)		
4. \(\frac{10}{10} \)		
5. 2 (out of 10)		
6. (out of 10)		
7. $\sqrt{0}$ (out of 10)		
8. (D (out of 10)		
9. G (out of 10)		
10.\(\tau\) (out of 10)		
11.\O (out of 10)		
total: (out of 110)		

+ • 1

1. (10 pts.) Give two proofs of the Pythagorean theorem.

We can prove that Q=b2+c2 For image 1) we get that for a trianglar bl and to make four identity trianglar, and set together, we get a = b2+c2 if we arrange differently like image 1 we get b2 and a2 also by 4 identity 6/10 trianglar.

2nd troof.

2. (10 pts.) Prove that $\sqrt[7]{3}$ is irrational.

$$\sqrt{3} = \frac{m}{n} \Rightarrow$$

(m,n is divisible by 3, until they can't divisible

M3).

$$3 = \frac{m^{4}}{n^{7}}$$

by the lemma, let $n=3^{2}m$ (m not drawsble by $3g2\in\mathbb{Z}^{+}$)-

N7 = 3.72 m plug in back to ext(1).

$$m^7 = 3n^7$$

 $m^7 = 3n^7$ = 3.3⁷¹ m = 3⁷¹¹ m.

3. (10 pts. total) (a) (5 points) Define the Mandelbrot set.

Zo, Znty-Zn2+C

 $Z_n = 0$

(b) (5 points) Define the Feigenbaum constant. Explain everything!

$$S = \lim_{n \to \infty} \frac{\alpha_{n2} - \alpha_{n4}}{\alpha_{n4} - \alpha_{n}} = 4.66 - \alpha_{n4}$$
 The distance between two points

the Constant

Med is a

(a) (6 pts.) For any position P in the (n^2-1) -puzzle, let [i,j] be the location of the blank (that we call n^2) (In other words, i is the row-number and j is the column-number), and let $\pi(P)$ be the permutation of $\{1, 2, 3, \dots, n^2\}$ obtained by reading it from left-to-right and top-to-bottom (like in English). Define

$$S(P) = i + j + inv(\pi(P))$$

where $inv(\pi)$ is the number of inversions of the permutation π .

Prove that if Q is any position reachable from P by a finite number of legal moves, then the parity of S(P) equals the parity of S(P). In other words, they are either both even or both odd.

Note: You may use the lemma that if you exchange any two elements in a permutation,

the number of inversions always changes by an odd integer.

permutation"+ "the row # "+" column # invension +" the taxi cab In any single legal move no get's exchanged with other mit. but all the other into stay the same, the # of invension change by odd number, but taxi-cab distance change by ±1, Change row # or col # by exactly one, Therefore parity of the sum is the same every time to make the legal move.

(b) (4 pts), Let

$$P = \begin{pmatrix} 1 & 2 & 3 \\ 5 & 9 & 4 \\ 6 & 7 & 8 \end{pmatrix} , \quad P = \begin{pmatrix} 4 & 2 & 1 \\ 3 & 5 & 9 \\ 6 & 7 & 8 \end{pmatrix} . \quad \mathcal{F}^{2}, j \geq 3$$

Can you reach position P' from position P, by a sequence of legal moves? Explain! P(T) = 1, 2, 3, 5, 9, 4, 6, 7, 8 P(T) = 0, 2, 1, 3, 5, 9, 6, 7, 8 P(T) = 0, 2, 1, 3, 5, 9, 6, 7, 8 P(T) = 0, 2, 1, 3, 5, 9, 6, 7, 8 P(T) = 0, 2, 1, 3, 5, 9, 6, 7, 8 P(T) = 0, 2, 1, 3, 5, 9, 6, 7, 8 P(T) = 0, 2, 1, 3, 5, 9, 6, 7, 8 P(T) = 0, 2, 1, 3, 5, 9, 6, 7, 8 P(T) = 0, 2, 1, 3, 5, 9, 6, 7, 8 P(T) = 0, 2, 1, 3, 5, 9, 6, 7, 8 P(T) = 0, 2, 1, 3, 5, 9, 6, 7, 8 P(T) = 0, 2, 1, 3, 5, 9, 6, 7, 8 P(T) = 0, 2, 1, 3, 5, 9, 6, 7, 8 P(T) = 0, 2, 1, 3, 5, 9, 6, 7, 8 P(T) = 0, 2, 1, 3, 5, 9, 6, 7, 8 P(T) = 0, 2, 1, 3, 5, 9, 6, 7, 8

$$S(p)=inv(t)+i+j=9$$

$$P(\pi) = 4,2,1,3,5,9,6,7,8.$$

 $inv(\pi) = 3+1+0+0+0+3=7$
 $S(p') = inv(\pi) + it) = 7+2+3 = 12.$

It's impossible that P to reach P", by the definition. they are parity one is odd, one is even.

5. (10 points)

Prove Lagrange's theorem that if H is any subgroup of a group G, and |H| and |G| are their number of elements, respectively, then |G|/|H| is always an integer.

1H1=3 hi, hz, ... hm3 (G1 = 89,192, ---, 9n4

3 ghi, ghz, ghi; ? is distinct with HdG. therefore

6. (10 points) What is the name of the following famous equation-pair?
$\dot{v}_x = v_y$, $\dot{v}_y = -v_x$, $\dot{v}_y = -v_x$
or, in fuller notation $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} , \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} .$
What is special about the function $u(x,y)+iv(x,y)$ where $u(x,y),v(x,y)$ satisfy the above system of two equations?
Laplace form. X(O)
7. (10 points) Who discovered the quaternions? What city did that person live in?
William Roman Hamilton 1843
Dublin. (10)
8. (10 points) What is Heron's formula, what century did Heron live in?
A=\(\s(s\a)(s\b)(s\c)\); s= \(\frac{a+b+c}{2}\).
Heron tive in CE 60.
9. (10 points) Where did Isaac Newton study? Who was his teacher? What unusual action did that teacher do? What was Newton's position after he left Cambridge?
He study in University of Cambridge; Isaac Barrow;
(S)
10. (10 points) In what city was Leibnitz born? Where did he spend most of his life? What King of England was once the employer of Leibnitz?.
He horn in leipzig; Hanaver;
11. (10 points total) (a) (5 points) State Viète's infinite product for 2
(a) (5 points) State Viète's infinite product for $\frac{2}{\pi}$. $\frac{7}{1} = \frac{\sqrt{2}}{2} \cdot \frac{\cancel{2} + \cancel{2} + \cancel{2}}{2} \cdot \frac{\cancel{2} + \cancel{2}}{2} \cdot$
(b) (5 points) State the names of two people who initiated the use of logarithms
John Napier; Jost Burgi

