
Rutgers, the State University of New Jersey
Math 436 Final Paper

Huffman Coding

Suiliang Ma

Abstract

Huffman coding is an algorithm developed by David A.Huffman
while he was a PHD student at MIT. The core idea of Huffman coding
is to encode the variables with variable-length code with respect to the
probabilities of variables instead of fixed-length code for each of the
varaible. While analyzing the advantages of Huffman Coding, this
paper also explains the algorithm of Huffman Coding and shows how
one can use Huffman Coding to encode and decode the information.
At last, this paper discusses the limitations of Huffman Coding.

1 An Introduction of Huffman Coding

and Its Influences

Huffman Coding is an algorithm developed by David A.Huffman
while he was a PHD student at MIT. In his paper ”A Method for
the Construction of Minimum-Redundancy Codes,” Huffman clearly
described the idea of his algorithm, which is what we call Huffman
coding today [1]. Huffman Coding is a fundamental and important
algorithm in data compression, the subject of which is to reduce the
total number of bits demanded to represent information. Huffman
Coding even plays an important role in doing the compression in audio
and image files [2].

The central idea of Huffman coding is to encode each variable using
a variable-length code according to the frequency of each variable.
Section 2 explains this idea in detail.

2 Fixed-length Code VS Variable-length

Code

2.1 Fixed-length Code

Normally, if one wanted to encode an essay written in English with
binary string, he would need to do this following steps:

1



• Find out how many distinct letters occurred within the essay.
Since it is an essay written in English and there are 26 letters in
the English alphabet, this man found out 26 distinct letters.

• Find out the number of bits he needed to encode 26 letters. Since
24 ≤ 26 ≤ 25, he needed 5 bits to uniquely represent each of the
26 letters.

• Assign each of the letters with a unique binary string that con-
tains 5 bits.

The entire procedure is called a fixed-length code approach as
each letter is uniquely assigned with a fixed length of code represent-
ing it. Suppose that he found out that the total number of letters
contained within the essay was 3000, he would generate an encode
string containing 15000 bits overall as he would use 5 bit to encode a
single letter. Is that a possible way to reduce the average number of
bits needed to encode this essay in order to reduce the total number
of bits needed?

Huffman believes that it is possible to do and he proposes his
algorithm centered by the idea of variable-length code.

2.2 Variable-length Code

The question that one could come up with respect to fixed-length
code approach describd above would be: is that necessary to encode
all the letters with the same length of bits?

Huffman believes that it is not necessary to do so. He argues that
if the propability of a letter is extremely high, then it could be encoded
using fewer bits in order to reduce the total number of bits needed to
represent the information. He further articulates that the higher the
probability of a letter is, the fewer the bits are needed to encode it [1].

Two questions can be raised based on Huffman’s argument. One
would be that since the letters will be encoded using different length
of bit strings, how could one encode all the information needed and
how could one decode the encoded string and receive the correct infor-
mation. The other question would be that why Huffman’s argument
reduces the total number of bits needed to represent the information.
These two questions will be carefully examined and answered within
the coming two sections.

2



3 The Encoding and Decoding of In-

formation Using Huffman Coding

3.1 Encoding of Information Using Huffman
Coding

The encoding of information using Huffman Coding involves two
steps. The first step is to build a binary tree called Huffman Tree.
The second step is to obtain the encoding of information with the
help of Huffman Tree. To simplify, the ”information” described above
means the English alphbet contained within a given document.

3.1.1 Binary Tree and BuildTree Procedure

We give the recursive definition of a binary tree here:
A binary tree is either empty or consists of a node called root that

has a left subtree and right subtree, which are both binary trees with
no nodes overlapped [3].

From the definition, we know that a binary tree is uniquely repre-
sented by its root. The nodes of a Huffman Tree can be partitioned
into two categories: one consists of nodes such that every node has a
unique English letter and its probability; the other consists of nodes
such that every node only has a number representing the probability.

We define a procedure called BuildTree that takes two binary trees
T1 and T2 and builds a new binary tree whose root is the par-
ent of T1 and T2. The algorithm of BuildTree is described below:

We can see that the probability contained in the root of T – the
newly built binary tree – is the sum of the probabilities of the root of
T1 and root of T2.

3



3.1.2 Priority Queue

In order to build a Huffman Tree, a priority queue is needed here.
As the name suggests, a priority queue is a queue with priority. All
the items contained in a priority queue are arranged with respect to
certain priority. A priority supports the following operations:

• enqueue(T): this is an operation such that it inserts item T into
the priority queue. Notice that there might be changes within
the ordering of all the items after inserting T, but this will be
done in this operation.

• dequeue(): this is an operation such that it deletes an item that
is placed at the front of the priority queue. After this operation,
the total size of the priority queue will decrease by one.

3.1.3 Building Huffman Tree

Now we are ready to decribe the algorithm of building Huffman
Tree. We provide a procedure called Huffman Tree that takes a list
of English alphabet contained within a given document and an empty
priority queue and returns a HuffmanTree that has root T. The prior-
ity queue is designed such that the lower the probability of a node is,
the higher priority this node will be. The procedure is given below:

4



3.1.4 Obtain the Encoding String Based on Huffman
Tree

Now we can obtain the encoding string with the help of Huffman
Tree. With a careful examination of the Huffman Tree, we can see
that all the leaf nodes – the nodes that do not have children – contain
English alphabet. Therefore, we can determine the encoding string
of a letter by searching the node containing such letter. We do this
search by starting at the root, which is actually a root with probability
1, appending a 1 to the end of the string if we go to the right subtree,
appending a 0 to the end of the string if we go to the left subtree.
By doing this, we eventually stop at the node containing the letter we
want to encode. Below is an example of such encoding:

suppose that there are four distinct letters within a given docu-
ment, namely A, B, C and D. We know that the probability of A
occurring within the document is 0.1, the probability of B is 0.2, the
probability of C is 0.3 while the probability of D is 0.4. According to
the HuffmanTree procedure defined in the section 3.1.3, we can obtain

the Huffman Tree that looks like this:
As we can see, the encoding strings for A, B, C, D are 100,101,11

and 0, respectively. Then, we can append these encoding strings to-
gether to generate the output string that encodes all the letters in the
order that they appear. If the document is written as ABBCDCD-
CDD, then the output string will be 1001011011101101100.

