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Various discrete functions encountered in Combinatorics are solutions of Partial Difference
Equations in the subset of N“ given by mlamzz- - ->m,,20. Given a partial difference
equation, it is described how to pass from the standard “easy” solution of an equation in N" to
a solution of the same equation subject to certain “Dirichlet” or “Neumann” boundary
conditions in the domain m, 2 mza- - '2 m" 20 and related domains. Applications include a
rather quick derivation of MacMahon’s generating function for plane partitions, a generaliza—
tion and q-analog of the Ballot problem, and a joint analog of the Ballot problem and Simon
Newcomb’s problem.

0. Introduction

There is a very close analogy between Physics and Enumerative Combinatorics.
The former is often looking for solutions of partial differential equations in a
given region of R" under prescribed boundary conditions, while the latter is
seeking solutions of partial difference equations in certain subsets of N". While
nobody ever dared object the OK. ness of using PDEs in Physics, the use of
partial difference equations in Combinatorics was at best tolerated as a temporary
nuisance to be put up with until a “direct combinatorial proof” was found. The
use of partial difference equations received the derogatory names: “inductive”,
“recurrence”, and G.H. Hardy even called it “essentially verifications” (quoted by
Andrews [1, p. 105]).

Although some of our favorite proofs are “direct combinatorial”, they are not
any better, as a whole, than recurrence proofs. Indeed, very few proofs beat the
elegance of Good’s [5] proof of Dyson’s conjecture and Moon’s [9, p. 13] proof
for the number of labelled trees, both of which use recurrence.

Among the few who did not have any scruples using partial difference equations
was the great MacMahon. His solution of the Ballot problem and his derivation of
generating functions for plane partitions, together with other problems, all
employed partial difference equations. It may be that his lengthy and ad-hoc ways
of solving these partial difference equations was one of the reasons which gave
difference equations their bad name. Surprisingly enough, a small change in the
formulation of the boundary conditions could have saved him a lot of trouble.
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66 D. Zeilberger

In the present paper we introduce this change and use the algebra of partial
difference operators (known but unexploited by MacMahon), to rederive the
solution of the Ballot problem and generating functions for plane partitions,
together with various generalizations.

Stanley [10, pp. 259, 269] is baffled by the fact that although MacMahon’s
generating function for plane partitions HT=1(1—q")_" is so simple, its proof is
indirect and rather complicated. We believe- that our proof gives a more or less
“obvious” reason why this formula is so simple.

Consider the two dimensional Ballot problems, i.e., finding the number of ways,
F(m1, m2), of walking with positive unit steps, from (0, 0) to (m1, m2), without
ever crossing the diagonal {m1 = m2}. MacMahon [7, p. 127] has set the partial
difference equation

F(m1m2)=F(m1_17 m2)+F(m1, m2—1)7(m1>m2) (01)

together with the boundary conditions

F(mla m2) = F(m1y m2- 1) on "11 = m2. (0.2)

MacMahon’s stumbling block was the fact that F(m1, m) is not defined for
m1 < m2. However, by extending F to {m, — m2 > — 1} and requiring F(m1, m2) = 0
on its boundary {ml— m2=—1} as indeed it should be, (0.1) can be required to
hold in m, Bmz:

F0711, m2) = F(ml— 1: m2)+F(m1: m2“ 1), ml—mzzo (0-1,)

and then (0.2) implies

F(m1, m2) = 0 011 m1 _ m2 = —1. (0.2,)

Borrowing terminology from PDE, we replaced the “Neurnann” problem (0.1),
(0.2) by an easier “Dirichlet” problem (0.1’), (0.2’). In the case n = 2, very little is
gained by this modification, but the analogous modification for n > 2 makes life so
much easier.

It is not clear how MacMahon solved the Ballot problem for n>3. In [7, p.
127—133] he solves it for n = 2, 3 and then goes on to state the general case. It is
possible that he simply extrapolated from n =2, 3 to the general case without
bothering to prove the resulting formula. Be that as it may, our Theorem 5 closes
this gap. (It should be noted that there exist several other proofs of this result.)

