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Introduction 

The history of the study of complex numbers endured much evolution and controversy 

from some of the most renowned mathematicians of the time. Some great mathematicians, like 

Newton, completely turned down the notion of a complex number, while others were suspicious 

of their existence. In fact, it was only during the 16th century that mathematicians even began to 

study these so-called imaginary numbers [1]. Before then, if a mathematician arrived at an 

answer with the square root of a negative number, he would automatically discard that solution 

[1]. The focus of this paper is on the various developments and interpretations on the square root 

of a negative number put forth by Hieronimo Cardano (1501-1576), Rafael Bombelli (1526-

1572), Gottfried Wilhelm Leibniz (1646-1716), René Descartes (1596-1650), John Wallis (1612-

1703), Caspar Wessel (1745-1818), Robert Argand (1768-1822), Abbé Adrien-Quentin Buée 

(1748-1826), William Rowan Hamilton (1805-1852), and Leonhard Euler (1707-1783). The 

paper will conclude with a brief excerpt about complex function theory and some of the most 

important theorems related to complex numbers, including Euler’s identity, the Cauchy-Riemann 

Equations, and Laplace’s equations. 

The Beginnings 

The first known problem involving complex numbers arose in the 1st century AD when 

the Greek mathematician Heron of Alexandria (10 AD – 70 AD) attempted to calculate the 

volume of a frustum of a pyramid [1]. In one part of his solution he arrived at the quantity 

√81 − 144, but he immediately threw aside this notion of the square root of a negative number. 

Mathematicians from then on followed in his footsteps, and any thoughts about the square root of 

a negative number were tossed aside. In 486 AD we find the Indian mathematician Bhaskara 

Acharya who claimed that the square root of a negative number does not exist since negative 

numbers cannot be a square [1]. The thoughts of Heron and Acharya seemed to be the trend for 

the next eleven centuries, for whenever mathematicians came across the square root of a negative 

number in their answer, like Heron, they disregarded these solutions, for they thought these types 

of solutions were not mathematically possible and thus were meaningless. It was not until the 

16th century that mathematicians started to ponder about what these concepts actually meant. 

Introduction to the Study of Complex Numbers 

In the 16th century we find the first person to think about the meaning of a complex 

number: Cardano (1501-1576). In 1545, he published his Ars Magna, which contains one of the 

most historic achievements in mathematics of the time discovered by Scipio Del Ferro (1465-

1526): the general solution to a cubic equation on the form 𝑥3 + 𝑝𝑥 = 𝑞 [5]. He attempted to 

solve the cubic equation 𝑥3 = 15𝑥 + 4 for 𝑥, for which he found that 𝑥 = √2 + √−121
3

+

√2 − √−121
3

. He, like great mathematicians before him, claimed there was no solution, and he 

asserted a solution of this type was ridiculous, but nonetheless, he was not “afraid” of these types 

of solutions like others previously [4]. Although he thought this type of solution was bizarre, this 

was a historically significant result because it represented the first time that the square root of a 

negative number was written down [4]. Another turning point in the beginning of the study of 

complex numbers was when Cardano solved for 𝑥 and 𝑦 in 𝑥 + 𝑦 = 10 and 𝑥𝑦 = 40 [3], finding 
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that 𝑥 = 5 + √−15 and 𝑦 = 5 − √−15. After multiplying these solutions together, he concluded 

that the result was 40, and he was confused as to how solutions containing the square root of a 

negative number could represent a real number. It was Bombelli (1526-1572) who elaborated on 

this idea and proposed his interpretation of complex numbers [4]. 

Bombelli considered the same cubic equation as Cardano, 𝑥3 = 15𝑥 + 4 [4], and by 

inspection he found that 𝑥 = 4 was a solution [4]. After long division and factoring, he found 

that 𝑥 = −2 + √3 and 𝑥 = −2 − √3 were the other two solutions [4]. Recall that solving this 

cubic using Cardano’s method yields a solution of 𝑥 = √2 + √−121
3

+ √2 − √−121
3

, 

seemingly different than Bombelli’s solutions. The curious type of person would ask themselves 

what happened to Cardano’s solutions, and what is exactly what Bombelli did. He noted that the 

two terms of Cardano’s solution only differed in sign, so he denoted √2 + √−121
3

 as 𝑎 + √−𝑏 

and √2 − √−121
3

 as 𝑎 − √−𝑏 [4], and after much manipulation of these two expressions, he 

eventually concluded that the sum of the two is 4. With this Bombelli had given his 

interpretation that the two complex numbers Cardano arrived at were in fact real, but they were 

denoted in an unfamiliar notion.  

