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Rota’s Umbral Calculus is put in the context of general Fourier analysis.
Also, some shortcuts in the proofs are illustrated and a new characterization of
sequences of binomial type is given. Finally it is shown that there are few
(classical) orthogonal polynomials of binomial type.

PREREQUISITE

G.—C. Rota and co-workers’ excellent papers, [A], [B], [C], are assumed. The
present paper is simply a collection of footnotes, and certainly it makes little
sense to read a footnote without reading the footnotee first.

1. THE CONNECTION WITH CONTINUOUS FOURIER ANALYSIS

Every shift invariant Operator on C°°(R) is a convolution operator, that is, the
Fourier transform of a multiplication by a function (see, for example, Ehrenpreis
[3, p. 141]). The inverse Fourier transforms of polynomials are the distributions
supported at the origin (Donoghue [2, p. 103]). Thus every shift invariant
operator Q: P —› Р is Of the form p(z) —› [¢(t) p"(t)]". Since (l/i) D corresponds
to multiplication by t, it is possible to write Q = 95(D) which is a special case of
the expansion theorem. By E. Borel’s theorem (Narashiman [4]) every formal
power series is the Taylor series of some C°° function. Conversely every С°°
function gives a formal power series. Thus if 45(0) = 0 we can expand any other
C°° function фи), formally, in terms of ф: W) = z ата). Thus $ = z а„$п,
which gives the general expansion theorem.

2. SOME SHORTCUTS MADE POSSIBLE BY USING UMBRAL OPERATORS
FROM THE BEGINNING

To every sequence {pn(x)} for which deg 1),,(x) = n there is a linear Operator
9: Р —› Р defined by 9(x") : р„(х)‚ n e N.
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DEFINITION. 9 is the basic operator for Q if {р„(х)} is the sequence of basic
polynomials for Q. In this case we call 9 umbral.

In terms of this definition, the definition in [13, p. 688] reads

(1) W”) = x“)
(2) 9’06") (0) = 0, и > 0,
(3) 99 = 90, і.е.‚ Q = 91394.

Thus, the operator 9 is umbral if and only if 909—1 is a delta operator and
(1), (2) are satisfied and then 9 is a basic operator with respect to 91394.
Similarly, it is possible to modify the definition in [B, p. 698] for Sheffer poly-
nomials.

DEFINITION. .5” is a Sheffer operator for the delta operator Q if

(1) Уа) : С ;& 0,
(2) 91394 = Q.

To illustrate the shortcuts made possible by these definitions, a short proof
of Proposition 1 іп [В, p. 703] will be given. In the present notation this proposi-
tion reads as follows.

PROPOSITION 1. Let 9 be an operator P —>P with 9(1) = 1, and let A be a
delta operator. 9 is a Shefler operator if and only if there exists a sequence {зп} such
that

9'1А9(х”)= z (Z) sn_kxk.
k>0

First we need

LEMMA 1. В is shift invariant if and only if there exists a sequence {Sn} such that

вт) = Z (Z) s,,_,cx7°.
k>0

Proof.

B(xn) = 2 (ink—kl")! 3n_kxk = 20151—2)! В”"°(х") : (Z ak) (де”)

The lemma follows from the expansion theorem.

LEMMA 2. Let A be a delta operator. B is shift invariant if and only if BA =
AB.
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Proof. By the expansion theorem.
Proposition 1 can now be rephrased.

PROPOSITION 1’. Let A be a delta operator. 91': a Shefi’er operator ifand only if
9—124? is shift invariant.

Proof. фраг—1 is shift invariant all-9mm“) (WD9—1)A = AQWDW—l) =
09-1149 = 94/1913 = Е(9-1А9) = (94/19) D ©(Ьетша2) 94/1? is shift
invariant.

Since (9094) (1) = 0, (91.394) (x) = c ;& 0, the proposition follows.

3. UMBRAL CALCULUS AS FOURIER ANALYSIS ON N

The association of a sequence {an} with the linear functional T: 9 —›С defined
by T(z") = an , is no more and no less the Fourier transform in the function
space.9'(N) = и;]: N—> С}. .9‘(N) is the dual of %(АГ) = {f2 N—> C; sup-
port f is finite}. 975(N) = {20 а„2”, for some n} = Р where we put 2 = e—W’.
Thus it is only natural to define 53 = if, = (.950)’ = Р’, as is done in continuous
theory (Ehrenpreis [3, p. 8]). For f E 9' one has f(z") = f(3,,) = f(8”) = f(n),
where 8„(п) = 1; 8„(/е) = 0, k 7$ n.