E-Mail address: SUSYY	nita. par Orwigers. edu
MATH 436 Exam II for I SEC 211	Or. Z.'s, Spring 2017, April 24, 2017, 10:20-11:40am,
BOOK (But not your Ma	tsheets! YOU MAY USE YOUR HISTORY NOTE- ath Notebook). Is wer without showing your work will get you zero
Do not write below this line	(office use only)
1. (out of 10)	G=91,92 gm
2. 5 (out of 10)	H= h, h2 hn
3. (out of 10)	The such that
4. <i>l</i> (out of 10)	J No Sacri Cambi €
5. 5 (out of 10)	gihin gzhi, gmhi €
6. 6 (out of 10)	g, h,, g, h,, g, h, 9m
7. (Out of 10)	g, h20g2h2, g3h2.gm
8. (() (out of 10)	0 h 0 h 0 h 2 1 9 m
9. O (out of 10)	g.hz, g.hz, gzhzgr
10. (out of 10)	
11. (Out of 10)	in the second
	g, hn, 92hn, 93hn
total: 6 4 · (out of 110)	g, hn, g2hn, g3hn g m must be
· 1	

NAME: (print!) SUSMITA

9, 92, -- gm hi, hz ... hn such that ng gzhi, ... gmhi € G , g 2h, , g 3h, ... g mh, 1092h2, 93h2. 9mh 2 , g.h.s., g.sh.s...gmh3 n, 92hn, 93hn - .. 9mhnta n must be an integer

PARUCHURI

not supposed to this! 1. (10 pts.) Give two proofs of the Pythagorean theorem. (using sinatoora 0+B=90 cost = = 2. (10 pts.) Prove that $\sqrt[7]{3}$ is irrational energy pushing m,n: integers m=3bn=3°a Set 3. (10 pts. total) (a) (5 points) Define the Mandelbrot set. 2722+C possib (b) (5 points) Define the Feigenbaum constant. Explain everything! Just is 4.667

(a) (6 pts.) For any position P in the (n^2-1) -puzzle, let [i,j] be the location of the blank (that we call n^2) (In other words, i is the row-number and j is the column-number), and let $\pi(P)$ be the permutation of $\{1, 2, 3, \dots, n^2\}$ obtained by reading it from left-to-right and top-to-bottom (like in English). Define

$$S(P) = i + j + inv(\pi(P))$$

where $inv(\pi)$ is the number of inversions of the permutation π .

Prove that if Q is any position reachable from P by a finite number of legal moves, then the parity of S(P) equals the parity of S(Q). In other words, they are either both even or both odd.

Note: You may use the lemma that if you exchange any two elements in a permutation,

the number of inversions always changes by an odd integer.

move is a norizontal OY

Horizontal. According to oven lemma, # of inversions changes by an and integer every honzontal move changes by som even #, changes by som even #, which reeps it either odd or even capening on what it started with either odd or even capening on what yornical Lemma: # inversions changes by add, j is ±1, so

(b) (4 pts) S(Q) changes by an even number, preserving, Let

$$P = \begin{pmatrix} 1 & 2 & 3 \\ 5 & 9 & 4 \\ 6 & 7 & 8 \end{pmatrix} \quad , \quad Q = \begin{pmatrix} 3 & 1 & 0 \\ 4 & 2 & 1 \\ 3 & 5 & 9 \\ 6 & 7 & 8 \end{pmatrix}$$

Can you reach position R from position P, by a sequence of legal moves?—Explain!

S(P) = inv(tr(P)) +1+j=1+4+2+2= 9

S(Q)=3+1+3+3+2=4+8=

Different panties > this is/impossible proved in part (a)

5. (10 points)

Prove Lagrange's theorem that if H is any subgroup of a group G, and |H| and |G| are their number of elements, respectively, then |G|/|H| is always an integer.

1611=m, H is a subgroup

G=91,92,93 ... 9m - continued on

H= h, h2, h3. -hn

not clean

6. (10 points) What is the name of the following famous equation-pair?
$u_x = v_y$, $u_y = -v_x$, $v_y = -v_y$
or, in fuller notation $\partial u \partial v \partial u \partial v$
$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} , \frac{\partial u}{\partial y} = \frac{\partial v}{\partial x} .$
What is special about the function $u(x,y) + iv(x,y)$ where $u(x,y), v(x,y)$ satisfy the above system of two equations?
Moderate Divido Moderato
-Cauchy - Riemanni V.,
7 (10 points) Who discovered the existentions? What site did that it
•• (10 points) who discovered the quaternions: what city did that person live in
William Rowan Hamilton, Dubl
8. (10 points) What is Heron's formula, what century did Heron live in?
A=(s(s-a)(s-b)(s-c)) 1s+ cent. AD V
(10
9. (10 points) Where did Isaac Newton study? Who was his teacher? What unusual
action did that teacher do? What was Newton's position after he left Cambridge?
Studied in France X
Pupil of Galileo? X Professor (10 points) In what city was Leibnitz hom? Where did he may be a fill his a
Oxolo NSW
10. (10 points) in what city was Leibhitz born: where did he spend most of his life?
What King of England was once the employer of Leibnitz?. Born in France (Verson les?)
ived in England (0)
King Henry 11 (10 points total) (a) (5 points) State Wilter in Seiter 1 - 1 - 2
(a) (5 points) State Viète's infinite product for $\frac{2}{\pi}$.
= cos 号cos景cos景cos景··
$\langle (p\rangle)$
(b) (5 points) State the names of two poonly who initiated the names of two
(b) (5 points) State the names of two people who initiated the use of logarithms
John Neper (1414) V Henry Briggs (1624)
HPh(Y Bhag) (1627)