Next let us describe the content. Section 1 introduces the nomenclature of
Partial Difference Operators and considers lattice walks. This is illustrated by the
ordinary lattice walk, Simon Newcomb’s problem, and the generating function for
the lesser index of a walk. Section 2 gives a general solution of a Dirichlet
problem in the region [12,1 {mi — mm 2 -1} 0 (mu )0) and related regions, for a
wide class of partial difference equations.

Section 3 present applications to the Ballot problem, and its generalization and
q-analog, and to the. restricted Simon Newcomb problem. Sections 4 and 5 treat
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classical plane partitions while Section 6 gives further applications to what we
coined “pseudo-plane partitions”. The Andrews—Gordon—MacDonald theorem
(nee Bender—Knuth conjecture) (Stanley [10, p. 265]) resisted all our attempts at
an easy solution. It is hoped that in the future the present method will be capable
of providing such a proof.

Before closing this introduction we should mention Carlitz’s [3] (see also
Andrews [1, p. ISO—184]) elegant recurrence proof of MacMahon’s determinant
formula and the subsequent derivation of MacMahon’s generating function. Our
novelty is in dispensing with determinants altogether. Recently a very elegant and
general determinant formula encompassing both lattice walks and general plane
partitions has been done by Gessel [4] (which we can’t help admiring even though
he belongs to the “direct combinatorial” enemy camp).

L Partial difierence operators and lattice walk

1.1. Let Z= {0, :1, :2, . . .}, N= {0, 1, 2, 3, . . .}. Consider functions f:Z" -—>C,
f(m) = f(m1, . . . , m"), and define the fundamental shift operators

Xi—1f(mla---:mi’---,mn)=f(m19~--:mi_1’-'-amn)a

i= 1, . . . , n. Denoting by e, the unit vector in the mi coordinate, the above is
Shorthanded to Xf1f(m)=f(m—ei). For aeN" we write X"x = XI“1 - - - X;°‘n and
so X‘“f(m) = fort—a). A typical linear partial difference operator has the form

P= 2 auX‘“,
Ila-0

IaI<M

where (1.,I = anon) are discrete functions, a= (a1, . . ., an)eN” and |a| =
a1 +- - '+ an. If ao(m) 75 0 for every m, P is said to be hyperbolic and then we can
assume that a0 = 1. We shall be concerned with solving certain partial difference
equations, Pf = 0, in certain subsets of N".

Define the discrete delta function 8 by

5(0)=1, 8(m)=0, me 0.

Definition. A function f : Z" —> C satisfying Pf = 8 is called a fundamental solution
corresponding to the operator P. If f is supported in N", it is called a canonical
fundamental solution.

Proposition 1. A particle starts at the origin and has aa(m) ways of jumping from
m—a to m, where aeN". Let F(m) be the total number of ways of getting from the
origin to m. Then F(rn) is the canonical fundamental solution corresponding to
I—Z auX—"fi
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Proof. Since there is no way of getting out of N", F vanishes outside N”. Consider
all the walks terminating at m. The particle’s last stop was m—a, for some a, and
this contributes a,(m) F(m~a) ways. If m-a¢N" then there is no contribution
and F(m—a) = 0.

Thus

F(m)—ZauF(nt#a)=0, meN", M790. (1.1)

If m= 0, the r.h.s. of (1.1) is 1. If méN", everything is zero. It follows that

(I— Z auX‘“)F= 5.
Since F is supported in N" the proof is completed. C]

From now on we shall focus attention on equation Pf=0, where P has the
special form ((1 = m1+- - -+ m"):

P: I— a1(d) Z X:‘— a2(d) Z X:1X;1—- - ~—a,,(d)Xf1 - - - X;’.
i= 1 i= j

Note that since P is symmetric, its canonical fundamental solution is a symmetric
function.

