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Although the following proof is implicit in Garsia and Milne’s paper [1], it is so elegant that
we felt that it should be presented by itself for the benefit of the general mathematical public.
The idea behind the proof was further exploited by Remmel [2] and Wilf [3].

Consider a set A of elements each of which possess a (possibly empty) subset of
the properties {1, . . ., n}. The inclusion—exclusion principle states that the number
of elements with no properties is
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I<{1,...,n}

Here, for any subset I of {1,..., n}, A; denotes the set of elements having all
the properties of I and, for any set B, |B| denotes the number of elements of B.

Our proof starts by introducing the much larger set & of all possible pairs (a, J)
where a is an element of A and J is a subset of the set of properties of a. The pair
(a, J) is even or odd according to whether |J| is even or odd respectively. We next
observe that for a fixed I<{1,..., n}, (a, I) is a legitimate pair if and only if a € A,.
It follows that (1) expresses the difference between the number of even and odd
pairs.

For any a€ A let s(a) be its smallest property. Define the following mapping
from o to itself:

T(a,J) = {(a, JUs(a)), s(a)¢l,
(a,J/s(a)), s(a)el.

This is a parity changing involution which is defined everywhere except on pairs
of the form (a, @) where a is a property-less element of A. It follows that the odd
pairs of & are equinumerous with the even pairs of & which are not of the above
form. This implies (1) since the pairs (a,®) for which a is property-less are
obviously equinumerous with the set of property-less elements of A.
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Our proof readily extends to prove the following generalized version of the
inclusion-exclusion principle. Let t,, ..., t, be commuting indeterminates and for
I={iy,...,i}<{1,...,n} denote t;=¢ ---t and (t—1),=(,—1)---(t, —1),
then if for a € A, Prop(a) denotes the set of properties of a then

Z lprop(a) = Z |A;| (1= 1),

acA I<{1,..., n}
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