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The celebrated Frame—Robinson—Thrall (Canad. J. Math. 6 (1954) 316—324) hook-lengths
formula, counting the Young tableaux of a specified shape, is given a short bijective proof. This
proof was obtained by translating the elegant Greene—Nijenhuis—Wilf proof (Adv. in Math. 31
(1979) 104—109) into bijective language.

0. Getting hooked

A Young tableau of shape A = (A1, . . . , Am), AIZAZZ. - ~2Am >0, is an array
((1:11 1 S i S m, 1 S j Ski) satisfying ail- <ai+u and au- <al-J-+1 (whenever applicable)
such that every integer between 1 and n(=)t1+- - ~+Am) appears exactly once
among its n entries. For example

124
3610
57
89

is a Young tableau of shape (3, 3, 2, 2).
The set of cells {(i, j) z 1 s i S m, 1 S j ski} constitutes the shape of the tableau,

S()t), and for every cell (i, j) in 300 we define its hook Hi,- by Hi, =
{(a, B)€S()t) : a =i and 321‘ or a>i and B=j}. The number of cells in Hi,- is
denoted by hi.

Frame, Thrall and Robinson [1] proved that the number of Young tableaux of
shape A, fA, is given by

f,=n!/ II hi,- (1)
(meson

For example, if A = (2, 2), then n = 2+ 2 = 4 and

H11 = {(17 1): (1! 2), (2’ 1)}, hll = 3’

H12 = {(11 2): (2: 2)}; h12 : 2,

H21 = {(2, 1), (2a 2)}, h21 = 2',

H22 = {(2, 2)}, I122 = 1a
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and f,‘ =4!/(3 - 2- 2 - 1)=24/12=2 and indeed there are 2 Young tableaux of
shape (2, 2) : $3 and $2.

An excellent exposition of what was known about Young tableaux until 1972 is
given in [5]. Knuth [5, p. 63] comments: “Since the hook-lengths formula is such
a simple result, it deserves a simple proof. . . All known proofs of this formula are
based on an uninspiring induction argument which does not really explain why the
theorem is true (since it does not really use the properties of hooks).”

Since these words were written, Greene, Nijenhuis and Wilf [4] used very
inspired induction in a cute proof they gave which uses the properties of hooks in
a very essential way. A bijective proof of fk [1 hi,- = n! is given in [2]. However, the
mapping involved does not portray the nice row-column symmetry of the hooks,
as it is heavily lopsided toward the columns. Furthermore, the proof that the
mapping is indeed a bijection is much longer than should be desired.

In the present paper we give a bijective proof of the hook-lengths formula which
possesses all the virtues of the GNW probabilistic-inductive proof. This ‘conserva-
tion of elegance’ is by no means a coincidence, as our proof is a direct ‘bijectation’
of the GNW proof. The notion of ‘bijectation’ or combinatorization of manipula—
tive proofs was first made explicit in the innovative work of Garsia and Milne [3]
and was further made use of in the works of Remmel [6] who gave the first
bijective proof of the hook-lengths formula [7]. The present author has extended
the bijectation method to inductive proofs and hopes to present it elsewhere.

1. The theorem

Definition 1. A pointer tableau of shape A is an assignment of pointers to every
cell of SOt) such that every cell points at some member of its hook. More
formally, it is an array

{P(i’j):1$i<ma lsjski,P(i,]-)EI'IH}.

Definition 2. Let S'Ot) be the set of non—corner cells in S()l), i.e., those (i, j) for
which hi,- > 1.

Definifion 3. A pointer tableau is strict if for every (1', j) e S’()t) P(i, 1') 7E (i, j), i.e.,
only corner cells point at themselves.

The set of pointer tableaux and strict pointer tableaux of shape A are denoted by
9’0) and 9,0) respectively. The set of Young tableaux of shape A is denoted by
570) and S" is the set of permutations on {1, . . . , n}.

Theorem. The mapping

WOO : Snx X 9’.(u)—>€7(A)X9’(A)X X 9.00
“EA
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defined in Section 2.1 is a bijection and the mapping

0(A) : 9(A)x9’()t)x X 955(u)-—>S,,X X 9%”)
ask ugh

defined in Section 2.2 is its inverse.