This discovery revolutionized the mathematical world, for he had interpreted what a 

complex number meant, therefore creating the study of complex numbers. Bombelli published 

his results in L’Algebra, which contained all his notions about complex numbers [4]. Some 

mathematicians developed on Bombelli’s ideas, yet some were skeptical of this radical idea and 

thus were not satisfied with his arguments. The movement to dig deeper into the meaning of 

complex numbers did not end here, though. In fact, Bombelli’s discovery was only the beginning 

of a new branch of mathematics. 

A Geometrical Interpretation 

About 100 years later, many mathematicians accepted Bombelli’s contributions, but the 

great Leibniz still was not convinced. Leibniz (1646-1716) was not satisfied with Bombelli’s 

treatment of Cardano’s formula, and Leibniz did not comprehend how adding two complex 

numbers would yield a real number [4]. 

In the 17th century we find that mathematicians were not satisfied with just a general 

meaning of complex numbers. Mathematicians were baffled at what the geometric interpretation 

could be, and many played their hand at deducing such an interpretation. Descartes (1596-1650) 

was the first mathematician to try to find a geometric interpretation for imaginary numbers, but 

after much analysis, he concluded that imaginary numbers could not be associated with a 

geometric construction [4].  

The next person to attempt to construct a geometric interpretation of imaginary numbers 

was Wallis (1612-1703) [4]. The key word here is attempt – Wallis was able to deduce an 

argument of some sort, but his argument was not quite convincing enough for the 

mathematicians of the time, and he had nothing revolutionary to say about √−1. He composed a 
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complicated geometrical argument, which concluded with his construction of a diagram of this 

sort below and claiming that 𝐴′𝑃 = √(𝐵𝐴′)(𝐴′𝐷) [4]. 

 

Wallis’ construction 

His argument that he had come up with some sort of interpretation for √−1 was based on 

his thought that 𝐵𝐴′ was a negative distance while 𝐴′𝐷 was positive. He believed that because a 

negative number can be thought of as starting at 0 on a number line and moving left, then 𝐵𝐴′ 

was a negative distance [4]. He therefore concluded that (𝐵𝐴′)(𝐴′𝐷) was negative and thus 𝐴′𝑃 

represented the square root of a negative number. 

Once we enter into the 18th century, we find that people could not wrap their heads 

around a geometrical, or more generally, a logical, explanation of complex numbers. The notion 

of complex numbers even seemed to break all rational explanations of mathematics. For 𝑎, 𝑏 

negative integers, is √𝑎𝑏 = √𝑎√𝑏? Well, with complex numbers, an example of where this is 

not true is 70 = √(−100)(−49) = √−100√−49 = (10𝑖)(7𝑖) = (70)(−1) = −70. The search 

for a geometric interpretation of √−1 was not over, though, despite the seemingly illogical 

nature of √−1. We find that Wessel (1745-1818), ironically not even a mathematician, but rather 

a surveyor, was able to crack the mystery behind √−1. 

Wessel presented his paper (1797) that simplified the geometric interpretations of 

complex numbers that Wallis originally suggested [4]. He considered the standard notion of the 

real number line, where starting at 0, moving to the right suggests the numbers are getting larger, 

and moving to the left suggests the numbers are getting smaller, thus becoming negative. He 

built upon this, creating a vertical “imaginary” axis perpendicular to the horizontal “real” axis, 

therefore creating the complex plane. A complex number 𝑎 + 𝑏𝑖 represented moving 𝑎 units 

right (if 𝑎 is positive) or |𝑎| units left (if 𝑎 is negative) and 𝑏 units up (if 𝑏 is positive) or |𝑏| 

units down (if 𝑏 is negative), and Wessel denoted this notation the rectangular, or Cartesian, 

form [4]. He built upon this idea, later creating the polar form, which is as follows. He would 

denote 𝑎 + 𝑏𝑖 as a vector, and he let 𝜃 represent the angle formed from the positive part of the 
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horizontal axis to the vector (a counterclockwise motion). Using the Pythagorean Theorem and a 

basic knowledge of trigonometry, he concluded that 𝑎 + 𝑏𝑖 = √𝑎2 + 𝑏2 (cos(𝜃) + 𝑖 sin (𝜃)), 

writing that √𝑎2 + 𝑏2 is the modulus of the complex number +𝑏𝑖 and 𝜃 is the argument of the 

complex number [4]. 