1.2. Generating functions. To every function f :N" —> C corresponds the generat-
ing function flz) = Z f(m)z"'. Let P be an operator with constant coefficients
P(XI1, . . . , X;1). Since [X"f]A= ff: we have [P(XI1, . . . , X;1)f]fi=
P(zl, . . . , zn)f. If, in addition, P is hyperbolic, i.e., the constant term is non-zero,
then Pf: 8 implies Pf: 1 and f= 1/P(zl, . . . , z").

1.3. Examples. (i) Ordinary positive lattice walk: P= 1 —X;‘ — ' - - —X;1, whose
canonical fundamental solution is

(m1+---+m,,)! . 1
and FF0"): mn!---mn! =(1-zl-"-—z,,)'

(ii) Let C(m1,..., m") be the set of words in the alphabet {1, . . . , n} with
m1 1’s, m2 2’s, . . . , m" n’s (there is a one-one correspondence between
C(m1,...m,,) and the set of paths from 0 to (m1,..., mn)). For a word 0=
01 - - - (rk define

“(0') : .2 X(0'i < (Tm)
I=1

(here X(A) = 1, if A is true; X(A) = 0, if A is false); (1(a) is called the number of
ascents of the word 0. Simon Newcomb’s problem consider F,(m) =2aecw 1“”).
It is well known (e.g., Zeilberger [11]) that tF,=(H§‘=1[I+(t—1)Xf1])F,. This
means that F, is the canonical fundamental solution of (t— 1)‘1[t—
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[12‘s, (I+(t— 1)Xi“)]. Thus the generating function of F, is given by

13‘, =(t—1)/[t—iljl (1+(t—1)zi)].

Remark. For reasons to become clear later, we prefer to work with ascents rather
than the more customary descents. The theories are equivalent.

(iii) The lesser index of a word a' = 01 - - - 0k is defined (MacMahon [7, p. 136])
by

k-l

r(a)= Z ix<ai <am)
i=1

i.e., the sum of places where ascents occur. Consider F(m)=2“¢(_,q""’. In
Zeilberger [11] it was shown that F(m) is the canonical fundamental solution
corresponding to

P=I— i X:1
in]

—(q“—1) Z X:‘X;‘—- - -—(q"—1) - - - (qd-"H—lml - - -X;1.
he,"

F is given by the q-multinomial coefficients.

F(mb - ' - 3 mn) = (Q)m,+---+m./(Q)m, I . ' (q)m,.a

where (x)a = (1 — x)(1 — qx) - - - (1 — q“"x).

Remark. We prefer to work with the lesser index rather than the major index.
The theories of these two indices are equivalent.

2. Solutions of a boundary value problem in (12:: {mi — mi+1>—1}n{m,‘ 20}

Theorem 2. Let d = m1 +- - '+ m", and let Fn(m)= Fn(m1, . . . , m") be the canoni-
cal fundamental solution corresponding to

P: I—a1(d) Z xyl—azw) Z Xf‘XIT‘ -. - --a,,(d)X1“ - - ~x;‘.
i=1 ifi

This means that PF" =8, and F" vanishes outside N". Let G" be the unique
solution of the equation Pf=0 in {m1—m22—1}fl{m2—m32~1}n- - -fl
{mm_1 — m" 2—1}, subject to the boundary conditions

f=0 on{m,=m2—1}U{m2=m3-1}U- - -U{m,._1=m,,—1}

and

f(m11 ' - - , mil—1) 0) = Gu—1(mla ‘ ' - a mn—l): Gl(ml)E 1'
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Then G" is given by

G, = [I (1—X,X;‘)F,,. (2.1)
lsi<j<n

We are going to need the following simple lemma,

Lemma 3. Let H:ZZ—>C satisfy HUI, lz)=H(lz, ll), then (l-XIX;1)H(11,12)
vanishes on 11 = l2— 1. More generally (1 — X'fX;")H(l,, 12) vanishes on I, = l2- k.

