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Rota’s Umbral Calculus is put in the context of general Fourier analysis.
Also, some shortcuts in the proofs are illustrated and a new characterization of
sequences of binomial type is given. Finally it is shown that there are few
(classical) orthogonal polynomials of binomial type.

PREREQUISITE

G.—C. Rota and co-workers’ excellent papers, [A], [B], [C], are assumed. The
present paper is simply a collection of footnotes, and certainly it makes little
sense to read a footnote without reading the footnotee first.

1. Tue ConNNECTION WITH CONTINUOUS FOURIER ANALYSIS

Every shift invariant operator on C®(R) is a convolution operator, that is, the
Fourier transform of a multiplication by a function (see, for example, Ehrenpreis
[3, p. 141]). The inverse Fourier transforms of polynomials are the distributions
supported at the origin (Donoghue [2, p. 103]). Thus every shift invariant
operator Q: P — P is of the form p(z) — [¢(¢) p%(t)]". Since (1/) D corresponds
to multiplication by ¢, it is possible to write Q = ¢(D) which is a special case of
the expansion theorem. By E. Borel’s theorem (Narashiman [4]) every formal
power series is the Taylor series of some C*® function. Conversely every C*
function gives a formal power series. Thus if $(0) = 0 we can expand any other
C= function t(t), formally, in terms of ¢: (t) = 3 a,4"(t). Thus = 3 a,é",
which gives the general expansion theorem.

2. SoME SHORTCUTS MADE PossiBLE By UsiNG UMBRAL OPERATORS
FROM THE BEGINNING

To every sequence {p,(x)} for which deg p,(x) = n there is a linear operator
2:P — P defined by Z(x*) = p,(x), n€ N.
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DErFINITION. & is the basic operator for Q if {p,(x)} is the sequence of basic
polynomials for Q. In this case we call # umbral.

In terms of this definition, the definition in [13, p. 688] reads
(1) Z() =,
2) Z(x")(0)=0,n>0,
3) OZ =D, ie., Q = PDP1.
Thus, the operator & is umbral if and only if ZDZ-! is a delta operator and
(1), (2) are satisfied and then £ is a basic operator with respect to ZDP-1.

Similarly, it is possible to modify the definition in [B, p. 698] for Sheffer poly-
nomials.

DEFINITION. & is a Sheffer operator for the delta operator Q if
1) L(1)=C#0,
2) DF1=0.
To illustrate the shortcuts made possible by these definitions, a short proof

of Proposition 1 in [B, p. 703] will be given. In the present notation this proposi-
tion reads as follows.

ProOPOSITION 1. Let & be an operator P — P with (1) = 1, and let A be a

delta operator. P is a Sheffer operator if and only if there exists a sequence {s,,} such
that

PUAPE) = Y (Z) —

£>0

First we need

LemMA 1. B s shift invariant if and only if there exists a sequence {s,} such that

B(x") =Y (Z) Sp_iX®.

k>0

Proof.

B(x") =Y. (,E"l”}e’;! Sk =Y (ns""ck)! Dri(xm) = (Z aka) (x™).

The lemma follows from the expansion theorem.

Lemma 2. Let A be a delta operator. B is shift invariant if and only if BA =
AB.
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Proof. By the expansion theorem.
Proposition 1 can now be rephrased.

PrOPOSITION 1'.  Let A be a delta operator. P is a Sheffer operator if and only if
PLAP is shift invariant.

Proof. ZDZP-' is shift invariant <«(lemma2 (PPP-1) 4 = J(PDP1) =
DPAP = PAPD < D(PLAP) = (P1AP) D «\Lemmad 147 is shift
invariant.

Since (ZDP1) (1) =0, (PDP) (x) = ¢ + 0, the proposition follows.

3. UmBRAL CALcULUS AS FOURIER ANALYSIS ON IV

The association of a sequence {a,,} with the linear functional T: # —C defined
by T(2") = a,, is no more and no less the Fourier transform in the function
space Z(N) ={f; f: N — C} F(N) is the dual of F(N)={f: N— C; sup-
port f is finite}. H(N) = {Zo 2", for some n} P where we put 2 = =",
Thus it is only natural to define # = F; = (%)’ = P, as is done in continuous
theory (Ehrenpreis [3, p. 8]). For f€ & one has f(2") = £ (5,) = f(8,) = f(n),
where 6,(n) = 1; 6,(k) =0, k # n.