 

Wessel’s construction: the complex plane 

Wessel was historically significant because he was the first to explicitly denote that the 

imaginary axis is perpendicular to the real axis, even though some mathematicians such as Henri 

Dominique Truel and Karl Friedrich Gauss (1777-1855) proposed the idea before but never 

published their results [4]. (Gauss was monumental in the sense that he was the first person to 

use the phrase complex number [2].) Another monumental discovery which stems from Wessel’s 

definition of the complex plane was that 𝑖 represents the vector with no movement on the real 

axis and 1 unit up on the imaginary axis [4], to which the reader can see that this represents a 90 

degree rotation counterclockwise. More generally, if we multiply an arbitrary vector 𝑎 + 𝑏𝑖 by 𝑖, 

we find that the product (𝑎 + 𝑏𝑖)𝑖 = 𝑎𝑖 + 𝑏𝑖2 = 𝑖𝑎 − 𝑏 = −𝑏 + 𝑎𝑖. Essentially, √−1 can be 

thought of as a rotation operator by 90 degrees [4]. 

Even though Wessel introduced and published quite a few revolutionary arguments, 

many mathematicians were still not convinced of his discoveries. However, the two 

mathematicians Argand (1768-1822) and Buée (1748-1826) rediscovered and supported his ideas 

[4]. Argand’s approach (1806) is quite similar to Wessel’s argument and will not be repeated 

here [2]. In fact, Argand is quite often mistakenly credited as the first person to offer the 

geometric approach that Wessel made because his ideas did not receive as much fame as 

Argand’s. Buée’s argument, however, is different from Wessel’s but still results in his same 

conclusions. 

Buée’s original goal was to answer the questions posed in Lazare Carnot’s (1753-1823) 

publication Géométrie de Position (1803) [4]. Carnot considered the division of a line segment 

of length 𝑎 into two segments such that when the two lengths are multiplied together, the product 
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is equal to 
1

2
 the original side squared. He attempted to solve the equation 𝑥(𝑎 − 𝑥) =

1

2
𝑎2 for 𝑥, 

of which the answer is found to be 𝑥 =
1

2
𝑎 ± (𝑖)(

1

2
𝑎). Like any mathematician before Cardano, 

Carnot was puzzled by the √−1 in his answer and thus assumed his initial condition was not 

possible. Buée, however, challenged this and offered a response. He claimed that the imaginary 

part of the answer, 
1

2
𝑎, represents that the point, which would divide 𝑎 into two segments 

according to the original condition, is located 
1

2
𝑎 units away perpendicular to the line segment. 

He did not justify his claim, though, making him lose credibility in the eyes of some 

mathematicians of the time. 

Looking back at the 17th and 18th centuries, it is clear that Wessel was the winner in terms 

of a geometrical argument that many mathematicians seemed to be fond of. Because of Wessel, 

mathematicians were able to find the geometrical approach they were longing for. As we enter 

the 19th century, we find some mathematicians dissatisfied with the approaches put forth, and 

some looking to further expand upon the theory of complex numbers. 

An Algebraic Approach 

 As we enter the 19th century, we find Hamilton (1805-1852) unhappy with the geometric 

interpretation of √−1; in fact, he did not even think √−1 should have a geometric interpretation, 

for he believed there should only be an algebraic interpretation [4]. In his publication Theory of 

Conjugate Functions or Algebraic Couples: with a Preliminary Essay on Algebra as a Science of 

Pure Time (1835), he considered what he called an ordered pair (couple) of real numbers (𝑎, 𝑏) 

[4]. We can see that Hamilton based this notation off of Wessel’s notation of 𝑎 + 𝑏𝑖. Hamilton 

defined addition as (𝑎, 𝑏) + (𝑐, 𝑑) = (𝑎 + 𝑐, 𝑏 + 𝑑) and multiplication as (𝑎, 𝑏)(𝑐, 𝑑) = (𝑎𝑐 −

𝑏𝑑, 𝑏𝑐 + 𝑎𝑑) [4]. 

