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A Lattice Walk Approach to the
“inv” and “maj” q-Counting of Multiset Permutations

DORON ZEILBERGER*

School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332

Submitted by G.-C. Rota

A natural interpretation of “maj” and “inv” q-counting of multiset permuta-
tions in terms of walks on a lattice with multilane highways is presented. This
is applied to give a short combinatorial proof Of two theorems of MacMahon
and to rederive a recent result of Gessel.

INTRODUCTION

Let {1, 2,..., n} be a fixed alphabet. To every word (alias multiset permutation)
a = 0'1 a, we set (Andrews [1], Garsia [4])

d(°) = Z X(‘7i > 0:41):
i=1
1—1

mafia) = Z 1X(0i > 0m):
i=1

1—1 1
1'07) = Z Z X(0i > 02')

i=1i=i+1

(for a statement A, X(A) = 1 if A is true, X(A) = 0, if A is false).
The functions (1(a), maj(a), i(a) give respectively the number of descents,

the major index, and the number of inversions.
Consider the n-dimensional positive lattice N”, where N = {0, l, 2,...}, the

set of nonnegative integers. Denoting a typical point by (m1 ,..., m"), we let
2,- be the unit vector in the m, coordinate:

j .
e,- =(0,0,...,0,1,0,...,0), ] = l,...,n.

To every word 01 a, with 1 letters, we associate a walk with 1 steps:

(O! or“) ())_> 2019 e01 + eaz’_> e01 + e02 + eaaa H. _) e61 + 202 + "I + ea; '
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For example, in N'3 the word 31223211 corresponds to the path

(0,0,0)—>(0,o, 1)—>(1,0, 1)—>(1, 1,1)»(1,2, 1)
—» (1, 2, 2)—> (1, 3, 2) —» (2, 3, 2) —» (3, 3, 2).

For a point in = (M1 ,..., m"), it is well known and easy to see that there are

(m1 + + m") = (m1 + + m”)!

m1,...,rn,, m1! m"!

possible ways of getting from the origin to that point.
In Section 1 we shall introduce “lanes” on certain roads which will enable us

to interpret gum”), gm) as the number of possible routes (counting lanes) to walk
the path 0'. This interpretation is then used to prove MacMahon’s Theorems 3.6
and 3.7 in Andrews [1]. In Section 2 we rederive the generating function for the
classical Eulerian polynomials An(t) (Comtet [2], Foata and Schfitzenberger [3])
and in Section 3 Gessel’s generating function for the “maj” q—Eulerian poly-
nomials mall/Ina) (Garsia [4, I. 15]) is obtained using the present method.
Finally it is indicated how to obtain Stanley’s [5] generating function for iA,,(t)
(Garsia [4, 1.12]) and Gessel’s generating function for the trivariate “Vi/Ina, p, q)
(Garsia [4, (3.2)]).

The present method is not yet capable of considering the “statistics” a'(a—1)
and m(a'1) discussed in a recent paper of Garsia and Gessel. The reason is that
we do not know how to interpret 0—1 in terms of a lattice walk. It would be
interesting to extend the present method as to contain these “statistics” as well.

For the general framework underlying the present approach, we refer the
reader to the excellent paper of Wilf [6].

1. Two THEOREMS 0F MACMAHON

THEOREM 1 (Theorem 3.6 in Andrews [1, p. 41]). Let C(ml ,..., m") denote
the set of all walksfrom (0,..., 0) to (m1 ,..., mu) (alternatively the set of all words in
{l,..., n} with m1 1’s, m2 2’s,..., m7, n’s); then

Eat-1..) = [1111+ + m" (1.1)m1 ,..., m" ’

where the sum is taken over all walks a in C(m1 ,..., m") and the r.h.s. is the q-multi—
nomial coeficient (q)m,+...+m,/(q)m, (4),“, where (x). =11 — x) (1 — qx)
(l — qa‘lx).

Proof. (We recommend that the reader first go through the proof with
n =2.) In the n-dimensional lattice N", for every point m = (m1,...,m,,)
introduce qm1+"'+"‘i-1 lanes in the block between 111 — e,- and m (provided
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m,- > 0), i = 1,..., n. It is readily seen that for a walk a, there are 9“”) possible
routes to travel it (counting lanes). Thus the l.h.s. of (1.1) is the total number of
possible routes to get from (0, 0,..., 0) to m 2 (m1 ,..., mu). Denoting this
number by F(m) we have that F satisfies the partial difference equation

7‘
F(m) = Z qm1+--.+mi_1F(m _ 8,)

i=1

(since every path which terminates at m must come from m — e1 , m —— e2 ,...,
or m — en).