3.2 Decoding of Information Using Huffman
Coding

Compared with the encoding part, decoding part is much more
direct and straightforward. We will need the Huffman Tree that gen-
erates the output string and the output string generated by the exact
Huffman Tree as the inputs of this decoding procedure. Let’s take the

5



exact Huffman Tree generated in section 3.1.4, and the output string
1001011011101101100 as an example to show the decoding procedure.
For the purpose of simplification and precision, we will name the out-
put string 1001011011101101100 as s, the Huffman Tree as T. Then
we start the algorithm by traversing s. When seeing an 0, we go one
step left in T; we go one step right in T if seeing a 1. We stop and
take out the letter if we reach the leaf nodes. Then we will keep doing
this until we finish traversing s. In this specific example, we will reach
out to the leaf nodes 10 times and generate ABBCDCDCDD, which
is the encoded message.

4 Analysis of Huffman Coding

One might ask that why should we choose Huffman Coding than
the regular fix-length encoding procedure. The short answer for this
question is that Huffman Coding reduces the total number of bits that
is required to represent the information. To see this, let’s again refer
to the example provided in the section 3.1.4.

Now, suppose we use the regular fix-length encoding procedure.
Since there are four distinct letters overall, we will need 2 bits to
encode these four letters. So, the average number of bits needed for
each letter is 2.

Now, assume that we use Huffman Coding to encode the letters.
We know that the encoding strings for A, B, C and D are 100,101,11
and 0, respectively. Suppose we have a total number of n letters to
encode, then there are 0.1n A’s, 0.2n B’s, 0.3n C’s, 0.4n D’s. So, the
average number of bits needed for each letter is given by

0.1n× 3 + 0.2n× 3 + 0.3n× 2 + 0.4n× 1

n

The value of this expression is 1.9, which is less than 2.
Let’s consider another example here. Suppose there are four dis-

tinct letters to encode, namely A, B,C and D. The probabilities of A,
B, C and D that appear within a given document are 0.05, 0.05, 0.1
and 0.8, respectively. We run the entire Huffman Coding algorithm
and we will get that the encoding strings for A,B,C and D are 000,
001,01 and 1, respectively. Suppose that this document has a total
number of n letters, then we can see that the average number of bits
needed for each letter is given by

0.05n× 3 + 0.05n× 3 + 0.1n× 2 + 0.8n× 1

n

The value of this expression is 1.3, which is less than 1.9 in the previous
example.

6



To sum up, we can see that though the algorithm will assign more
number of bits than that in fixed-length approach to some of the
letters, the algorithm assigns less number of bits to the letters that
appear much more frequently, in the hope that this will reduce the
average number of bits required to represent the information.

Does Huffman Coding always guarantee a reduction of the average
number of bits needed to represent the information? Unfortunately,
the answer is no.

5 Limitations of Huffman Coding

What if all the letters share the same probability? This is a great
question.

Suppose that there are m distinct letters and the total number of
letters contained in the given document is n. Clearly, the probability
of each letter is 1

m . Since all these m distinct letters will eventually
locate at the leaf nodes of the Huffman Tree, and given the situation
that they share the same probability, we can see that this Huffman
Tree has height m−1 as there is exact one leaf node every level except
for the last level, where they are two leave nodes. Therefore, we can
obtain the average number of bits needed to encode this document by
computing this expression:

1

m
× ((

m∑
i=1

i)− 1) =
m2 + m− 2

2m

While if we use the fix-length code procedure, the average number
of bits needed is

dlog2me

Let’s define functions f(m) and g(m) such that

f(m) =
m2 + m− 2

2m

g(m) = dlog2me

We can see that f(4) = 2.25 , g(4) = 2. Moreover, if we want
to encode the entire English alphabet, we can see that f(26) = 13.46
while g(26) = 5.

This means that if m is sufficently large, then we will increase the
number of bits needed to encode the information! Therefore, Huffman
Coding does not work very well when all the letters sharing the same
probability. The situation could be worse if with the increase of the
distinct number of letters.

7



6 Conclusion

We can see that Huffman Coding actually depends on the occur-
rences of the information. Given an English document as the input,
Huffman Coding algorithm would fail to achieve the reduction of av-
erage number of bits needed to encode this document if the frequency
of each letter appeared in the document is idential.

The examples given in the paper shows that the larger the standard
deviation(SD) of the probabilities of the alphabet is, the better that
Huffman Coding algorithm will be in terms of reducing the average
number of bits needed to encode the document. However, it needs
more careful examinations to determine whether this argument is truly
held or not.

References

[1] D.A.Huffman, ”A Method for the Construction of Minimum-
Redundancy Codes,” in Proceedings of the IRE, Volume 40, Issue
9, pp 1098-1101, September,1952.

[2] K.Rosen, ”Discrete Mathematics and Its Applications,” Seventh
Edition, McGraw Hill Higher Education, 2012.

[3] S.Venugopal, ”Data Structures Outside-In with Java,” First Edi-
tion, Prentice-Hall Inc, 2006

8