	E-Mai	il address: H 436 Exai	Xuehui Xuehuiz m II for Dr	hang 95 O	9	COM 7, April 24, 20	017, 10:20	0-11:40am,
		your work	your matr	i inoteboo	ok).	USE YOUR		
	Do not	write below	this line (of	fice use on	ly)	nent v		
	1. <	(out of 10)						•
	_	(out of 10)		f		2°3		
ret		(out of 10)	ř		.,	- mala x		
,		(out of 10)		1	•		~ ,	
	5. 3 ((out of 10)						
	6. Ó ((out of 10)						
	7. LO((out of 10)						
	8. \ B((out of 10)	•					
		out of 10)						,
		(out of 10)						
	11. 9	(out of 10)						
1	total:	54 (out	of 110)	73				

$$(a+b)^2 = c^2 + 4ab$$

$$(a+b)^2 = a^2 + b^2 + 4ab.$$

$$c^{2}+4ab=a^{2}+b^{2}+4ab$$

 $\Rightarrow a^{2}+b^{2}=c^{2}$

 $(3^{i} \cdot p)^{7} = 3(3^{i} \cdot q)^{7}$

.. 3" P= 3"1+14.

77+71+1.

$$\Rightarrow a^2 + b^2 = c^2$$

2. (10 pts.) Prove that
$$\sqrt[4]{3}$$
 is irrational.

$$\frac{m^7}{n^7} = 3$$

$$m^7 = 3n^7$$

Lemma: any number can be written

$$\Rightarrow$$
 m = 3v. p, ged (p, 3)=1

$$n = 30.9.9 \text{ and } (a, 3) = 1$$

$$n=30.0$$
 gcd $(q,3)=1$
3. (10 pts. total) (a) (5 points) Define the Mandelbrot set.

-Mandel-birst set is a set of numbers from function $f(z) = z^2 + C$, that has boundaries.

lim Their - Their = 4:669 - Feigenbaum constants are two constants have rection dragram for nonlinear map.

This is a contradiction

=> 13 is irrational.

(a) (6 pts.) For any position P in the (n^2-1) -puzzle, let [i,j] be the location of the blank (that we call n^2) (In other words, i is the row-number and j is the column-number), and let $\pi(P)$ be the permutation of $\{1, 2, 3, \dots, n^2\}$ obtained by reading it from left-to-right and top-to-bottom (like in English). Define

$$S(P) = i + j + inv(\pi(P)) ,$$

where $inv(\pi)$ is the number of inversions of the permutation π .

Prove that if Q is any position reachable from P by a finite number of legal moves, then the parity of S(P) equals the parity of S(Q). In other words, they are either both even or both odd.

Note: You may use the lemma that if you exchange any two elements in a permutation,

the number of inversions always changes by an odd integer.

If you move ne vertically the column-number doesn't change and the now-number changes by ±1. If you move no horizontally by one legal move, the row-number doesn't change and the column-number changes by ±1. So whether you move no vertically or horizontally, i+j will change by ±1.

At the same time, the number of inversions always changes by odd integers, So, S(Q) is equal to S(p)±1+ an odd integer, (4 nts)

(b) (4 pts) Let

As a result, the parity of S(P) = the parity of S(Q) $P = \begin{pmatrix} 1 & 2 & 3 \\ 5 & 4 \\ 6 & 7 & 8 \end{pmatrix}$, $Q = \begin{pmatrix} 4 & 2 & 1 \\ 3 & 5 \\ 6 & 7 & 8 \end{pmatrix}$.

Can you reach position P' from position P, by a sequence of legal moves? Explain!

S(P) = 2+2+ inv(T(P)) = 4+5=9 inv(MP)=1+4=5-

 $S(p') = 3+2 + mv(\pi(Q)) = 5+7 = 12$

inv (ta(Q)) = 3+1+3=7

You cannot reach position P' from P. by legal moves. because the parity of S(p) \$ the party of S(p)

5. (10 points)

Prove Lagrange's theorem that if H is any subgroup of a group G, and |H| and |G| are their number of elements, respectively, then |G|/|H| is always an integer.

IHI=n = H= fhi, hz, -hny, gH=fghighz, -ghny gieg gHeg m = IGI = mn. Very incomplete! gzH=fghi, gshz, -gshny gieg gzHeg m = IGI/IHI=m.

6. (10 points) What is the name of the following famous equation-pair?
$u_x = v_y$, $u_y = -v_x$,
or, in fuller notation $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} , \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} .$
What is special about the function $u(x,y) + iv(x,y)$ where $u(x,y), v(x,y)$ satisfy the above system of two equations?
the "canonical" form:
the "canonical" form: The equevelon helped him write the equations of dynamics.
7. (10 points) Who discovered the quaternions? What city did that person live in?
William Rowan Hamilton.
Dublin
8. (10 points) What is Heron's formula, what century did Heron live in?
"Heronic" formula for the area of a triangle. (60)
A=[sis-alis-b)(s-c) in-purely geometrical form — "Metrica"
9. (10 points) Where did Isaac Newton study? Who was his teacher? What unusual action did that teacher do? What was Newton's position after he left Cambridge?
Italy.
$X \qquad (O)$
10. (10 points) In what city was Leibnitz born? Where did he spend most of his life?
What King of England was once the employer of Leibnitz?.
11. (10 points total) (a) (5 points) State Viète's infinite product for $\frac{2}{\pi}$.
$\frac{2}{\pi} = \cos \frac{\pi}{4} \cos \frac{\pi}{8} \cos \frac{\pi}{1b} \cos \frac{\pi}{32}$
. (9)
(b) (5 points) State the names of two people who initiated the use of logarithms

Briggs, John Heper

NAME: (print!) Young . Jin Kim .
1 22 D
E-Mail address: YK 336 ())
MATH 436 Exam II for Dr. Z.'s, Spring 2017, April 24, 2017, 10:20-11:40am, SEC 211
No Calculators! No Cheatsheets! YOU MAY USE YOUR HISTORY NOTE-BOOK (But not your Math Notebook). Show your work! An answer without showing your work will get you zero points.
Do not write below this line (office use only)
1. [() (out of 10) [#5 confinued /
2. (out of 10)
3. $\leq (\text{out of } 10)$ Then: $62h_1 = 62h_2$
4. 4 (out of 10) Hence $g_{2}^{-1}(g_{2}h_{1}) = g_{2}^{-1}(g_{2}h_{1})$
5. 5 (out of 10) l and l
6 () (0.14 of 10)
7. (0 (out of 10). Naw let $92h7 = h7$. The (0 1)
8. 10 (out of 10) Then $(9_2 h_i^2) h_i^{-1} = h_i h_i^{-1}$
9. $O(\text{out of } 10)$ $\partial_2 = h_{\overline{j}}h_{\overline{i}} + CH$
10. 4 (out of 10) Thus $g_3 H = \{g_3 h_1, \dots, g_3 h_m\}$
11. \(\int\) (out of 10)
and we get $32h_{\bar{i}} = 93h_{\bar{j}}$.
total: (out of 110) Repeat this in times and. We get the desired result,
mot clear
V