4. THE UMBRAL ALGEBRA AND DELTA FUNCTIONALS

4.1. The product of linear functionals [C, pp. 101—103] LM(p(x)) =
Lv(p(x + y)) is the unique product for which За…, = ЗЮЗ„ .

4.2. Setting Уфе") = р„(эс), the property of {pn(x)} being of binomial
type (and 9 an umbral operator), can be expressed бан,? = (ЭД) (ЭД),
where бти = и(х), for every real x and y. Setting @(x) = ЭД, we have a mapping
R —› C[z]’ satisfying 9(x + y) = ?(х) 901) and thus there must be an
L6 C[z]’, the infinitesimal generator, such that 90c) = exp(xL). Since 9’ is
umbral, so is 9'1 (Proposition 1' with A = D) and therefore there exists an L
such that ад!-1 = ехр xL, which is Theorem 2(b) in [C, p. 106]. Conversely
exp xL satisfies exp(x + y)L = (exp xL) (exp yL), which implies that ‚@ given
by 8569 = exp xL is umbral which implies that 9-1 is umbral, which implies
Theorem 2(a) in [C].

4.3. Note that if р„(х) = 9(x”), the conjugate sequence qn(x) is given
by qn(x) = W‘Kx”). This proves Theorem 4 in [C, p. 111].
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5. SOMETIMES THE MERE NOTION ог А LINEAR FUNCTIONAL CAN Go A LONG WAY

All the properties of Laguerre polynomials can be Obtained by merely using
the notion Of linear functionals. It is not necessary that they be a basic sequence
to some delta operator. Our approach is to forget that {Ln(x)} are polynomials,
fix x = хо ‚ and consider the numerical sequence {Ln(aco)};'f=o . Recall that

L.<x)= 2 ‹—1›'°(2)—2. ‚ (5-1)
and define ТКП” e C[2]’, ТК;”) = х"/і‹!;Ь°°(2’°) = Lk(x) and extend by linearity.
By (1.5) we have

Lw(z">= 202‹—1)'°()Тт‹з*›=тт(2о‹—1)7°(22) )=Tw«1—z)").
Since (2") is a basis for C[2] we have

L”(u(2)) = Т““(и(1 —— 2)). (5.2)
Also,

T“(u(z)) = T‘(u(az))- (53)
Thus

Tm(u(2)) = L“(u(1 — 2)). (5.4)

Putting 14(2) = 2" in (5.4) yields the inverse formula

—=2‹—1›'°(2.)Ь„‹х›
We also have

L“”(u(2)) = T“(u(l — 2)) = Т°’(и(1 — a2)) = L“(u(l — а(1 — z)))
=L”(u((l — а) + (12)).

Thus
L“(u(2)) = L“(u(l — (1 + a2)). (5.5)

Putting u(z) = 2" yields Erdelyi’s duplication formula [C, p. 137].

6. А NEW CRITERION FOR POLYNOMIAL SEQUENCEs 0F BINOMIAL TYPE

As already mentioned in Section 3, every function f : N —› С has a Fourier
transform f: C[2]—>C defined by f(2") =f(k) (Rota’s umbra). Assume f:
N —> C is a solution of the difference equation with constant coeflicients

Ё cafe; + a) E 0; (6.1)
«=0
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then 0 = 22:0 Cam + a) = 21:0 Cafe“) =f<<23’ Gaza) z"), for every „,
and setting P(z) = 2:, Caz”, we have f(P(z) 14(2)) = 0, Vu E C[z]. Thus f is a
solution of 2:0 Caf(n + ос) = 0 if and only iff annihilates the ideal P(z) Щи].
Introducing the shift operator Xf(n) = f(n + 1), one can write (6.1) as

(% ежа) f E о.
а=0

/\
Note that Xf = zf, where for T e C[z]’, zT(u) = T(zu). (For discrete

functions of several variables and partial difierence equations, see Zeilberger [5].)
To consider difference equations with polynomial coefficients we simply note

that
^ d dили”) =f(nz") =f((z a) <…) = (z для"),

for every n; so the Fourier transform of multiplication by n, ii, is equal to

d d d ‚271? where (ид—ЗТ) (и) = T(zEu), Te Ця] ‚ ueC[z].

