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Young David Hilbert 

 

In the small town of Königsberg, on January 23, 1862, David Hilbert was born to Otto and Maria 

Hilbert. The firstborn child and only son would one day become the most influential 

mathematician in Germany, and quite possibly in the entire world. His hometown Königsberg, 

the capital of Prussia, was a small town which was also the home of philosopher Immanuel Kant. 

He was raised rather strictly, particularly by his father who was a very rigid man. It is likely that 

his mother homeschooled him through the early years of his childhood, as evidenced by the fact 

that he did not start school until the age of eight, two years later than most of his peers. 

At this time, his parents enrolled him in what was known to be the best school in Königsberg, the 

Friedrichskolleg. Despite its reputation as the best school in town, it was far from a nice fit for 

the young Hilbert, especially considering the mathematician he would one day become. The 

main focus of the education was on Latin and Greek, with not much attention paid to 

mathematics. When his parents noticed that David was not having as much success at the 

Friedrichskolleg as they had hoped, they removed him from this school and moved him into 

Wilhelms Gymnasium, where he would spend the last year of his schooling. At both schools it 

became clear that Hilbert was a talented mathematician, but he was certainly no prodigy. It was 

still not clear exactly how talented he was. This was due in large part to the fact that Hilbert was 

not the greatest student, and that he did not focus much of his efforts on school mathematics, 

knowing that he would one day turn back and spend much time on the subject. 

At the age of eighteen, Hilbert enrolled in the University of Königsberg, a university which was 

much smaller and much less reputable than the University of Berlin. However, Hilbert was not 

always much of a traveler, and in fact did not spend much time outside of his university during 

his years as a student. The University of Königsberg had a strong tradition in mathematics and 

physics, and had been the school of Carl Jacobi and physicist Franz Neumann. Heinrich Weber 

would hold the chair in mathematics from 1875 to 1883 before being succeeded by Hilbert’s 

advisor, Ferdinand Lindemann. While at the university, Hilbert had the opportunity to take 

lecture courses from Weber himself, in topics including elliptic functions, number theory, and 

invariant theory. This was perhaps Hilbert’s first push into the field of invariant theory, and 

along with some encouragement from his advisor, would cause him to devote much of his future 

study to this field. 

Arguably more important in Hilbert’s lifetime than these professors under whom he studied, 

were the friendships he made with two other mathematicians at the school. His friendship with 

Hermann Minkowski, and especially with Adolf Hurwitz, would shape the path of Hilbert’s 

studies and would have a strong impact on the way he thought about mathematics. Minkowski 

was somewhat of a prodigy (unlike Hilbert) – despite his being two years younger than Hilbert, 

he was a semester ahead of him at the university. He spent much more time travelling during his 

years as a student, studying also at the University of Berlin, which allowed him to learn from the 

great mathematicians Kronecker, Kummer, and Weierstrass. He would soon take what he learned 

back with him to Königsberg, where much of this was shared with Hilbert. Perhaps even more 

influential was Hurwitz, who, despite being only three years older than Hilbert, was a professor 

at Königsberg. Hurwitz, formerly a student of the great Felix Klein, went on frequent walks with 

Hilbert for the sole purpose of discussing mathematics. It was Hurwitz who ultimately inspired 

Hilbert to become a universal mathematician. As mentioned, Hilbert studied invariant theory 
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under his advisor, Lindemann. His doctoral thesis, titled Über invariante Eigenschaften 

specieller binärer Formen, insbesondere der Kugelfunctionen (On invariant properties more 

specially binary forms, especially the spherical harmonics) was clearly focused on this subject. 

While this was not an especially poor thesis, it also was not enough to give Hilbert the reputation 

that he would eventually have among mathematicians. 