1. (10 pts.) Give two proofs of the Pythagorean theorem. Suppose there is a perfect . Squareo with then oth atb for a side. Then the alrea $(a+b)^2 = a^2 + 2ab + b^2$ The second square, which is of the same area. but 17 fferent notation $C^2 + 2ab$, Hence. $a^2 + 2ab + b^2 = c^2 + 2ab$ The triangle ABC, QAC, BQA one all similar to each other. and $a^{2}+b^{2}=C^{2}$, Then $\frac{C'}{A} = \frac{a}{C'+C''}$, $\frac{C''}{b} = \frac{b}{C'+C''}$ by ratio. 2. (10 pts.) Prove that $\sqrt[3]{3}$ is irrational. Suppose $\sqrt{3}$ is rottonal and thus $\sqrt{3} = \frac{m}{h}$ $(C')^2 + C'C'' = \alpha^2$ Then $3 = \frac{m^{\eta}}{n^{\gamma}}$ and thus $m^{\gamma} = 3n^{\gamma}$ $(C'')^2 + C'C'' = b^2$ $(c'+c'')^2=c^2$ Since min is sivisible by 3, we can say = 02+62, M = 3 a for some [and a. Similarly, Q.E.Do N=336 for some Jandb. Then M7=3/11/ 3. (10 pts. total) (a) (5 points) Define the Mandelbrot set. have street porty the Mandelbrot set a Zny = Zn2+ C where c is a constant and the values of not siveral as It arows not clear (b) (5 points) Define the Feigenbaum constant. Explain everything! Feloenbaum constants are two mathematical constants which both express ratios tideo bifur ation of a non-tinear map This is primarily used to present population growth

(a) (6 pts.) For any position P in the (n^2-1) -puzzle, let [i,j] be the location of the blank (that we call n^2) (In other words, i is the row-number and j is the column-number), and let $\pi(P)$ be the permutation of $\{1,2,3,\ldots,n^2\}$ obtained by reading it from left-to-right and top-to-bottom (like in English). Define

$$S(P) = i + j + inv(\pi(P)) ,$$

where $inv(\pi)$ is the number of inversions of the permutation π .

Prove that if Q is any position reachable from P by a finite number of legal moves, then the parity of S(P) equals the parity of S(Q). In other words, they are either both even or both odd.

Note: You may use the lemma that if you exchange any two elements in a permutation, the number of inversions always changes by an odd integer.

$$P = \begin{pmatrix} 7 & 2 & 7 & 2 \\ 5 & 2 & 7 & 2 \\ 5 & 2 & 3 \\ 5 & 2 & 4 \\ 6 & 7 & 8 \end{pmatrix} , Q = \begin{pmatrix} 4 & 2 & 1 \\ 3 & 5 & 2 \\ 6 & 7 & 8 \end{pmatrix}$$

Can you reach position \mathcal{Q} from position P, by a sequence of legal moves? Explain!

$$S(P) = 1 + j + Inv(\pi(P)) = 2 + 2 + (1 + 4) = 9$$

$$S(Q) = 7+3+7nv(T(Q)) = 2+3+(3+1+3) = 12$$

In order for the position change from P to Q

be legal, the parity of S(P) has to

with s(Q), since s(P) is odd and s(Q) is even,

this cannot happen,

Prove Lagrange's theorem that if H is any subgroup of a group G, and |H| and |G| are their number of elements, respectively, then |G|/|H| is always an integer.

HCG, 306G such that : 02 €H.

024 = {02h, 92h2, ... , 02hm}

6. (10 points) What is the name of the following famous equation-pair?
$u_x=v_y$, $u_y=-v_x$,
or, in fuller notation $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} , \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} .$
,
What is special about the function $u(x,y)+iv(x,y)$ where $u(x,y),v(x,y)$ satisfy the above system of two equations?
Hamilton-Jacobi equation. (principal) This is special because it is a characteristic.
This is special because it is a characteristic.
7. (10 points) Who discovered the quaternions? What city did that person live in?
William Rowan Hamilton, Dublin (10)
8. (10 points) What is Heron's formula, what century did Heron live in?
8. (10 points) What is Heron's formula, what century did Heron live in? $A = \int S(S-a)(S-b)(S-c), S+contary \mathcal{J}(1)$
9. (10 points) Where did Isaac Newton study? Who was his teacher? What unusual
action did that teacher do? What was Newton's position after he left Cambridge?
Parisi - Christiaan Maygen;
Parisi - Christiaan Huysen , Newton Vemainet as a vesearcher.
10. (10 points) In what city was Leibnitz born? Where did he spend most of his life? What King of England was once the employer of Leibnitz?.
What king of England was once the employer of Leibnitz?. Fre derick the Gree Lepzing (Lepzing)
. The second of
11. (10 points total) (a) (5 points) State Viète's infinite product for $\frac{2}{\pi}$.
= cos
71 - 10 4 50
(b) (5 points) State the names of two people who initiated the use of logarithms
John Heper, Henry Briggs V

NAME: (print!) Maninder Gill

E-Mail address: Mkg 77 @ Scarlet mail. 144 July 2. aby.

MATH 436 Exam II for Dr. Z.'s, Spring 2017, April 24, 2017, 10:20-11:40am, SEC 211

No Calculators! No Cheatsheets! YOU MAY USE YOUR HISTORY MOTHER.

No Calculators! No Cheatsheets! YOU MAY USE YOUR HISTORY NOTE-BOOK (But not your Math Notebook). Show your work! An answer without showing your work will get you zero points.