Start of the Theory of Complex Functions and Some Monumental Theorems 

 In the 19th century it seemed as though that mathematicians had learned the basics of 

complex numbers. Eventually, they began to consider functions of complex variables. Denoting 

𝑧 = 𝑥 + 𝑦𝑖 as our complex variable, they denoted the complex function to be 𝑓(𝑧) = 𝑓(𝑥 + 𝑦𝑖). 

Another way to write this is 𝑓(𝑧) = 𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦), which will come back into play in the 

“Cauchy-Riemann Equations and Lagrange’s Equations” section. 

Euler and Euler’s Identity  

 Although Wessel is generally credited with many monumental contributions to √−1, 

Euler (1707-1783) knew the notions behind these contributions before Wessel [4]. In 1748, when 

Wessel was just three years old, Euler published the identity 𝑒±𝑖𝑥 = cos(𝑥) ± 𝑖 sin (𝑥). 

Substituting in 𝑥 = −
𝜋

2
 in for 𝑒±𝑖𝑥 = cos(𝑥) ± 𝑖 sin (𝑥), we arrive at 𝑒−

𝜋

2 = 𝑖𝑖. What we have 

just shown is that an imaginary number raised to an imaginary number is a real number, what 

mathematicians including Argand once thought was not possible [4]. Additionally, substituting 

in 𝑥 = 𝜋, we arrive at Euler’s identity: 𝑒𝑖𝜋 + 1 = 0. Some call this the most beautiful theorem in 
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all of mathematics, as it so elegantly combines five of the most fascinating numbers [4]. 

Furthermore, not only is it such a beautiful theorem, it holds many practical applications in 

differential equations and engineering. 

Cauchy-Riemann Equations and Lagrange’s Equations 

 The works of Augustin-Louis Cauchy (1789-1857) and Bernhard Riemann (1826-1866) 

paved their way for the start of the theory of complex functions [2]. Let us revisit 𝑓(𝑧) =

𝑢(𝑥, 𝑦) + 𝑖𝑣(𝑥, 𝑦). In order to study the theory of complex functions, one must be able to 

understand how to find 𝑓′(𝑧). The Cauchy-Riemann Equations so elegantly define 
𝜕𝑢

𝜕𝑥
 and 

𝜕𝑢

𝜕𝑦
 as 

𝜕𝑢

𝜕𝑥
=

𝜕𝑣

𝜕𝑦
 and 

𝜕𝑢

𝜕𝑦
= −

𝜕𝑣

𝜕𝑥
 [4]. These equations form the basis for complex function theory [2], and 

taking the derivative of each of the equations yields 
𝜕2𝑢

𝜕𝑦𝜕𝑥
=

𝜕2𝑣

𝜕𝑦2
, 

𝜕2𝑣

𝜕𝑦𝜕𝑥
= −

𝜕2𝑢

𝜕𝑦2
, 

𝜕2𝑢

𝜕𝑥2
=

𝜕2𝑣

𝜕𝑥𝜕𝑦
, and  

𝜕2𝑣

𝜕𝑥2 = −
𝜕2𝑢

𝜕𝑥𝜕𝑦
.  

By combining 
𝜕2𝑢

𝜕𝑦𝜕𝑥
=

𝜕2𝑣

𝜕𝑦2 and 
𝜕2𝑣

𝜕𝑥2 = −
𝜕2𝑢

𝜕𝑥𝜕𝑦
, one gets 

𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣

𝜕𝑦2 = 0, and by combining 

𝜕2𝑣

𝜕𝑦𝜕𝑥
= −

𝜕2𝑢

𝜕𝑦2 and 
𝜕2𝑢

𝜕𝑥2 =
𝜕2𝑣

𝜕𝑥𝜕𝑦
, one gets 

𝜕2𝑢

𝜕𝑥2 +
𝜕2𝑢

𝜕𝑦2 = 0. These two equations are known as 

Laplace’s equations [4], which have immense applications in engineering. 

Conclusion 

 The study of the developments and interpretations of complex numbers has had quite an 

arduous history. From considering what the square root of a negative number even is to delving 

into the theory of complex functions, there is so much to learn if trying to have a comprehensive 

understanding on all these topics, and we have Bombelli, Wessel, Hamilton, Euler, and more to 

thank for their revolutionary contributions to this field. 
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