 

Early Career and Work in Invariant Theory 

 

Upon graduation, Hilbert travelled to Leipzig where he would meet Klein for the first time, and 

later to Paris where he met Henri Poincaré. Poincaré and Hilbert would eventually lead their 

respective nations in mathematics, but as we will see they were not able to establish a strong 

friendship. The two had very different styles, as Poincaré was more likely to leave a lot of work 

to be done by the reader, while Hilbert would fill in all of the gaps in his work. Similarly, 

Poincaré’s work was much more geometric, while Hilbert’s was much more algebraic. Another 

potential reason for their poor relationship is that Poincaré was likely not very personable, as 

evidenced by the fact that he had few followers and few students despite his great success 

(Hilbert, on the other hand, would take 69 students in his career). 

Hilbert would soon return to Königsberg, where he worked as a Privatdozent. This means that he 

worked as a teacher for the university, but was unpaid. During this time he worked toward 

completing his Habilitation, which would give him the right to teach full-time at a German 

university. This was completed rather quickly and, unsurprisingly, he elected to teach at 

Königsberg, a school which he liked very much and which was also home to his great friend 

Hurwitz. At this point, Hilbert still had not produced any work that was sufficient to establish 

him as the mathematician he would become. 

Hilbert’s emergence onto the scene in the mathematical community came largely as a result of 

his visit to Erlangen, where he met Paul Gordan, the “king of invariant theory.” After spending 

only a week away, Hilbert had already finished the first of many papers which he would 

eventually write on the topic of invariant theory. His breakthrough came in a two-page paper, in 

which he proved the existence of a finite basis for a certain set of objects. Interestingly enough, 

this was a proof by induction and was not a constructive proof; that is, while proving that such a 

basis must exist, he made no claims about what that basis might be. This non-constructive 

existence proof was not very common at the time, and Gordan, desiring to know the in- and 

covariants and the relationships between them, complained that “This is not mathematics, it is 

theology.” Kronecker also expressed trouble with Hilbert’s general existence proofs. He insisted 

on finite algorithmic procedures, which was in direct opposition with Hilbert’s tendency towards 

more abstract methods, which was probably brought about by this early success in invariant 

theory. Despite the backlash from two important mathematicians of the day, Hilbert was 

confident that he had provided a successful proof. At last he had established himself as a 

research mathematician. 

By this point a bit of a rivalry had formed between the Universities of Berlin and of Göttingen. 

Klein, who himself was from Göttingen, saw Hilbert’s potential early on, probably as early as 

their first meeting in Leipzig. As a result, Klein pushed to have Hilbert’s works published in the 
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Mathematische Annalen, a journal based in Göttingen. Hilbert’s first major work, already 

discussed, was published in the Annalen, as was much of his subsequent work. This was 

beneficial for the journal, for Klein, and for Hilbert. 

 

Hilbert as a Number Theorist 

 

In 1892, Hilbert married his second cousin Käthe Jerosch. Nine months later Käthe would give 

birth to their only child, Franz. Around the same time, in 1892, Hilbert surprisingly left the field 

of invariant theory altogether, claiming essentially that all of the most important tasks in 

invariant theory had already been resolved. He began studying number theory, which he had only 

a little experience in. This type of drastic shift was not very common for mathematicians, but 

Hilbert certainly expressed a great deal of confidence in doing so, claiming that he would be able 

to become as relevant a number theorist as he was an invariant theorist. This claim would turn 

out to be correct, and his success began with his first work in number theory, a simplified proof 

that both π and e were transcendental; that is, neither could be the root of a polynomial with 

rational coefficients. Within a few years he moved to Göttingen, where he was offered a position 

as the chair of mathematics at the university. Here he taught for the rest of his career, partnering 

with Klein. With this move, the rise of Göttingen’s mathematical prestige was underway. 

Before his move to Göttingen, Hilbert was asked, along with his good friend Minkowski, to give 

a report on the status of the field of number theory. The two were able to publish their 

Zahlbericht, or Report, by 1897, and that with much success. There were in fact two major 

successes of this Report. The first is that it simultaneously served the purpose of reporting and 

synthesizing the work of Kronecker, Kummer and Weierstrass as well as Hilbert’s own work. It 

also presented a history of the field. Bringing all of this together effectively allowed 

mathematicians new to the topic of number theory to start with the Report, and thus the need to 

search for and read through a lot of older literature was eliminated. Although number theory was 

not always highly-regarded by many of the leading mathematicians and physicists, Hilbert and 

Minkowski gathered some momentum for the field by arguing that many of these seemingly 

unimportant problems actually could have far-reaching effects in other fields of mathematics. 