Do not write below this line (office use only)

- 1. 5 (out of 10)
- 2. 9 (out of 10)
- 3. \(\)\(\)\(\)\(\)\(\)\(\)
- 4. (out of 10)
- 5. 3 (out of 10)
- 6. (out of 10)
- 7. (Out of 10)
- 8. (out of 10)
- 9. 5 (out of 10)
- 10. (out of 10)
- 11**2** (out of 10)

total:

(out of 110)

62.1.134-

70,5

contaid iction

In a, herent

Ver / incomplet

1. (10 pts.) Give two proofs of the Pythagorean theorem.	
Area of triangle 1: 02+62+ 4 (triangle) -1	+ (4 triangles) = c2+ 46th
Area of triumgle 2: c2 + 4 (triangles) = A	03+63=62
(\leq)	7 20.
$(a-b)^2 + \partial_a b = c^2 \qquad (a-b)(a-b)$. The 2 proofs were
02 01 - 01 1/12	rmed by the triangle
a_{s}^{1}	Mity we did ! do
The same of the sa	out outs.
(3) Pathorgan triples: $(2mn)^2 + (m^2 - n^2)^2 = (m^2 + n^2)$	$(2)^2$ $\alpha = 2mn$
$2m^2n^2 = 2m^2n^2$	p= ws-45
asgume that $\sqrt{3}$ is rational 2. (10 pts.) Prove that $\sqrt[7]{3}$ is irrational. $3^{\frac{1}{7}}$	C= m3+na.
$(3^{\frac{1}{7}})^2 = (\frac{m}{n})^7$ $7^{1i}a^7 = 7^{7i+1}b^7$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
n' contridiction Why	
3n = m / Paper	in (1)
$(7ia)^{7} = 3(7ib)^{7}$ Hence $\sqrt[3]{3}$ is	scrational .
(7a) = 3(7b)	> /
3. (10 pts. total) (a) (5 points) Define the Mandelbrot set. Z7 + C Se+ of f(c), f(f(c)),	
This 7^2+C is used to check it is	
This 2^2+C is used to check if it a ce If it converges tun it is in the set. Then it is not in the set.	If it diverges
than it is not in he set.	(5)
(b) (5 points) Define the Feigenbaum constant. Explain everything	ng!
17 This = 4.669 dofone	1 (2)

- **4.** (10 pts. total)
- (a) (6 pts.) For any position P in the (n^2-1) -puzzle, let [i,j] be the location of the blank (that we call n^2) (In other words, i is the row-number and j'is the column-number), and let $\pi(P)$ be the permutation of $\{1, 2, 3, \dots, n^2\}$ obtained by reading it from left-to-right and top-to-bottom (like in English). Define

$$S(P) = i + j + inv(\pi(P))$$

where $inv(\pi)$ is the number of inversions of the permutation π .

Prove that if Q is any position reachable from P by a finite number of legal moves, then the parity of S(P) equals the parity of S(Q). In other words, they are either both even or both odd.

Note: You may use the lemma that if you exchange any two elements in a permutation,

the number of inversions always changes by an odd integer.

Sein ($\pi(e)$) + i + j S = 0 + 3 + 3Since in the number of inversions always changes by an odd integer.

The blank (q) by 8. So S = 0 + 3 + 3 S = 0 +

('\)

(b) (4 pts)

not clem 1+4=5= inv . 3+1+3=7=inv

- Let
- $P = \begin{pmatrix} 1 & 2 & 3 \\ 5 & 6 & 4 \\ 6 & 7 & 8 \end{pmatrix} \quad \begin{array}{c} Q = \begin{pmatrix} 4 & 2 & 1 \\ 3 & 5 & 9 \\ 6 & 7 & 8 \end{pmatrix} \quad \begin{array}{c} 4 & 2 & 1 \\ 3 & 5 & 9 \\ 6 & 7 & 8 \end{pmatrix} \quad \begin{array}{c} 4 & 2 & 1 \\ 3 & 5 & 9 \\ 6 & 7 & 8 \end{pmatrix} \quad \begin{array}{c} 4 & 2 & 1 \\ 3 & 5 & 9 \\ 6 & 7 & 8 \end{pmatrix} \quad \begin{array}{c} 4 & 2 & 1 \\ 3 & 100 & 9 & 9 & 9 & 9 \\ \end{array}$

- Can you reach position \mathcal{D}' from position P, by a sequence of legal moves? Explain!
- P: S = inv(T) + i + j

Q: \$= inv(T) + i+j

S: 5+2+2

S= 7+2+2

5 = 9 & odd

One is even à ster is, add, so possible. "You cannot réach.

5. (10 points)

Prove Lagrange's theorem that if H is any subgroup of a group G, and |H| and |G| are their number of elements, respectively, then |G|/|H| is always an integer.

6. (10 points) What is the name of the following famous equation-pair?
or, in fuller notation $\begin{cases} u_x = v_y &, u_y = -v_x \\ \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} &, \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \end{cases} \qquad \begin{cases} \frac{\partial^2 V}{\partial y^2} + \frac$
what is special about the function $u(x,y)+iv(x,y)$ where $u(x,y),v(x,y)$ satisfy the above system of two equations?
Its special becaux it can be used to solve the general Cubic equation 2.
7. (10 points) Who discovered the quaternions? What city did that person live in? Thes person that coldiscovered in quaternions aved was Hamilton (William Rowin Hamilton)
8. (10 points) What is Heron's formula, what century did Heron live in? A Heron's formula & Area of triangle A
Vs (s-a) (s-b) (s-c) + Heron's formula & Area of triangle A Lived in B.C. 11th century
9. (10 points) Where did Isaac Newton study? Who was his teacher? What unusual action did that teacher do? What was Newton's position after he left Cambridge?
studied in Cambridg (5)
position after leaving cambidg: Ph.D & professor &
10. (10 points) In what city was Leibnitz born? Where did he spend most of his life? What King of England was once the employer of Leibnitz?.
Spirit Most life in Germany Homoser King that was employer of Leibnitz: King George1?
11. (10 points total) (a) (5 points) State Viète's infinite product for $\frac{2}{\pi}$. $\frac{3 \cdot 2 \cdot 4 \cdot 4 \cdot 6 \cdot 6 \cdot 8 \cdot 8 \cdot \dots}{1 \cdot 3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdot 7 \cdot 9 \cdot 9 \cdot \dots}$ $\frac{1}{3} = \frac{3 \cdot 3 \cdot 4 \cdot 4 \cdot 6 \cdot 6 \cdot 8 \cdot 8 \cdot 15}{1 \cdot 3 \cdot 3 \cdot 5 \cdot 5 \cdot 7 \cdot 7 \cdot 9 \cdot 9 \cdot \dots}$ (a) (5 points) State Viète's infinite product for $\frac{2}{\pi}$.
(b) (5 points) State the names of two people who initiated the use of logarithms
• Euler claimed their log (-1) =0 in a letter to D'Alambert in 1747. • D'Alembert (2)
1) HUMW 3

· Also Jacob used

logarthmetic

spirals.