Proof of Theorem. 2. Since XiXi‘1 commutes with the operator P, so does
Hi<j(1—KX,-")- Since Fn(m) is a solution of Pf=0 in the interior of N", so is
Gn(m). It remains to verify that Gn(m) satisfies the prescribed boundary condi-
tions. Now,

GA!!!) = (1 —X1X§1)[(1 - X1XS‘)(1 — X1XZ‘) ' ' ' (1- XIX?)
(1 -X2X§‘)(1 — XZX;1) ' ' ' (1 - X2XZ‘)

(1—X,,_;X;1)]F,,(m).
The operator inside the square brackets is symmetric with respect to X1, X2,

and since Fn(m) is a symmetric function, we can write

Gn(m17 m2) = (1 _ XIX;1)H(m1, m2),

where H(m1, m2) = H(m2, m1) and the dependence on m3, . . . , m“ is suppressed.
It follows by Lemma 3 that G" (in) = 0 on m1 = m2— 1. Similarly, for i =
L.”,n—1

G"(m) = (1 — XXi‘filIoperator symmetric w.r.t. X,-, Xi+1]F,,(m),

and so G"(m)=0 on m, = mm—l. Finally on m,1 =0,

Gn(mla'--’mn—190)= 1-1 (1_XiX71)
isi<jsn—1

X[1—X1X;l) ' ' ' (1"Xn—1X;1)]Fn(m11 - - - 9 mn-la 0).

But Fn(m)=0 for mn<0, so

G.(m1,...,m._,,0>= Il <1-X.X;1>F._1(m1, . . . , m..-»
isi<jsn—1

= Gn—1(m17 ' ' - 7 mn—l)‘ D

Similarly, using the second part of Lemma 3, we can prove,

Theorem 4. Let P and F" be as in Theorem 2. Let k be a positive integer and let H"
be the unique solution of the partial difl‘erence equation Pf = 0 in

{ml _ m2?_k}n{m2—m32—k}n- ' ' r‘{rnn—1_ mu 2_—k}r1{rnn 20},
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where k is some positive integer, subject to the boundary conditions
f=0 on {m1=m2—k}U{m2=m3—k}U- - -U{mn_1=mn—k}

and

f(ml’ - - - , mil—l, 0): Hn-l(mls - - r , mn—1)9 Hl(ml)—=— 1'

Then Hn is given by

H. = I] (l—Xz‘x;k)rn. (2.2)
l<i<a

3. Applications to Ballot problems

3.1. Definition (MacMahon [7]). Let f:A—>C, where ACN". Z a(m)z"‘ is a
redundant generating function for f if f(m) = a(m) for me A.

Theorem 5. (MacMahon [7, p. 133]). Let f, be the number of positive lattice paths
from 0 to in where travel is restricted to the region m1; mzz- - -> m" 20.
Hi<i<j<n (1 - zizi“)/(1 - z, -- - -— z") is a redundant generating function for fm and

f,=(m,+. - -+m,,)! I] (mi—mj+j—i)/(m1+n-1)!--- mnl. (3.1)
iSi<a

Proof. We apply Theorem 2 with P=1—X1“—---—X;‘,
F"(m1, . . . , mn)=(m1+. - -+m,,)!/m1! - - - m"!

(see Example 1.3(i)); thus

f...= H (l-XtXI')[(m1+- - ~+m.)!/m1! - - - mun, (3.2)
l<i<j=En

from which we get the redundant generating function.
Now (m1+ - - - + m")! commutes. with the operator on the r.h.s. of (3.2) and so

G.(m,,...,mn>=(m1+- - -+mn>!n(1—xx,-')[1/m,!- - - mu]
i<j

Consider

H(m1,...,mn)=n(1—X.~X,-“)[1/m!--- mnl]

= H (Xi—X?)
1si<jsn

x[1/(m1+n— 1)! (m2+n——2)! - - - (m,,_1+ 1)! m,1 !].