 

Understanding the Foundations of Geometry 

 

While this Report was a huge success, it was essentially Hilbert’s only noteworthy one in the 

field of number theory. After spending less than ten years on the subject, he made yet another 

shift in his focus and began his study of geometry. With this, Hilbert, who had now made himself 

relevant in two independent fields of mathematics, embarked on achieving the same task in a 

third. He turned out to be quite successful in this, as his study of geometry led him to some of the 

works for which he is most remembered. 

In particular, Hilbert is known for his analysis of the axiomatization of geometry. He worked to 

have the entire field built up out of the logical structure which follows only from these axioms. 

Towards this goal, he wanted to make sure that the truth of geometric statements was based only 
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on this logical structure, and not on any meanings or ideas which came before ever thinking 

about geometry formally; in other words, the results should follow from the definitions and 

axioms, not from inherent ideas about points, lines, and so on. In the words of Hilbert himself, 

“One should always be able to say, instead of ‘points, lines, and planes’, ‘tables, chairs, and beer 

mugs’” (Gray, p. 49). Hilbert’s famous Grundlagen der Geometrie (Foundations of Geometry), 

published in 1899, was a major work in this analysis of the axioms of Euclidean geometry. With 

this, he was able to make major improvements even on the achievements of the Greeks in the 

axiomatization of this geometry. His intention with this work was to show that the axioms are 

both independent and consistent. Proving independence equates to proving that none of the 

axioms follow logically from the rest, hence one cannot make the set of axioms any smaller by 

simply removing one (without changing the geometry altogether). On the other hand, proving 

consistency equates to showing that this set of axioms will not create any logical contradictions. 

Hilbert found success in proving the consistency of the axioms, so long as the axioms of 

arithmetic are themselves consistent, but he was not able to prove entirely that the axioms are 

independent. The natural question following Hilbert’s conclusion about the consistency of these 

axioms is clear, and is one that Hilbert himself would focus on quite a bit in the years to come. 

The question is: are the axioms of arithmetic consistent as well? A proof that this is the case 

would complete the corresponding proof in geometry and would provide a lot of clarity. 

 

Lecture in Paris 

 

With the turn of the century came some of Hilbert’s most memorable work. He was asked to give 

a lecture at the Second International Congress of Mathematicians, which would be held in the 

August of 1900 in Paris. Hilbert, understanding his own reputation and the way he was regarded 

by the mathematical community, knew that the topics he chose to discuss here would receive a 

lot of attention by some of the brightest minds. With this in mind, Hilbert spent nearly a year 

preparing for his lecture. He thought about topics that interested him, topics that were interesting 

or challenging for the entirety of the mathematical community, and issues regarding the 

relationships of fields within mathematics with each other as well as with their applications, 

especially in physics. In September of 1899, Hilbert listened to a lecture given by physicist 

Ludwig Boltzmann, which was focused more on the future of physics than on the past. It is likely 

that this lecture is what provided Hilbert with much of his inspiration to begin thinking in terms 

of the future of mathematics, rather than the past. 

Hilbert’s lecture would be motivated by a handful of big ideas that he had about mathematics as 

a whole. First, he was a man of problems. Hilbert believed that problems were central to 

mathematics, and that good problems did not disappear when solved, but rather led to other 

problems or even to entirely new fields of mathematics. Second, he saw it both necessary and 

possible to break the divide which had slowly formed between pure and applied mathematics. 