The hook-lengths formula is an immediate corollary since the theorem implies
that

lsnx X wml = lmnxgwnxgggesm)
MEX

and thus

ml‘amkmmwmflémm,

and so

|Sn| X 9W) ISI
'g-(A)|=——HQ_—_=Ig,&)l=nll [1 hi.

'90” )5). 955m) (mesm

The proof of the theorem will consist in presenting the mappings not) and 0(A).
The proof that the algorithms describing 11-0) and 001) do what they claim to do
is immediate while the proof that 1701) and 0(A) are inverses of each other follows
from the fact that o-(A)’s Step i (1$i$6) undoes «(M’s Step 7-i and vice versa,
and from the inductive hypothesis.

For (a, b) e S()\) let Hfib = Hub \(a, b). Let (a, B) be a corner cell in $01) and let
(a, b) be any cell in S()\) for which a So; and b s B the bijection

2% : HEB U H221, —> Hfb (establishing (ha‘3 — 1) + (hub — 1) = hub — 1) is defined by

ab. * (a,y)->(a,y) * (a,y)-+(a,y)
“'HJmmemw “kmemm

The inverse of fit}; is easily seen to be given by

(a, y) e H*e s (x, B)EH*bY>B ‘1 say a

(2'2; ‘1: (my: , (x,b)> .
’ “ (a,y)eH:b ‘ “ (x,b)eH:.,

The knowledge of f2}; and its inverse is crucial for the execution of algorithms
1r()\) and 0'0).

2. The biiection and its inverse

Warning. Familiarize yourself with the fig defined at the end of Section 1.
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Notation. (1) The reduced form of the permutation (a1, . . . , a,) is (b1, . . . , bk),
where {b1, b2, . . . , bk}={1, 2, . . . , k} and a, <ai iff bi <bj; e.g., the reduced form
of (5, 7, 8, 2) is (2, 3, 4, 1); red(9, 1, 2, 8)=(4, 1, 2, 3).

(2) The (i, j) entry of an array A is denoted by A(i, 1').

2.1. Algorithm 7r(A)

Input. (PALS, and x" = (m1, . . . , m"). PM are strict pointer tableaux of shape 11.,
for every LL 9 A; x" is a permutation of {1, . . . , n}.

Output. (00,9, K, and T,; Q“ is a strict pointer tableau of shape it, for every
p g A; K, is a pointer tableau of shape A and T, is a Young tableau of shape A.

Step 1. [Locate beginning of trip using m1] Let (a, b) be the mlth cell of S(A)
obtained by scanning it as in reading English, i.e., m1=A1+- - -+A,,_1+b. Let
xn_1 be the reduced form of (m2, . . . , m").

Step 2. [Find end of trip] Starting at (a, b) follow the pointers of P, getting a
path (a, b) = (a1, b1) —> (a2, b2) —> - - - —> (am, bm) = (a, B), where (a, B) is a corner
cell. (i.e., (a,, bi) = P,(a,_1, b,_1), i = 2, . . . , m, thus either ai = a,-_1 and bi > b,_1 or
at > ai—l and bi = bi—l)’

Step 3. [Apply recursion] Let A be the shape A with the cell (a, B) deleted.
Apply «()0 to (Pang, and x,,_1 to get strict pointer tableaux (0,)”; a pointer
tableau K, and a young tableau T,; of shape A.

Step 4. [Get (Qu),,c,; initialize K, and 0,] Keep (0,3,9: which you got in
Step 3; for Xgé p. g A set QM <—P,,. Set K,(x, y) = K,(x, y) for (x, y) 75 (a, B) and
K).(0‘, B) = (a, 3)-

Step 5. [Update Q, and K,] For i= 1,. . . , m-1 do
(a) [Find cell] If (1H1 = a, then cell (— (a, b,) if b,“ = bi then cell <— (ai, B).
(b) [Updalte Odd» bi): Qi(ce11), K,(oell)]

Q, (ab bi) *— f2£*(Qi (0611)),
K, (cell) if K, (cell) 95 cell,

(a, B) if K, (cell) = cell,

K, (cell) <— (a, B).

Q, (cell) (— {

Step 6. [Get T,] Let T, be the Young tableau obtained from T, by adjoining
the cell (a, B) filled with ‘n’.