Introducing the negative shift operators E211"(m) =F(m — 21-), 1' = 1,..., n,
the above equation can be written

(I — Z qm1+"'+m"—1E[1)F E 0. (1.2)
i=1

The function

_ m1 + ”' + mu
G(m) — m1 ,..., mn l

is also satisfies by (1.2) (check !) and sinceF E G on U; {m- = 0} by the natural
inductive hypothesis, F E G throughout the whole lattice N".

THEOREM 2 (Theorem 3.7 in Andrews [1, p. 42]). With the above notation

Z qmauo) = [m1 + + m”] . (1.3)
asC(m1.....m") "11 ,..., m"

Proof. For the sake of clarity we shall first carry the proof for n = 2.
In the lattice N2 we introduce qm1+mr1 — 1 extra “express lanes” from

(m1 — 1, m2 — 1) to (m1 , m2) via (ml — 1, m2), where one is not allowed to stop
at (m1 — 1, m2). Thus there are qm1+mr1 ways of traveling the path (m1 — 1,
m2 — 1) —> (m1 — 1, m2) —+ (m1 , m2) while there is only one possible way of
doing the journey (m1 — 1, m2 — 1)—> (ml , m2 — l) —> (1711 , m2). It is readily
seen that for a given walk, there are gnaw” possible ways of traveling it. Thus
the 1.h.s. of (1.3), F(m1 , m2), describes the number of possible ways of traveling
from (0,0) to (m1 , m2).

F(m1 , m2) satisfies

F(mlrm2)=F(ml_1’m2)+F(mlim2_1)

+ (qm1+mg—1 —' l)F(m1 — 1: m2 “ 1)-
(1.4)

But

m1+m2
G(m1 : m2) = m1 , m2
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is also satisfied by (1.4) and since F(ml , 0) = G(ml , 0), F(0, m2) = G(O, m2),
it follows that F(m1 , m2) = G(m1 , mg) for every m1 , m2 .

Proof for general 11. Put (1 2 m1 + + mu . For every m E N7‘ and every
subset {i1 ,...,ik}C{1,..., n}, where i1 > £2 > > ik , and mil > 0,..., mi» > 0,
introduce (q‘l—1 — 1) (g["‘2 — l) (qd—k’r1 — I) “express lanes” with the path

(m _ eil _ _ earl—>011 _ eh _ _ cu)” ---—>m,

where one is not allowed to stop in the intermediate points. There are altogether
qd‘lqd“2 qd—k'l'l possible ways of doing the above journey where one is
allowed to stop (check!). For a given walk a it is seen that there are qma1‘0’
possible routes of doing the path (counting lanes) and the l.h.s. of (1.3) counts all
the possible ways of getting from 0 to m. Denoting this number by H(m), we
get that H satisfies the partial difference equation

H(m) = i H(m — e.) + (4“ — 1) Z H(m — — e.)
i=1 #2”

+(9""1 — 1) (11‘H - 1) X, H(m - ei — e; — ck)
##k

+ ... + (qd—l — l) H. (gal—n+1 _ 1) H(ml _1! m2 —‘ 1v": mn _1)y

(1.5)
which in operator notation is

qml+"'+'"mH = [1 (1+ (q'"1+"‘“"'~— 1)E;1)H, (1.6)
{=1

01'

qm1+"'+m"'H : [1+ (qd _ 1) 2 E? + (qd _ 1) (qd-l _ 1) Z Ei-lni
i=1 iaéji

+---+(q"—1)(q'H—1)"'(q""‘“—1)' Z .Eijl'HEi-kl
11$”‘951k

+ + (9" — 1) (q— 1) ErlEz—l E;] H. (1.7)
But

G(m) = [m1+ + m.
m1 ,...,m,,

is also a solution of this partial difference equation (check!) and H = G on
U;1{mz = 0} by the natural inductive hypothesis (i.e., by the theorem for
n —— 1); thus H(m) = G(m) for every m e N".
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2. EULERIAN POLYNOMIALS

Let
F,l(ml ,..., mn) = Z t1+d‘°’.

oedml. . -- .m”)

Then, since S” = C(l,l,...,1) we have An(t) =Fd(l, l,..., l) = B(n), say.
We set A0(t) = 3(0) = t. The same reasoning as that in the proof of Theorem 2,
only simpler, yields that Fd(m) is a solution of the partial difference equation

tfim0=fHP+U—DEfflfiml (an
Substituting m = (l,..., 1) and noting that Fd(eZ-l + + eik) = B(k), when
ilgfi-“yéik, we get ‘

tB(n) = (I —— (l — t)E—1)" B(n)