While many people (even within the mathematics and physics communities) were beginning to 

see pure mathematics as a study of “math for math’s sake,” with no important applications in 

physics, Hilbert would claim that “Problems can have the most unexpected significance” (Gray, 

p. 4). On a similar note, Hilbert believed that mathematics can and should be seen not as a 

collection of different ideas but as a coherent whole. He therefore sought to unify mathematics 

and to apply everything, particularly to physics. Third, Hilbert was an optimist in an era of 
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pessimists. He believed that every problem could be solved – that there is nothing that we cannot 

know – and he wanted all mathematicians to subscribe to this idea. Finally, Hilbert was 

influenced by his discussions with Minkowski and Hurwitz. Minkowski further encouraged 

Hilbert to look to the future, proposing that possibly people would continue talking about this 

lecture for decades if Hilbert took this piece of advice. Minkowski could not have known at the 

time the scope of this lecture, and could not have imagined that the “decades” of discussion 

about this lecture would be an underestimate. With these big ideas gathered, and a list of 

problems at hand, David Hilbert was ready to set the stage for twentieth century mathematics. He 

began: 

Who among us would not be glad to lift the veil behind which the future lies hidden; to 

cast a glance at the next advances of our science and at the secrets of its development 

during future centuries? What particular goals will there be toward which the leading 

mathematical spirits of coming generations will strive? What new methods and new facts 

will the new centuries disclose in the wide and rich field of mathematical thought? 

Hilbert would go on in this magnificent lecture to do exactly that: to lift the veil which separated 

the present from the future. Not only did Hilbert promote many of the big ideas discussed above, 

but he also presented a list of 23 problems that were to guide the study of mathematics in the 20th 

century. Minkowksi would later remark quite accurately that Hilbert would be acknowledged in 

mathematics as the general director in the years to come. 

Hilbert’s Problems, as they would be called, touched on areas of number theory, geometry, 

analysis, algebra, and more. Hilbert also included many problems which were not of particular 

interest to him in his research but were widely regarded as some of the important problems of the 

day. For example, among these problems were listed the continuum hypothesis, the Riemann 

hypothesis, Goldbach’s conjecture, and more. Hilbert, though he would eventually publish this 

lecture with a full list of the 23 problems, only spoke about ten of these in his lecture in Paris. 

Many of these have been resolved in the 117 years since the lecture, but many have not. Of those 

left unsolved, some have been shown to be impossible to prove or disprove (which can be 

considered in some sense a solution to the problem), while others have even more uncertainty 

still surrounding them. 

Of Hilbert’s 23 Problems, about three quarters of them were problems he had tried to solve or 

were directly related to fields that he had studied. This is noteworthy for two reasons: first, it was 

wise for Hilbert to focus on the areas that he knew most about and to limit the number of 

problems, rather than making a much longer list; second, this number is remarkable considering 

the wide range of topics which the problems cover. Hilbert touched on each of the three most 

general fields of mathematics at the time – those being analysis, algebra, and geometry (while all 

other fields or subfields somehow fit into one or multiple of these). He also addressed issues 

regarding the applications in physics, as evidenced by his second Problem, which will be stated 

and discussed later. Another strength of this lecture was Hilbert’s emphasis on the need for 

rigorous general theories. Again, the finer subjects were not all touched upon by Hilbert in his 

Problems, as it was more beneficial to select a smaller number of Problems with which he was 

more familiar. Some noteworthy topics of the time which Hilbert did not address include the 

integration of trigonometric sums, problems in topology, problems in the theory of functions of 

several variables, and more. 
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A Brief History of Some Problems 

 

The first of Hilbert’s Problems relates to the continuum hypothesis, a problem originally posed 

by the great Georg Cantor. The hypothesis is that there is no set whose cardinality lies strictly 

between that of the set of natural numbers and that of the set of real numbers. Cantor was 

wholeheartedly convinced that this is true, and spent years trying to prove that this was the case. 