2.2. Algorithm o-(A)

Input. (QM),,E,, K, and T,; Q“ is a strict pointer tableau of shape it, for every
p. E A; K, is a pointer tableau of shape A and T, is a Young tableau of shape A.

Output. (1).)»;, and x"; P, is a strict pointer tableau of shape M, for every p. E A;
x” = (m1, . . . , m") is a permutation of {1, . . . , n}.
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Step 1. [Locate corner cell (a, B) and get Tfl Let T;, of shape X, be the Young
tableau obtained from T}, by deleting ‘n’. Let (a, B) be the corner cell which have
been thus removed (i.e., (a, B) = A \X).

Step 2. [Update 0,, and K,‘]
(a) [Locate cells in the ‘antihook’ of (a, B) which point at (a, B) in K,,] Let

(a, d1), . . . , (a, d,) = (a, B), and (c1, [3), . . . , (c,, B) = (a, B) be the cells (x, y) for
which Kx(x, y) = (a, B).

(b) [Initialize i and j] i<—— 1, j<—— 1.
(c) [Find cell] Let cell be such that

( 23‘ “1(0), (ca, d,)) 6 H22“ (i.e., cell = (0,, B) or (a, (1,).

(d) [Update K), (cell), Ox (cell)]

0;. (0611) if Q). (0611) at (a, 3),
cell if 0,, (cell) = (a, B).

01(0611) ‘— (f§§)_1(0t(cs d,»-

(e) [Update 0,, (c,-, 11,-), update (i, 1)] If cell= (Ci, B) then Q),(Ci, di) <—-(ci+1, di)
and i <— i + 1. If cell: ((1, d1.) then Q[(ci, d,) <— (c,, diH) and j(—j+ 1.

(f) [done?] If (ci, di)aé(a, B) (i.e. i<s or j<r) go to Step 2(c).
Step 3. [Get P“, ”59:, Kg] For BEA and 41$): set P“<—Qu; set K;(x, y) <—

Kt(x, y), (x, 30680:). _
Step 4. [Apply recursion] Apply a()\) with (0,)”; T; and K; to get (Puke):

and xn_1.
Step 5. [Find beginning of trip] Retrieve (cl, d1) from Step 2(a), call it (a, b),

that is (a, b) <——(c1, d1).
Step 6. [Find m1 using beginning of trip] Let m1 be such that (a, b) is the mlth

cell encountered when ‘reading SOt) in English’ (i.e., m1= A1+- - '+)ta_1+b).
Let x" be the permutation (m1, m2, . . . , m") where (m2, . . . , m") is such that its
reduced form is al.

K)‘ (cell) <— {

3. Example

Due to the enormous size of the input and output and to the recursive nature of
the algorithm, it is impossible to present a complete worked out example of a
non-trivial size. We will thus confine ourselves to an example of not) where we
arbitrarily prescribe the outcome of the recursive Step 3.

Let /\ = (5, 5, 5, 5, 3) = (5“, 3); then n = 23 and we want to apply w(z\) to

* (1, 4) * (3, 4) (2, 5)

P(5‘3) = * * * (3, 5) (4, 5)
* (4, 4) * (4, 5) (4, 5)
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(Pu)uc(54,3) and x“ = (2, m2, . . . , m), where the content of the cells filled with ‘*’
is immaterial and is not going to change throughout the execution of the
algorithm.

Step 1. (a, b) = (1, 2).
Step 2. We get the trip (1, 2) -—> (1, 4) —> (3, 4) —> (3, 5) —> (4, 5) so (a, B) = (4, 5)

and m = 5.
Step 3. X = (5, 5, 5, 4, 3) = (53, 4, 3). Assume, for the sake of example, that #0:)

yielded (0‘)”; and

>1: * a: (2, 5) a: a: a: *
* :1: =1: :1: * a: a: *

K)? = K(53,4,3) = * * * (3, 5) and T)? = * * * * ,
a: (4, 3) a: (4, 4) =1: * :1: a: a:
* a: :1: * * *

where again, the content of the cells filled with ‘*’ is immaterial and unchanged
throughout the algorithm.