NAME: (print!)Kaii	nc 'Wamouti
	e Jamait & Smail.com
	Dr. Z.'s, Spring 2017, April 24, 2017, 10:20-11:40am,
BOOK (But not your Ma	atsheets! YOU MAY USE YOUR HISTORY NOTE- ath Notebook). Is swer without showing your work will get you zero
Do not write below this line	(office use only)
1. 5 (out of 10)	(5) H= & h,, h2', · · · hm } G = n, 1H, 1=m
, ,	graidentity IX H&GrageG S.t 92# H
3. 7 (out of 10)	92H = 292h, 92h2 , 11, 92hm)
4. 4 (out of 10)	9 shi= 9 zhj => (92 gz) hi = (92 - 19z) hj
5. 5 (out of 10)	hi=hj-x, proved by
6. <i>O</i> (out of 10)	Con proofic from
7. [<i>O</i> (out of 10)	9 2hi = hj (92hi)(hi-1) = hj hi-1
\	92(hihj-1) = hjhi-1
8. 6 (out of 10)	92(4)=hjhj=1&H X,
9. 4 (out of 10)	
10. 3 (out of 10)	93 ¢ 4 93 € 92 H
11. (O (out of 10)	93H = & 93h, 193h2 · · · · · · 93 hm }
	9 2h1 = 53h1
total: (out of 110)	93=52hihj+
590121	SO 93 E 52 h - X.
1 119=	Keen otning it unitil you finish (ni hous)
67	The pooring
į.	93H = 293h, 193h2 11. 193 mm S 92h1 = 53h; 93 = 52hihj + So 93 & S2h - X. Keep storing it until you kinish (ni hims) mot clean

(cs.) Give two proofs of the Pythagorean theorem.
$$(a-b)(a-b) = a^2 - ab - ab + b^2$$

(1)
$$c^2 = (a-b)^2 + 2ab$$

 $c^2 = a^2 - 2ab + b^2 + 2ab$

$$c^{2} = 0^{2} + b^{2}$$
 $0^{2} + b^{2} = c^{2}$

2. (10 pts.) Prove that
$$\sqrt[7]{3}$$
 is irrational.

so,
$$\sqrt{3} = \frac{m}{n}$$

$$-80, 1.8 = \frac{m^{7}}{n^{7}}$$

$$3n^{7} = m^{7}$$

 $3(\hat{R}^{i}\bar{n})^{7} = (3^{j}\bar{m})^{7}$

$$n = \frac{1}{3}$$
 is carried,
 $\frac{1}{7}i+1+\frac{7}{7}i$
 $\frac{1}{7}(j-1)-1 \cdot x$
 $\frac{1}{4}$ $\frac{$

50,
$$\sqrt{3} = \frac{m}{n}$$
 $7(j-1) = 1$
 $7(j-1)$

(a) (6 pts.) For any position P in the (n^2-1) -puzzle, let [i,j] be the location of the blank (that we call n^2) (In other words, i is the row-number and j is the column-number), and let $\pi(P)$ be the permutation of $\{1,2,3,\ldots,n^2\}$ obtained by reading it from left-to-right and top-to-bottom (like in English). Define

$$S(P) = i + j + inv(\pi(P))$$

where $inv(\pi)$ is the number of inversions of the permutation π .

Prove that if Q is any position reachable from P by a finite number of legal moves, then the **parity** of S(P) equals the **parity** of S(Q). In other words, they are either **both even** or **both odd**.

Note: You may use the lemma that if you exchange any two elements in a permutation, the number of inversions always changes by an odd integer.

IP is a position in the (n2-1) sliding public and Till) is cours ponding permutation when the blank is replaced by n2: the location of the blank is replaced by n2: the location of the blank is [i, i] & you just copied the

Marika [5] Li, i) E You just capied the prove theorem you had to prove theorem you had to prove theorem you had to prove the position a is reachable from position P by a finite member of legal the mives, then see = s(a) have the same parity.

Let

Let
$$(P) = P = \begin{pmatrix} 1 & 2 & 3 \\ 5 & 9 & 4 \\ 6! & 7 & 8 \end{pmatrix}, \quad Q = \begin{pmatrix} 4 & 2 & 1 \\ 3 & 5 & 9 \\ 6 & 7 & 8 \end{pmatrix} \quad 3 + 1 + 3 = 7$$

Can you reach position P' from position P, by a sequence of legal moves? Explain!

$$S_1 = inV(\pi) + i + j$$

$$S_2 = inV(\pi) + i + j$$

100 cannot réach position p' from position P by a sequence of legal moves.

5. (10 points)

Prove Lagrange's theorem that if H is any subgroup of a group G, and |H| and |G| are their number of elements, respectively, then $|\mathcal{G}|/|H|$ is always an integer.