With no proof being yet discovered by 1900, Hilbert considered it worthy of being his first 

Problem. In his lecture he spoke of the notion of well-ordered sets, and even suggested that this 

may somehow be the key to proving the continuum hypothesis. This problem was partially 

resolved forty years later, when the great logician Kurt Gödel proved that the continuum 

hypothesis could not be disproved within the current axiomatic system, Zermelo-Frankel set 

theory (ZF), even with the stronger hypothesis of ZFC, which includes the axiom of choice. The 

rest of the solution did not come until 1963, when Paul Cohen proved that the continuum 

hypothesis could not be proved within this system either. Together, these discoveries showed 

that the continuum hypothesis is actually completely independent of ZFC axioms; that is, either 

the continuum hypothesis or its negation could be accepted as an axiom without causing any 

inconsistencies. 

Hilbert’s second Problem calls for a proof of the consistency of the axioms of arithmetic. Recall 

that he had already shown that the axioms of Euclidean geometry are consistent so long as the 

axioms of arithmetic are. With that in mind, there was a lot resting on this problem. With this 

question, though, Hilbert found himself in the middle of a number of philosophical discussions. 

One example of such a discussion was based around the idea of axiom systems being complete - 

that a system of objects obeying certain axioms must exist, and that there is no larger system of 

objects satisfying the axioms. Gottlob Frege argued that completeness axioms cannot be used to 

resolve questions of existence. At present it is not generally agreed upon whether this particular 

Problem has been resolved or not. In 1931, Kurt Gödel showed with his second incompleteness 

theorem that no proof of the consistency of the axioms can be carried out within arithmetic. In 

1936, Gerhard Gentzen proved that Peano Arithmetic (which is the standard) is consistent and 

that the proof can be obtained in a system which is weaker than set theory. The mathematical 

community is undecided about whether these provide a solution to the Problem as stated by 

Hilbert. 

The third Problem is the first one we encounter which has a definite solution. It is one of the 

many Problems from geometry. There was a sort of cut-and-paste proof at the time that the area 

of a triangle with a given height is proportional to the length of the base. The cut-and-paste proof 

consisted of making a copy of the triangle and pasting the copy next to the original in such a way 

that a parallelogram was formed. Although a similar result had been proven in three dimensions, 

the proof required calculus. In this Problem, Hilbert asks for a proof that a cut-and-paste 

argument cannot be used to prove this corresponding result in three-dimensions, and that the use 

of calculus in the proof was therefore necessary. In his lecture, Hilbert states the Problem as 
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asking for “two tetrahedra of equal bases and equal altitudes which can in no way be split up into 

two congruent tetrahedra, and which cannot be combined with congruent tetrahedra to form two 

polyhedra which themselves could be split up into congruent tetrahedra” (Gray, p. 252).  

Hilbert’s student Max Dehn successfully proved the statement within a year. He did so by 

finding a quantity involving side lengths and dihedral angle measures which was invariant under 

such copy-and-paste moves. This Dehn invariant was essential to showing that such an argument 

cannot be used in three-dimensions. 

Hilbert’s sixth Problem is one in which we see his interest in the applications of mathematics, 

particularly in physics. It asks for the axioms of physics to be treated with more mathematical 

rigor. This Problem, though it was not stated specifically enough to decide whether it has been 

resolved or not, was certainly influential in some ways in the work of mathematicians and 

physicists alike throughout the 20th century. Another example of his desire to connect pure 

mathematics to physics is Problem 23, which focuses on developing the calculus of variations. 

An example of this is the question of the curve of quickest descent, which is relevant in physics 

for seeing the path through which light will travel in certain media (depending on whether the 

medium is homogeneous, a variable which is in some sense discrete, or a variable which is 

continuous). In providing Problems such as these, Hilbert successfully gathered much interest in 

a subject in which mathematicians of the time were typically not very interested. 

Hilbert’s seventh Problem is an example of one from the field of algebraic number theory. It 

concerns the transcendence of certain numbers. In particular, Hilbert claims and requests a proof 

that numbers of the form ab, with a an algebraic number and b an irrational algebraic number, is 

always transcendental or at least irrational. The question is also asked in an equivalent form in 

geometric terms, relating properties of an isosceles triangle. In 1934, Aleksandr Gelfond 

provided the proof which Hilbert sought, and the Problem was thus resolved. 