It is seen that H is an alternating function (i.e., symmetric up to sign) of
m,+n—1, m2+n—2,..., mi+n—i, . . . , m... Also

H(m1,..., m")=Q(m1+n—1,m2+n—2,..., mn)/[(m1+n-1)!- - - mn!],
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where Q is an alternating polynomial of degree n — 1 in each of its variables. But
G, and therefore H, and therefore 0, vanish on m1 = m2 — 1, m2 =
m3-1, . . . , Mrs—1: m,I-- 1; hence (ml—m2+1), (mz—m3+1),.. . , (m,,_1—m,‘+
1), are factors. By symmetry ([mi + n - i]—[m,- + n —jl) = (m, — m,- +j - i) are all
factors, lsi < j sn; the theorem follows. [3

Remark. The Ballot problem has an equivalent formulation in terms of Standard
Young Tableaux and formula (3.1) easily implies the Frame-Robinson—Thrall
formula, involving the hook lengths of the partition m1+ m2+- - -+ m”. We refer
the reader to Greene—Nijenhuis—Wilf [6] where (s)he will find a very cute prob-
abilistic proof of the F—R—T formula.

3.2. The political significance of the next theorem is in enumerating the total
number of ways of counting votes such that at no time did a candidate lag by
more than (k— 1) votes from the person destined to be immediately below (see
Barton and Mallows [2, p. 243], where a solution to a more general problem is
given in terms of a determinant. Our method also yields their result).

Theorem 6. Let Fk(m) be the number of lattice paths (with unit positive steps) from
0 to m such that one stays in the region H?_’11{mi-mi+1>-k}. A redundant
generating function for E, is

I] (l—zrz:*)/(1—z.—---—z.).
1<i<j<n

Proof. Apply Theorem 4 and use the remarks made on generating functions in
Section 1.2.

3.3. Simon Newcomb’s problem (MacMahon [7, p. 187]) considers the problem
of counting the number of words in 1"“ - - - nm— with so and so many ascents (i.e.,
occurrences of i j with i< j). In terms of walks in N", calling all lines parallel to
the mi axis (i = 1, . . . , n) “roads of kind i ”, Simon Newcomb asks for the number
of walks from 0 to m with a specified number of “turns for the better”, (in
N.Y.C., n = 1, roads of kind 1=“streets”, roads of kind 2= “avenues”). Let us
ask the same question for walks in which travel is restricted to

11—1

0 {mi — mi+1 20}-

Theorem 7. Let B(m', k) be the number of positive lattice walks from 0 to
m(m,>m2>- - -20) inside fl?;11{mi- miHZO}, with k ascents. B(m; k) is the
coeflicient of 2;"! - - - zfnt" in

1'1 (l—zjzf1)(t—1)/[t—iljl(1+(t—1)zi)].
l<i<i<n
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Proof. Let F(m)=ZB(m; k)t"; combine Example 1.3(ii), Theorem 2, and the
remarks in Section 1.2. CI

3.4. It follows from Example 1.3(iii) that the coefficient of q“ in F(m)=
ENC“) q"") equals the number of paths from 0 to m whose lesser index is c. We
are interested in the number of restricted paths from 0 to m with lesser index c. In
other words, the coeflicient of qc in

G..(m) = Z W
sec-(nu)

where C(m) is the set of paths from 0 to or restricted to {11:} {mi — m“.l 20}.

Theorem 8.

_ _ _ (‘1) +~-+ . .G" m = n(n 1)(n DIS "‘1 "In m,+n—]_ m‘+n— .