see front pyr

6. 10 points) What is the name of the following famous equation-pair?
$u_x = v_y$, $u_y = -v_x$, or, in fuller notation
$rac{\partial u}{\partial x} = rac{\partial v}{\partial y} , rac{\partial u}{\partial y} = -rac{\partial v}{\partial x} .$
What is special about the function $u(x,y)+iv(x,y)$ where $u(x,y),v(x,y)$ satisfy the above
Dirichet principle?
\vee \vee \vee \vee
7. (10 points) Who discovered the quaternions? What city did that person live in?
Hamilton found the quaternions. He lived in Dublin I Include
8. (10 points) What is Heron's formula, what century did Heron live in?
The "Heronic" formula, what century did Heron live in? The "Heronic" formula for the area of a triangle A = \(\sigma (S-b)(S-c) \) \(\sigma (S-b)(S-c) \)
A = Valacional Consulty Consulty
4 - 1313-41(3-8) (3-C) 11 " ONKAYY (6)
9. (10 points) Where did Isaac Names at 1.2 Miles
9. (10 points) Where did Isaac Newton study? Who was his teacher? What unusual action did that teacher do? What was Newton's position after he left Cambridge?
To a Posses I do No
Isoac Bonowwas his teachery
Saly, I have so much inter on Wewton 4 But Wit Wheel You asked if 10.) (10 points) In what city was Leibnitz born? Where did he spend most of his life?
sary, I have so much inter on weaters (7)
But wot when you asked in
10. (10 points) In what city was Leibnitz born? Where did he spend most of his life?
What King of England was once the employer of Leibnitz?
ca cas form
Herical M. Lenp319
Herry Leipzig
11. (10 points total)
(a) (5 points) State Viète's infinite product for $\frac{2}{\pi}$.
$\frac{1}{\pi}$
T = CO T CO T CO T
$\frac{2}{\pi} = \cos \pi \cos \pi \cos \pi \cos \pi$
(b) (5 - circle) (C) 13
(b) (5 points) State the names of two people who initiated the use of logarithms
Neper: Briggs.

NAME: (print!) Lawen McKay		
NAME: (print!) Lawen McKay E-Mail address: Lawen. mckay	Orntgers.edu	
MATH 436 Exam II for Dr. Z.'s, Spring 2 SEC 211	2017, April 24, 2017, 10:20-11:40ar	n,
No Calculators! No Cheatsheets! YOU M BOOK (But not your Math Notebook). Show your work! An answer without sh points.		
Do not write below this line (office use only)		
1. (out of 10)	*	
2. (out of 10)		
3. 3 (out of 10)		
4. (out of 10)		
5. \(\)(out of 10)		

6. (out of 10)

7. (0ut of 10)

8. \hat{g} (out of 10)

9. \bigvee (out of 10)

10. 4 (out of 10)

11. 6 (out of 10)

total:

(out of 110)

58 . 1. 134 = 66

triangles of a will fit in both

$$a^2 + b^2 + 4(\frac{1}{2}ab) = c^2 + 4(\frac{1}{2}ab)$$
leaving with

 $a^2 + b^2 = c^2$

and therefore cancel out because they appear on both sides

2. (10 pts.) Prove that $\sqrt[7]{3}$ is irrational.

$$\sqrt{13} = \frac{m}{n} \rightarrow 3 = \frac{m^2}{n^2} \rightarrow 3n^2 = m^2$$

m' = 13'a

$$(\gcd(3,\alpha)=1)$$

plugging in

3. (10 pts. total) (a) (5 points) Define the Mandelbrot set.

$$Z = Z^2 + C$$

(b) (5 points) Define the Feigenbaum constant. Explain everything (b) (5 points) Define the Feigenbaum constant.

$$\lim_{n\to\infty} \frac{r_n - r_{n+1}}{r_{n+1} - r_n} = 4.669...$$

with period doubling

4. (10 pts. total) (a) (6 pts.) For any position P in the (n^2-1) -puzzle, let [i,j] be the location of the blank (that we call n^2) (In other words, i is the row-number and j is the column-number), and let $\pi(P)$ be the permutation of $\{1,2,3,\ldots,n^2\}$ obtained by reading it from left-to-right and top-to-bottom (like in English). Define $S(P) = i + j + inv(\pi(P))$. Inv($\Pi(P)$ # of times a bigger # is where $inv(\pi)$ is the number of inversions of the permutation π . Prove that if Q is any position reachable from P by a finite number of legal moves, then the parity of S(P) equals the parity of S(Q). In other words, they are either both even or both odd. Note: You may use the lemma that if you exchange any two elements in a permutation, the number of inversions always changes by an odd integer. lemma: exchanging any 2 elements at pois tron (ij)
with inversion πij then inv(π) - inv(πij) = odd #/ mol clear it would be impossible. S(P) = i,+j,+ (odd+invTi) S(0)=i2+j2 + (invT - odd) (b) (4 pts) Let $P = \begin{pmatrix} 1 & 2 & 3 \\ 5 & 4 \\ 6 & 7 & 8 \end{pmatrix} \quad , \quad Q = \begin{pmatrix} 4 & 2 & 1 \\ 3 & 5 \\ 6 & 7 & 8 \end{pmatrix} \quad .$ Can you reach position \nearrow from position P, by a sequence of legal moves? Explain! 2 3 S 9 InV(P) = SS(P)=5+2+2 = 9 S(Q)= 7+2+3=12 parity of S(P) & S(O) are different therefore unreachable. **5.** (10 points) Prove Lagrange's theorem that if H is any subgroup of a group G, and |H| and |G| are their number of elements, respectively, then |G|/|H| is always an integer. IHI= m &h.,..., hm3 lemma: a \$H with no overlap with elements in H 191=n

men att = Eah, ahz, ..., ahm}

NAME: (print!) Welkun Lu E-Mail address: Welkun Lu@ 1019 Pt. Puly MATH 436 Exam II for Dr. Z.'s, Spring 2017, April 24, 2017, 10:20-11:40am,
SEC 211 No Calculators! No Cheatsheets! YOU MAY USE YOUR HISTORY NOTE-BOOK (But not your Math Notebook). Show your work! An answer without showing your work will get you zero points.
Do not write below this line (office use only)
1. 5 (out of 10)
2. () (out of 10)
3. 9 (out of 10)
4. 3 (out of 10)
5. (out of 10)
6. (Out of 10)
7. (out of 10)
8. (out of 10)
9. 5 (out of 10)
10. (out of 10)
11. \(\tau\) (out of 10)
total: 52 (out of 110)

1.134=59

(atb=a+b+2ab ara: (2+ ab.4 atbitrals (+2ab , atting

(atb)= a trabtb2

200 @t(2: a2+b+12ab (-q2+h2

2. (10 pts.) Prove that $\sqrt[7]{3}$ is irrational.

Supproje
$$7\sqrt{3}$$
 is attend positive then $7\sqrt{3} = \frac{m}{7}$ min all integer $3 = \frac{m^{7}}{n^{7}}$
 $3 = \frac{m^{7}}{n^{7}}$

no way

3. (10 pts. total) (a) (5 points) Define the Mandelbrot set.

