Solutions to the Attendance Quiz \# 3 for Dr. Z.'s MathHistory for Lecture 3

1. Use Dr. Z.'s method to conjecture an explicit formula for

$$
\sum_{i=1}^{n} \frac{i(i-1)}{2}
$$

Prove it
(a) The 'usual' (boring way)
(b) the fun, Dr. Z. way.

Sol. 1: The first step is to come up with an expression. Since the summand is of degree 2 , the quantity, let's call it $A(n)$,

$$
A(n)=\sum_{i=1}^{n} \frac{i(i-1)}{2}
$$

is some polynomial of degree 3 . So we write down a template

$$
A(n)=a n^{3}+b n^{2}+c n+d
$$

where a, b, c, d are to be determined.
First, let's collect data.

$$
\begin{array}{cl}
A(0)=0 \quad, \quad A(1)=(1)(0) / 2=0 \quad, \quad A(2)=(1)(0) / 2+(2)(1) / 2=0+1=1, \\
& A(3)=(1)(0) / 2+(2)(1) / 2+(3)(2) / 2=0+1+3=4 .
\end{array}
$$

On the other hand

$$
\begin{gathered}
A(0)=a \cdot 0^{3}+b \cdot 0^{2}+c \cdot 0+d=d \\
A(1)=a \cdot 1^{3}+b \cdot 1^{2}+c \cdot 1+d=a+b+c+d \\
A(2)=a \cdot 2^{3}+b \cdot 2^{2}+c \cdot 2+d=8 a+4 b+2 c+d \\
A(3)=a \cdot 3^{3}+b \cdot 3^{2}+c \cdot 3+d=27 a+9 b+3 c+d
\end{gathered}
$$

Equating we get a system

$$
d=0 \quad, \quad a+b+c+d=0 \quad, \quad 8 a+4 b+2 c+d=0 \quad, \quad 27 a+9 b+3 c+d=0
$$

We get right away that $d=0$, so we have to solve

$$
a+b+c=0 \quad, \quad 8 a+4 b+2 c=0 \quad, \quad 27 a+9 b+3 c=0
$$

This is a bit tedious, but when you do it, you get

$$
a=\frac{1}{6} \quad, \quad b=0 \quad, \quad c=-\frac{1}{6} \quad, \quad d=0
$$

This gives

$$
A(n)=\frac{1}{6} n^{3}+0 \cdot n^{2}-\frac{1}{6} n+0=\frac{(n+1) n(n-1)}{6} .
$$

This ends the first part.
Second Part: Proving.
Dr. Z.'s way

$$
\begin{gathered}
n=0 \quad: \quad \text { EmptySum }=0=\frac{(0+1) 0(0-1)}{6} \quad(\text { yea! }) \\
n=1 \quad: \quad(0)(1) / 2=\frac{(1+1) 1(1-1)}{6} \quad(\text { yea! }) \\
n=2 \quad: \quad(0)(1) / 2+(1)(2) / 2=\frac{(2+1) 2(2-1)}{6} \quad(\text { yea! }) \\
n=3 \quad: \quad(0)(1) / 2+(1)(2) / 2+(2)(3) / 2=\frac{(3+1) 3(3-1)}{6} \quad(\text { yea! })
\end{gathered}
$$

QED (since both sides are polynomials of degree three and they argee at four different values).

Official(Boring Way)

We have to prove, for every non-negative integer n, that

$$
\sum_{i=1}^{n} \frac{i(i-1)}{2}=\frac{(n-1) n(n+1)}{6}
$$

Base case $n=0: 0=0$. OK.
Inductive Hypothesis (replace n by $n-1$)

$$
\sum_{i=1}^{n-1} \frac{i(i-1)}{2}=\frac{(n-2)(n-1) n}{6}
$$

By the definition of summation (pulling out the last term):

$$
\sum_{i=1}^{n} \frac{i(i-1)}{2}=\left(\sum_{i=1}^{n-1} \frac{i(i-1)}{2}\right)+\frac{n(n-1)}{2}
$$

By the inductive hypothesis this equals

$$
\frac{(n-2)(n-1) n}{6}+\frac{n(n-1)}{2} .
$$

Simplifying this equals

$$
\frac{(n-1) n}{6}((n-2)+3)=\frac{(n-1) n}{6}(n+1)=\frac{(n-1) n(n+1)}{6}
$$

QED.
Yet another (semi-boring proof) (suggested by one student)

$$
\sum_{i=1}^{n} \frac{i(i-1)}{2}=\sum_{i=1}^{n}\left(\frac{1}{2} i^{2}-\frac{1}{2} i\right)=\frac{1}{2} \sum_{i=1}^{n} i^{2}-\frac{1}{2} \sum_{i=1}^{n} i
$$

We mentioned, and proved, in class, the famous identities

$$
\begin{gathered}
\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}, \\
\sum_{i=1}^{n} i=\frac{n(n+1)}{2}
\end{gathered}
$$

So going back, we have

$$
\begin{aligned}
\begin{aligned}
\sum_{i=1}^{n} \frac{i(i-1)}{2} & =\frac{1}{2} \sum_{i=1}^{n} i^{2}-\frac{1}{2} \sum_{i=1}^{n} i=\frac{1}{2} \frac{n(n+1)(2 n+1)}{6}-\frac{1}{2} \frac{n(n+1)}{2} \\
& =\frac{n(n+1)}{12}((2 n+1)-3)=\frac{n(n+1)}{12}(2 n-2) \\
& =\frac{n(n+1)}{12} \cdot 2 \cdot(n-1)=\frac{(n-1) n(n+1)}{6}
\end{aligned} .
\end{aligned}
$$

QED.
Comment: This problem is very long, and I did not allow enough time. Congratulations to (quite a few!) people who did it completely.