Thus iff : N —› С is a solution of P(x) f = (20:0 Ca(n) X“)f = 0, where the Cat’s
^

are polynomials, the Fourier transform of P(x), P(x), is a differential operator
with polynomial coefficients and f annihilates P(x) C[z].

THEOREM. Let {Р„(эс)} be a sequence of polynomials and let f“(n) = Р„(х)‚
n E N. {Р„(х)} is of binomial type if and only if there exists a shift invariant operator
S: C[z] —› C[z] such that {“Их — zS) u(z)] = 0, Va E C[z].

Proof. Suppose f ”[(x — zS) u(z)] = 0, we have to show that fa” = ;да/”;
we have

1‘“ №№ + у — 28] u) =frfwv((x + у) и(в + w) — (z + w) (Би) (z + w»
=fswy[(x _ 282) ”‹2 + w) + (у _ 'w) “(3 + и)]

= О,

since S is shift invariant. Therefore both f” ° f?! and fa” annihilate [x + y —
zS] C[z], which is easily seen to imply [“+“ = f” - f”.

Conversely, if {Р„(х)} is of binomial type

Ё ”(„—.“ = скрипн-
n=0
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Differentiating with respect to t,

Ё%= xf’(t) скрыт)] =f (г›2——‚%(—”Щ
n=1

Let |'f'(=t)]—1 20 amt“ (remember that y’(0) 750 and so [f’(22)]—1 exists),
we have

Comparing terms we obtain the recurrence equations

п n! *mo) = 2 а„ [m] P _‚…‹х›‚ ‹ ›
which implies

[2 «kw—l ы we] —таит]
and the theorem is true with

5= Z akD’“: [f'(ШГ
Examples

(i) Pn(x) = x", Pn+1(x) = хР„(х), so f ”((x —- z) C[z]) = 0 and S = I.

(ii) РЖ”) = (И)… Ри+1(х) = (x — n) Р„(х)‚ f”([x — 3(1 + (іі/4$] Clzl)
= 0. Here S = I + d/dz.

(iii) Similarly, for Pn(x) = [x]n , S = —(I + d/dz).
(iv) Р„(х) =Ll,‘1’(x) satisfy the three-term difference equation

ИРА”) = РМЦ”) + 2’11”„(х) + ”(” _ 1) I’m—10¢)»

rw[<x—z<1+2:—z+7:2))w]=o-
Here S = (1 + d/dz)2.

(v) In the above examples the shift invariant operators .9 were differential
operators with constant coefficients, of finite order.

We now illustrate an example where S is another shift invariant operator.
(Of course every shift invariant operator is an infinite (or finite) differential
operator with constant coeflicients.)
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The exponential polynomials {ф„(х)} satisfy [A, p. 204; C, p. 139]

фп+1(х) : ”(ф + I)”: i'e'! фп+1‹х) = x 2
k0

(Z) №),
which in our notation is

$”(z”+1) = х$”((1 + я)”), і.е., ищи) — xu(l + г)] = 0 Va 6 си.

Replacing u(z) by u(z — 1) we obtain

$“[(x — zE—l) си] = 0, where E—1u(z) = u(z — 1).

Thus S = E4.

7. THERE ARE FEW ORTHOGONAL POLYNOMIALS OF BINOMIAL TYPE

The basic Laguerre polynomials [$,—”(х) are both orthogonal (in the classical
sense) and of binomial type. We will show that there are not many more such
sequences. A sequence of polynomials {Pn(x)} is said to be orthogonal, in the
classical sense, if there exists an .?: C[z] —› С such that the inner product is
given by (P(z),Q(z)) = $(P(z) Q(z)). Recall (Chihara [I], p. 13]) that every
sequence of (monic) orthogonal polynomials satisfies a three-term recurrence
relation xPn(x) = Р„+1(х) + A(n) Р„(х) + B(n) Р„_1(х). On the other hand, a
sequence of polynomials of binomial type satisfies

xPn(x) = Z “КОФЕ Pn-k+1(x)' (*)
Thus,

PROPOSITION. The only orthogonal polynomials of binomial type are those
satisfying a recurrence relation of the form

ищи) = Pam + anP.(x) + Im(n — 1) P._.(x).
Note that for [,а—”(х), а = 2 and b = 1.

Note added in proof. S. A. Joni kindly pointed out that the idea of Section 2 was
first concieved by A. M. Garsia in J. Lin. Mult. Algebra 1 (1973), 47—65. Also M. Ismail
informed us that the result of Section 7 goes back to Sheffer.
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