(where E—"B(n) = B(n — 12)) Thus

tB(n) = f (—1)n—k(1 _ t)n—k (Z) B(k), n 2 1,
Ic=1

or

7330‘) _ " (—1)""° BU?)
n!(1 —— t)"+1 _ 76:0 (71 —— k)! k!(1 — t)"+1 ’ n 21' (2'2)

Multiplying (2.2) by u" and summing up yield

_u 301) u" _“—e>§mfirfifi——t
and so

A” t u" te“ . .X “(19W = 1 _ te" (1.6 in Gar31a[4]).

EXERCISE. Using (2.1) obtain the generating function of Fd(m1 ,..., m") and
deduce the solution tO Simon Newcomb’s problem.

3. q—EULERIAN POLYNOMIALS

3.1. The above method generalizes to give generating functions to the
q-Eulerian polynomials

2An(t) = Z q“°’t1+‘“°’,

USS“

majAna) = Z qma](a)t1+d(a)’
assn
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and
i,mAn(t’ P; g) = Z pi(o)qmj(a)td(a)

063,,

(see Garsia [4]). We shall prove (1.15 in Garsia [4]) Gessel’s formula

u" mama)
2 771(1— t)(1—qt)---(l——q_"t)n>0

=2 tkeu(1+q+-- +q"‘1) (3.1)
01

and sketch the derivation of the other generating functions.
Consider

Fd.mai(m1 m1.) = Z qm“"°’t1+“‘°’;
aeC(m1.....m")

then the same reasoning which lead to formula (1.7) leads to (recall
d=m1+---+m,..)

’9d,Fd maj———[I + (tqd —— l) Z 13,71 + (tqd— 1) Of“1 — 1) z EflEi—l
i=1 5%.?

+ + (1411— 1) (tqd_1 _ l) __ 'tq( d—k+1 _1) 2 E1711 ... Ea?

i196” '9éik

T -- + (tqd — 1) (tq — 1) ErlEgl E;]Fd.mj . (3.2)
Now, “WA"(t) =Fd’maj(l, 1, l,..., l), and using (3.2) at the point (I, l, l,..., l),
i.e., m1 = m2 = = m" = l, and setting B(k) = majA,c(t), one gets

we) = 2 (Z) (19" — 1) (tan-1+1 - 1) Baa),
SO

tT1901) i (—1)""‘ BO?)
n!(qt),. ’ k=0(n— k)! k!(qt)k = 1 " 91- (3-3)

Multiplying by u”, n = 0, l, 2,..., and summing yield

"u"B(n) B(n) u“
t; qn!(qt)n ‘ e‘“Z—n!(qt),, =(t — 1) t.

Let

2(a): 1——§; "fig—:7) u" (= l.h.s. of (3.1));
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then

tz<qu> — e-“z(u) = ~
Introducing the q dilation operator Qf(u) =f(qu) we have (tQ — r") z(u) = —t.
Thus (3.1) follows: '

z(u) = t(e—“ — tQ)‘1 l = t[e“‘(1 — te"Q)]‘1 l i

= t(l _ te“Q)—1 e” = t i tk(euQ)k e“

= X tkeutl+a+---+«*-‘1.
L>1

3.2. Defining Fd_,-(m1 ,...,mn) similarly one sees that it satisfies the
partial difference equation

t,i E H [l + (t __ 1) qm1+-.-+m‘_1E;.-1]Fdli _

i=1

After some manipulations one gets that A(n) = z)élfl(t) =Fd,i(1, 1, l,..., 1)
satisfies

tA(nl _ (t — 1)"—k A(k)
(q)n («DH- (q)k ’ n = 1, 2,..., (3.2.1)

from which Stanley’s [5] (Garsia [4, 1.12]) generating function follows. Finally

Fd,i,mai(m1 ,..., min) = Z Pudqmaflanflflfl
oeC(m1.....m")

satisfies

n
tqm1+'“+‘mmF : H [1 + (tqm1+-"+mm _ 1)pm1+”'+mz'_1Ei—l]’

i=1

which implies, after some manipulations, that An(t, p, q) =Fd,i,maj(l, l,..., 1)
satisfies

t_q__"A(n) —Z (—1)"”‘ AU?)
[71]» (90" [n — klp [k],, (9%

(here [I], = (l + p) (1 +1) + + 111—1)), from which Gessel’s generating
function for An(t, p, q) follows (Garsia [4, formula 3.2]).
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