4. Tue UmBRAL ALGEBRA AND DELTA FUNCTIONALS

4.1. The product of linear functionals [C, pp. 101-103] LM (p(x)) =
M (p(x + v)) is the unique product for which 6,,, = 6,3, .

4.2, Setting P(x") = p,(x), the property of {p,(x)} being of binomial
type (and & an umbral operator), can be expressed 8,,,7 = (8,2) (8,2),
where 8,u = u(x), for every real x and y. Setting #(x) = 8,7, we have a mapping
R — C[z]" satisfying P(x + y) = P(x) #(y) and thus there must be an
L € C[2], the infinitesimal generator, such that #(x) = exp(xL). Since £ is
umbral, so is -1 (Proposition 1’ with 4 = D) and therefore there exists an L
such that §,2~! = exp xL, which is Theorem 2(b) in [C, p. 106]. Conversely
exp xL satisfies exp(x + y) L = (exp xL) (exp yL), which implies that &# given
by 8,2 = exp xL is umbral which implies that 2! is umbral, which implies
Theorem 2(a) in [C].

4.3, Note that if p,(x) = ZP(x"), the conjugate sequence g¢,(x) is given
by ¢.(x) = #-(x"). This proves Theorem 4 in [C, p. 111].
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5. SoMETIMES THE MERE NOTION OF A LINEAR FUNcTIONAL CAN GO A LoNG WaY
All the properties of Laguerre polynomials can be obtained by merely using
the notion of linear functionals. It is not necessary that they be a basic sequence

to some delta operator. Our approach is to forget that {L,(x)} are polynomials,
fix x = x,, and consider the numerical sequence {L,(x,)}m, . Recall that

Ly(x) = Z (—1)’°( )k, , (5.1)

and define T, L® € C[2]’, T%(2*) = x*[k!; L%(2*) = L,(x) and extend by linearity.
By (1.5) we have

L) = 3 (< ) 7o) = 75( § (<1 () #) = 70 — 9.

Since (2") is a basis for C[z] we have

L*u(2)) = T*u(l — z)). (5.2)

Also,
To(w(2z)) = T*(u(az)). (5.3)

Thus
T%(uw(z)) = L¥(u(1 — 2)). (54)

Putting #(z) = 2" in (5.4) yields the inverse formula

e =Y (=1 (3) Lux).
We also have
Lex(u(z)) — T*(u(l — 2)) — T=(u(1l — a2)) = L(u(1 — a(l — 2)))
= L*u((1 — a) + az)).
Thus
Les(u(2)) = L*(u(l — a + az)). (5.5)

Putting u(z) = 2" yields Erdelyi’s duplication formula [C, p. 137].

6. A NEw CRITERION FOR POLYNOMIAL SEQUENCES OF BiNnomiaL TYPE

As already mentioned in Section 3, every function f: N — C has a Fourier
transform f: C[z] — C defined by f(2*) = f(k) (Rota’s umbra). Assume f:
N — C is a solution of the difference equation with constant coeflicients

S Cufn+ ) = 0; (6.1)

a=0
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then 0 = Za_o C.f (n + o) = Zu_o C f (mte) = f ((Z0 C,z*) 2"), for every n,
and setting P(z) Zo C,z*, we have f(P(z) u(z)) =0, Yue C[z]. Thus fis a
solution of Za—o WACES cx) = 0 if and only if £ annihilates the ideal P(z) C[z].

Introducing the shift operator Xf(n) = f(n + 1), one can write (6.1) as

( % CaX“) f=o.

a=0

o .
Note that Xf = zf, where for T eC[z], 2T(u) = T(2u). (For discrete
functions of several variables and partial difference equations, see Zeilberger [5].)
To consider difference equations with polynomial coefficients we simply note
that

~ ] . d dy ;
nf (@) = f(nar) = £ ((= ) &™) = (= 32) &™),
for every n; so the Fourier transform of multiplication by #, #, is equal to

zdiz’ where (zdizT) (w) = T(zadzu) , TeC[z], ueC[z].

Thus if f: N — C is a solution of P(x) f = (Z:r:o Cy(n) X*)f =0, wherethe C,’s
N\
are polynomials, the Fourier transform of P(x), P(x), is a differential operator
~

with polynomial coefficients and f annihilates P(x) C[2].