( ) q (Q)m.+n—1 ' I I (Q)m,,_,+1(¢1)m, 1<iI-[<j<n (q q I)

(3.2)

Proof. Apply Example 1.3(iii) to Theorem 2, then q-imitate the proof of
Theorem 5. [1

Remark. Formula (3.2) can be easily manipulated to give a q-analogy of the
Frame—Robinson—-Thrall formula in which form it strongly resembles the
generating function for reverse plane partitions (Stanley [10, p. 270]). It would be
interesting to find a direct combinatorial relationship between the two problems.

4. Plane partitions

A plane partition of a (e.g. Andrews [1, p. 179]) is an array whose sum is a:

a = X a", such that (in-Barr whenever isi’,j<j’.
”>0

MacMahon [8, Section X] considered Fn(p1, . . . , p"), the generating function of
plane partitions with Sn columns, unrestricted number of rows and a“ s
p,- (j = 1, . . . , n). F,‘ (pl, . . . , [2,.) also enumerates plane partitions of shape p1 + p2+
- - -+ p”. Of course F" is only defined for p1 2- - -> p". MacMahon found a partial
difference equation for Fn(p1, . . . , p") [8, 220—221] which is easily obtainable by
an inclusion—exclusion argument. Setting A, = 1—Xi‘1, i= 1,. . . , n, the equation
is

qPI+'”+"~F,, = A1 ' - - AHF (4.1)

which holds in the “interior” of {plapzz- - ->pn 20), i.e., in {p1>p2>- - ->
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p" >0). MacMahon’s boundary conditions were

A2"'AnFn P1=P2

qp‘+m+p"Fn = A142 . . . Ai_1Ai+l - - - AnFn Pi =pi+1 (42)

A] . . . An—zAnFn pn—1=Pn

Fn(p1, ' - ' 9 pn—ls 0): Fri—1(p1a ' ' - ’ pvt—1);

again by inclusion—exclusion (e.g., on p1 = p2 it is not allowed to go to
(p,— 1, p1, p2, . . . , p")). MacMahon had a very hard time solving the above
boundary value problem, and his solution was a rather messy determinant.

Our twist consists in extending F" to {pl—p22—1}n- - -{pn_1—p,, >-1}fl
{p,l >0} and requiring (4.1) to hold there. This forces (4.2) to become

Xi_141" 'Ai—iAiH ' ' 'AnFn=0a pi=pi~19 i=1,---,"—1 (4-2’)
Fn(p17"-3pn—170)=Fn—l(pla-v'apn-l), pn=Oy

or equivalently

A2...AnF=O) P1‘P2=_1;

A1 ' - . An—ZAnF=0a pn—1_pn =_1,

Fn(p1, - - ‘ 9 pn—la 0): FYI—1(1)], - - - ’ pn—l)'

The partial difference Eq. (4.1) together with the boundary conditions (4.2”)
uniquely define Fn(p,, . . . , p") as a function in {IL—,1 {pi —p,.+1 >—1}n{p,, 20}.

Theorem 9.

F..(p1, - - - , n.) = fl (1 - q"‘XiX,-“)[1/(q)p. - - - (q)p.] (4.3)
1$i<j<n

From this follows immediately

Corollary 10. (MacMahon [8, p. 243]). The generating function of all plane
partitions, Gm, is given by

Gm: 1‘1 (1—q")"‘.
k=l
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Proof of Theorem 9. We have to check that F" as given by (4.3) satisfies (4.1) and
the boundary conditions (4.2"). First note that each individual X,-X,-’l commutes
with both sides of (4.1) thus so does I] (1—q“‘)£'iX,-‘1). But 1/[(q)PI - - - (q)p,_] is a
solution of (4.1) (Check!, Hint: Ai(1/(q)m) = qPi/(q)pi) and therefore so is F". Now

A2 . . . AnFn = 42' . -Ann(1-qj_i}{il)(q);l1-' .(qm1

=H(1—q"“X.-X,-“)42- ' - An(q);.' - - - ((1);.l
=n (1_qi—ixxj—l)q+'"+P..(q);ll . . .01);l

= q+"'+P.. n (1_qi—i)(ixj-1)q-m(q);" . . . (q);l
1si<j25n

= qP2+"'+Pu(1— XIX?) [operator symmetric in X1, X2]
X (4);} - ' - (q):

= 0, on {p1 — p2 = —1} (by Lemma 3).