Hilbert’s eighth Problem deals with the distribution of prime numbers and is one of particular 

interest. Among these problems are the Riemann hypothesis, Goldbach’s conjecture, and the 

twin prime conjecture, none of which have been proven to date. Goldbach’s conjecture states that 

every even integer larger than two can be written as the sum of two primes. This has not yet been 

solved, though a close result – that every sufficiently large odd number can be written as the sum 

of three primes – was proved by Ivan Matveyevich Vinogradov in the 1930s. The twin prime 

conjecture states that there are infinitely many twin primes (pairs of primes which are only two 

apart, such as 17 and 19). This has not been proven yet either. The Riemann hypothesis “has 

been the Holy Grail of mathematics for a century and a half” (Borwein, p. 3). Hilbert himself 

once said, “If I were to awaken after having slept for a thousand years, my first question would 

be: Has the Riemann hypothesis been proven?” As it turns out, Hilbert may have been wondering 

about exactly the right question, as this Problem has stumped mathematicians thus far. The claim 

is that the nontrivial zeroes of the Riemann zeta function (a complex function) have real part 

equal to ½. This, too, has a great deal to do with the distribution of primes. For each of these 

three claims about primes there is overwhelming numerical evidence in favor of their truth, 

however none has been proved generally. In particular, Goldbach’s conjecture holds for up to 

4*1018, twin primes have been found as large as ~10388,000, and the Riemann hypothesis has been 
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checked for the first ten trillion zeroes. These problems, among others listed by Hilbert, remain 

open today. 

Hilbert’s twelfth Problem was one that he cared about particularly. It asked for the extension of 

Kronecker’s theorem on Abelian fields to any algebraic realm of rationality. This Problem is 

significant because it is an example of Hilbert’s dream of unifying mathematics. In this Problem 

there are hints of at least the fields of algebra and number theory, and it is evident that Hilbert 

wanted to bring not only these subjects but all of mathematics together to be seen as a coherent 

whole. This Problem is also interesting because much of what Hilbert claimed was actually 

incorrect, which caused confusion among mathematicians in this area for many years. 

The following set of six Problems were not particularly influential in the years to come, 

especially compared to many of the others. Problem 14, however, was the only of the 23 

Problems which dealt directly with Hilbert’s first area of expertise, invariant theory. 

For obvious reasons, every time that one of these Problems was solved, it was a noteworthy 

event in the history of mathematics. The question remains whether those Problems which are still 

open will ever be resolved, and if so, how that might happen. Hilbert did not work on all of these 

Problems himself, and those to which he gave some attention did not receive very much of it. He 

did, however, have the opportunity to watch the mathematical community change before his very 

eyes, in many of the ways about which he had once dreamed, as the great mathematicians went 

to work on these Problems and similar ones. At least seven of his 23 Problems had been at least 

partially resolved by the time of his death. 

 

Hilbert’s Space Theory Marks the End of His Career 

 

After this climax of Hilbert’s career, he made yet another shift in his research. Taking on a fourth 

field, Hilbert discovered what we now call Hilbert space theory. Though named after Hilbert, 

this space theory is due in many ways as much to the work of some of his students – particularly 

Ernst Hellinger, Hermann Weyl, and Alfred Haar - as it is to Hilbert. Other students of his – he 

had 69 in total over the course of his career – worked on some of the Hilbert Problems, but many 

were much more interested in Hilbert space theory, particularly because that was the subject 

which had most of Hilbert’s attention at the time. 

In 1930, Hilbert retired from his position at Göttingen, though he continued to give lectures there 

until 1933. Hilbert received a number of honors towards the end of his life, including his election 

as an honorary member of both the London mathematical society and the German mathematical 

society. In 1942, after falling and breaking his arm, Hilbert’s health began to decline until he 

eventually died in the next year. David Hilbert, the man who unveiled the future of mathematics 

at the start of the twentieth century and promoted optimism and enthusiasm about problem-

solving in mathematics, leaves us with the following words of encouragement, spoken in 1930: 

“We must know, we shall know.”  
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