(b) (5 points) Define the Feigenbaum constant. Explain everything!

(a) (6 pts.) For any position P in the (n^2-1) -puzzle, let [i,j] be the location of the blank (that we call n^2) (In other words, i is the row-number and j is the column-number), and let $\pi(P)$ be the permutation of $\{1,2,3,\ldots,n^2\}$ obtained by reading it from left-to-right and top-to-bottom (like in English). Define ski) s(Phatis

$$S(P) = i + j + inv(\pi(P)) ,$$

where $inv(\pi)$ is the number of inversions of the permutation π .

Prove that if Q is any position reachable from P by a finite number of legal moves, then the parity of S(P) equals the parity of S(Q). In other words, they are either both even or both odd.

Note: You may use the lemma that if you exchange any two elements in a permutation,

the humber of inversions always changes by an odd integer.

Hemma: Inv(T(E)) - Inv(T) = odd when exchange two elements.

because when exchange two elements, the inversion will change to the invition for the invition for the hold, then in order to keep the invition-survitor lemma hold, the Parda must have the same party. not clear!

(b) (4 pts) Let

$$P = \begin{pmatrix} 1 & 2 & 3 \\ 5 & 4 \\ 6 & 7 & 8 \end{pmatrix} \quad , \quad Q = \begin{pmatrix} 4 & 2 & 1 \\ 3 & 5 \\ 6 & 7 & 8 \end{pmatrix} \quad .$$

Can you reach position β from position P, by a sequence of legal moves? Explain!

(nv(P)= 0+0+0+6+4+0+ototototy 5

Env(Q)= 3+1+0+0+0+3=7 Env(Q) - Env(P)= 7-4=3 = odd

so tenchable.

1 that are

 $S(P), S(Q)^2$

5. (10 points)

Prove Lagrange's theorem that if H is any subgroup of a group G, and |H| and |G| are their number of elements, respectively, then |G|/|H| is always an integer.

6. (10 points) What is the name of the following famous equation-pair?
$$u_x=v_y\quad,\quad u_y=-v_x\quad,$$
 on in following tamous equation-pair?

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 , $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$

What is special about the function u(x,y)+iv(x,y) where u(x,y),v(x,y) satisfy the above system of two equations?

Nowton, equation

8. (10 points) What is Heron's formula, what century did Heron live in?

9. (10 points) Where did Isaac Newton study? Who was his teacher? What unusual action did that teacher do? What was/Newton's position after he left Cambridge?

10. (10 points) In what city was Leibnitz born? Where did he spend most of his life? What King of England was once the employer of Leibnitz?.

(a) (5 points) State Viète's infinite product for $\frac{2}{\pi}$.

(b) (5 points) State the names of two people who initiated the use of logarithms

NAME: (print!) Zong Tre Deng				
E-Mail address: Zjd&@Scwletmanl. Wtges-lely.				
MATH 436 Exam II for Dr. Z.'s, Spring 2017, April 24, 2017, 10:20-11:40am, SEC 211				
No Calculators! No Cheatsheets! YOU MAY USE YOUR HISTORY NOTE-BOOK (But not your Math Notebook). Show your work! An answer without showing your work will get you zero points.				
Do not write below this line (office use only)				
1. \ \(\int \) (out of 10)				
2. (out of 10)				
3. 6 (out of 10)				
4. \nearrow (out of 10)				
5. (Out of 10)				
6. \(\) (out of 10)				
7. O (out of 10)				
8. (out of 10)				
9. () (out of 10)				
10. (out of 10)				
11. \leq (out of 10)				
total: (out of 110)				
52.1.Bn - 59				

$$S_0 = kC^2 = ka^2 + kb^2$$
, Since AARCO DACO DOBD.
=) $C^2 = a^2 + b^2$, (10)

2. (10 pts.) Prove that $\sqrt[7]{3}$ is irrational.

Assure 1/3 15 rootheral;

 $\exists m, n \in \mathbb{N}$: $\Im = \frac{m}{n}, \gcd(m, n) = 1$

- =) $3n^{7}=m^{7}$.
- =) 3 m
 - 73/m, Suce 378 prime minder
 - =) @ 9/m7.

- =) 9/3n7.
- =)3/n7.
 - =) 3(n, Sne 3 75 pmae number
 - =) oxd(mn) >1, X. : 13 vs vordenle.

Q.E.D

3. (10 pts. total) (a) (5 points) Define the Mandelbrot set.

(b) (5 points) Define the Feigenbaum constant. Explain everything!

what is to s

- **4.** (10 pts. total)
- (a) (6 pts.) For any position P in the (n^2-1) -puzzle, let [i,j] be the location of the blank (that we call n^2) (In other words, i is the row-number and j is the column-number), and let $\pi(P)$ be the permutation of $\{1, 2, 3, \dots, n^2\}$ obtained by reading it from left-to-right and top-to-bottom (like in English). Define

$$S(P) = i + j + inv(\pi(P)) ,$$

where $inv(\pi)$ is the number of inversions of the permutation π .

Prove that if Q is any position reachable from P by a finite number of legal moves, then the parity of S(P) equals the parity of S(Q). In other words, they are either both even or both odd.

Note: You may use the lemma that if you exchange any two elements in a permutation, the number of inversions always changes by an odd integer.

= i+ g(±) |+ 2h(a(p7+2k-1, for some k 6)x. = i+g+ 2m (a/g) +2m, for som | mell!

(b) (4 pts) Let

$$P = \begin{pmatrix} 1 & 2 & 3 \\ 5' & 4 & 4 \\ 6 & 7 & 8 \end{pmatrix} \quad , \quad Q = \begin{pmatrix} 4^3 & 2^1 & 1 \\ 3^0 & 5^0 & 3 \\ 6 & 7 & 8 \end{pmatrix} \quad .$$

Can you reach position P' from position P, by a sequence of legal moves? Explain!

S(p) = 2+2+5=90

=) $S(p) \equiv S(Q)_{mod Z}$.

5. (£0 points)

Prove Lagrange's theorem that if H is any subgroup of a group G, and |H| and |G| are their number of elements, respectively, then |G|/|H| is always an integer.

(b) (5 points) State the names of two people who initiated the use of logarithms