The other conditions in (4.2”) are checked similarly. F" (p1, . . . , pr], 0):
F"_,(p,, . . . , pn_1) by the natural inductive hypothesis. [3

5. Further applications

The same method applies to give the generating function of plane partitions
with Sr rows, Fn(p], . . . , p"; r), namely

(Pi + rt)!F" ,..., n;r = 1- j_iX,-X71Y,-_1Y‘ " (5.1(p‘ p ) ail-sf q ’ ’) D. (pm (n)! ’
evaluated at r1 =' - -= r" = r. Here Yi‘1f(r,-) =f(r,- — 1), i= 1, . . . , n; (a)!= (q)a. It is
possible to obtain MacMahon’s determinant formula by transforming the product
of operators featuring in (4.3) and (5.1) to a determinant (using Vandermode’s
determinant) but this is rather pointless ever since Gessel came out with his very
general and elegant paper [4]. It is also possible to milk (5.1) to obtain
A(n, k; r) = Fn(k, k, . . . , k; r) without the intervention of determinants.

Formula (4.3) makes clear the relationship, first noticed by MacMahon, be-
tween plane partitions and lattice permutation (alias the Ballot problem). Putting
q =1 in (4.3) yields

Fn(pli"-!pn): 1-1 (l—XX;1)[pl!m pn!]—l=fp/(p1+'ll+pn)!-
l<i<j<n

6. Pseudo plane partitions

Definition. A composition of A, )t = 2;, A1 is a k-pseudo partition if Ai —A .-+1 2
—k. (0-pseudo partition = “partition”; (—1)-pseudo partition = “strict partition").



76 D. Zeilberger

Theorem 12. Let Fn(pl, . . . , p") be the generating function of n-column arrays
a =2 a,,-, where anspi (j = 1, . . . , n), s.t. a” -au+1>—(k- 1) and a” —a,+u 20,
(for k = 1, 2, 3, . . .). This means that the columns are regular partitions, while the
rows are (k - 1) pseudo partitions. We have

Fn(p1,- ..,pn)= n [1—(qi*‘m7‘)k1<q);: - - - ((1);).
l<i<j‘n

Proof. Fn(p1, . . . , p") satisfies Eq. (4.2) under the boundary conditions

A2'.'AnFn=0a P1“P2="ka

(6.1)

A1"'An—1Fn=0a pn—l—pn=_ka

Fn=Fn-l’ pn=0-

The proof is similar to the proof of Theorem 9, this time using the second half
of Lemma 3.

Corollary 13. Let G” be the generating function enumerating arrays discussed in
Theorem 12, with Sn columns, i.e., G,I =F,,(OC, . . . ,oc). Then,

G..(q“)..-i(q*)n-2- - - (4")1/(q);
where

(q").- =(1-q")(1-q2")- ' - (11*)-

In the same vein,

Theorem 14. Let Fn(p1, . . . , p") be the generating function of n column arrays,
a =2 a,,-, whose columns are strict partitions and whose rows are l-pseudo parti-
tions:

ai,j_ai’i+12_1, ai’i—ai+1,j>1, auspi- (j: 1, . . ., n).

F” is given by

IMP» - - - , pn)= ll (l-qi‘XXF‘flwo' - - l(p..)
l‘i<j<u

where

1(1)) = (1+q)(1+q2)- ' - (1+q").

Corollary 15. Let G" = F,I (06, . . . , 00), then

G" =<q)n_i(q)n_2- - - (q), H <1+q‘>".
i=1
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As a closing remark let us mention that it is possible to obtain generating
functions for the above entities for which the number of rows is restricted. These
formulas are similar to (5.1).
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