THrEOREM. Let {P,(x)} be a sequence of polynomials and let f*(n) = P,(x),
n € N. {P,(x)} is of binomial type if and only if there exists a shift invariant operator
S: C[z] — C[2] such that f*[(x — 2S) u(z)] = 0, Yu e C[z].

Proof. Suppose f[(x — 2S) u(2)] = 0, we have to show that f*+v = fafv;
we have
foflx + v — 2S1u) = £ 4 ¥) u(z + ) — (2 + w) (Su) (z + w))
:fszwy[(x — 28,) u(z + w) + (¥ — wSy) u(z + w)]
= 0’
since S is shift invariant. Therefore both £ - f¥ and f #+¥ annihilate [x + y —

2S] C[z], which is easily seen to imply f*+v = f= - fv.
Conversely, if {P,(x)} is of binomial type

3 PO ol (0],

|
ne0 nl
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Differentiating with respect to ¢,

3 P — S exslef ] =0T T

Let [f'(t)]t = Z:,o a,t™ (remember that 3'(0) # 0 and so [f'(#)] exists),
we have

xPn(x) S (x) e

= (i amtm) Y EoDT

5 )

0
Comparing terms we obtain the recurrence equations
_y n! *
xPn(x) - kgo ay, [(n _ k)'] Pn—k+1(x)’ ( )
which implies
f"(xz”) =f“c [z Z”: a [—n! ] z”"‘] =f“° [z (i a,cD") z”]
*—0 (n— k) k=0

and the theorem is true with

S =73 aD* = [f' (D).
Examples
(i) Pp(x) = 2", P,1(x) = xP,(x), so f*((x — 2) C[2]) =0 and S =I.

(i) Pu(x) = (¥)n, Prsa(¥) = (x — n) Py(x), fo([x — 2(1 + dJdz)] C[2])
= 0. Here S =1 + d/dz.

(iti) Similarly, for P,(x) = [x],, S = — + d/dz).
(iv) Py(x) = L5 (x) satisfy the three-term difference equation
XPp(%) = Ppia(x) + 20P(x) + n(n — 1) P, _y(),

Fe == 1255+ ) ] =

Here S = (1 4 d/d=z)%

(v) In the above examples the shift invariant operators s were differential
operators with constant coefficients, of finite order.

We now illustrate an example where S is another shift invariant operator.
(Of course every shift invariant operator is an infinite (or finite) differential
operator with constant coefficients.)
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The exponential polynomials {¢,(x)} satisfy [A, p. 204; C, p. 139]

b =@ 1 iy o) =2 Y ()4
which in our notation is
Fo(z+1) = xd((1 + 2)m),  ie,  Fau(z) —xu(l1 4+ 2)] =0  VueC[z].
Replacing #(2) by u(z — 1) we obtain
o[(x — 2E-Y) C[z]] =0, where  E-lu(z) = u(z — 1).
Thus S = E-L.

7. THERE ARE FEw ORTHOGONAL PoLyNomIALs OF BiNomiAL TYPE

The basic Laguerre polynomials LS™"(x) are both orthogonal (in the classical
sense) and of binomial type. We will show that there are not many more such
sequences. A sequence of polynomials {P,(x)} is said to be orthogonal, in the
classical sense, if there exists an .#: C[z] — C such that the inner product is
given by (P(2), 0(z)) = Z(P(2)Q(z)). Recall (Chihara [1], p. 13]) that every
sequence of (monic) orthogonal polynomials satisfies a three-term recurrence
relation xP,(x) = P,,(x) + A(n) P,(x) + B(n) P,_,(x). On the other hand, a
sequence of polynomials of binomial type satisfies

xP(x) =Y a(n)y Pp_yr(%)- (™
Thus,

ProposiTION. The only orthogonal polynomials of binomial type are those
satisfying a recurrence relation of the form

Note that for LS (x), a =2 and b = 1.
Note added in proof. S. A. Joni kindly pointed out that the idea of Section 2 was

first concieved by A. M. Garsia in J. Lin. Mult. Algebra 1 (1973), 47-65. Also M. Ismail
informed us that the result of Section 7 goes back to Sheffer.
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