Step 4. We get our (0”), u. g (53, 4, 3) and set Q<st,2) <—s) etc. and initialize
Q(s‘,3) ‘— P(5‘,3)-

Step 5. i = 1: (1, 2) —> (1, 4), a2 = a, so cell <— (4, 2),

Q(5‘,3)(13 2) (_f1§(45 4) = (19 4),

Q(5‘,3)(4, 2) (— (4: 3):

K(S‘,3)(41 2) <— (4, 5)-

i = 2: (1, 4) —> (3, 4), b2 = b; so cell <— (1, S),

Q(5‘,3)(1’ 4) (— f:§(2) 5) = (2, 4),

0(5‘, 3)(1! 5) (— (2, 5),

K(54,3)(1, 5) (—' (4, 5).

i = 3: (3, 4) —> (3, 5), cell <— (4.4),

Q(5‘,3)(39 4) (—- f3§(49 5) = (3) 5),

06.3)(4, 4) e- (4, 5) (since K64, 3)(4, 4) = (4, 4) a self pointer),
K(s‘,3)(4, 4) (— (4, 5)-

i = 4: (3, 5) —-> (4, 5), cell <— (3, 5),

Q(5‘,3)(3, 5) ‘— f3§(Q(s‘,3)(3, 5)),
Q(s‘,3)(3, 5) <— (4, 5) [= (a, [3)], since,
K(54,3)(3, 5) = (3, 5) a self pointer.
K(553) (— (4, 5)-



A short hook-lengths bijection 107

Thus

* (1, 4) * (2. 4) (2, 5)
a: :1: a: * *

Q(5‘.3) = * * * (3! 5) (4, 5),

* (4, 3) * (4, 5) (4, 5)
a: * a:

a: * a: a: (4, 5)
a: a: a: *

(K(5‘,3)= * * * * (4, 5-
* (4, 5) * (4, 5) (4, 5)
* a: a:

Step 6.

a: :1: =1: *
a: * a: *

T(54’3)= * * * * ‘

* >1: * a: 23
a: a:

We urge the reader to apply 06“, 3) to the above output and verify that one
gets the above input back.

4. The purist’s objection and our rebuttal

The purist would object that our proof of n! = f,‘ H hij was not purely bijective
and that what we really proved was the fact n! AA = fA HhiJ-AA, for some number
AA. To get n! = f,\ H hu- we had to go through the algebraic (and hence manipula—
tive) act of cancelling AA out.

To this we retort that the hook-lengths formula states that f,‘ = n!/II hi and to
get this from n! = fA H hij also requires an algebraic manipulation. However, even
if the original statement of the hook—lengths formula would have been n! =
f,‘ H hi, there is nothing wrong in proving Sn x XMQ 92(4).) <—> 9'0) X @(A) x
X “SK 9501.) rather than 5,, <-—> 9'0) X 9’0), as long as the former is more elegant
and gives more insight into the structure of Young tableaux and the properties of
hooks.

Indeed, it may happen that two sets A and B have the same cardinality without
any apparent bijective reason. Then it often happens that there exists another set
C such that A x C and B X C have a very natural bijection. The introduction of
the ‘catalizator’ C not only facilitates a bijective proof that lA| = |B| but often
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gives insight into the structure of both A and B. This point is best illustrated by
the following example.

The green couples 1, 2, 3 play hockey with the red couples 1, 2, 3. The
positions are as follows:

Green

Left defense: Mrs. 1 Goalie: ML 1 Right defense: Mr. 2
Left wing: Mrs. 2 Center: Mr. 3 Right wing: Mrs. 3

Red
Goalie: Mrs. 2'

Left defense: Mr. 2’ Right defense: Mrs. 3'
Left wing: Mr. 3’ Center: Mr. 1' Right wing: Mrs. 1’

If you were requested to give a bijective proof that the number of green couples
equals the number of red couples, you would find no natural bijection
{1, 2, 3} <—> {1’, 2’, 3’}. The natural bijection is

72‘ :{Mr., Mrs.}><{1, 2, 3}-——>{Mr., Mrs.,}X{1’, 2’, 3’}

given by 1r(a) = the person in the red team having the same position as a. Thus
11(Mr. 1)=Mrs. 2’; 7r(Mrs. 1)=Mr. 2'; etc.
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