NOTE

GARSIA AND MILNE'S BIJECTIVE PROOF OF THE INCLUSION-EXCLUSION PRINCIPLE

Doron ZEILBERGER
Department of Mathematics, Drexel University, Philadelphia, PA 19104, USA

Received 20 May 1983
Revised 4 November 1983

Although the following proof is implicit in Garsia and Milne's paper [1], it is so elegant that we felt that it should be presented by itself for the benefit of the general mathematical public. The idea behind the proof was further exploited by Remmel [2] and Wilf [3].

Consider a set A of elements each of which possess a (possibly empty) subset of the properties $\{1, \ldots, n\}$. The inclusion-exclusion principle states that the number of elements with no properties is

$$
\begin{equation*}
\sum_{I \subset\{1, \ldots, n\}}(-1)^{|I|}\left|A_{I}\right| \tag{1}
\end{equation*}
$$

Here, for any subset I of $\{1, \ldots, n\}, A_{I}$ denotes the set of elements having all the properties of I and, for any set $B,|B|$ denotes the number of elements of B.

Our proof starts by introducing the much larger set \mathscr{A} of all possible pairs (a, J) where a is an element of A and J is a subset of the set of properties of a. The pair (a, J) is even or odd according to whether $|J|$ is even or odd respectively. We next observe that for a fixed $I \subset\{1, \ldots, n\},(a, I)$ is a legitimate pair if and only if $a \in A_{\mathrm{r}}$. It follows that (1) expresses the difference between the number of even and odd pairs.

For any $a \in A$ let $s(a)$ be its smallest property. Define the following mapping from \mathscr{A} to itself:

$$
T(a, J)= \begin{cases}(a, J \cup s(a)), & s(a) \notin J, \\ (a, J / s(a)), & s(a) \in J .\end{cases}
$$

This is a parity changing involution which is defined everywhere except on pairs of the form (a, \emptyset) where a is a property-less element of A. It follows that the odd pairs of \mathscr{A} are equinumerous with the even pairs of \mathscr{A} which are not of the above form. This implies (1) since the pairs (a, \emptyset) for which a is property-less are obviously equinumerous with the set of property-less elements of A.

Our proof readily extends to prove the following generalized version of the inclusion-exclusion principle. Let t_{1}, \ldots, t_{n} be commuting indeterminates and for $I=\left\{i_{1}, \ldots, i_{k}\right\} \subset\{1, \ldots, n\}$ denote $t_{I}=t_{i_{1}} \cdots t_{i_{k}}$ and $(t-1)_{I}=\left(t_{i_{1}}-1\right) \cdots\left(t_{i_{k}}-1\right)$, then if for $a \in A, \operatorname{Prop}(a)$ denotes the set of properties of a then

$$
\sum_{a \in \mathrm{~A}} t_{\mathrm{prop}(a)}=\sum_{I \subset\{1, \ldots, n\}}\left|A_{I}\right|(t-1)_{I} .
$$

References

[1] A.M. Garsia and S.C. Milne, A Rogers-Ramanujan bijection, J. Combin. Theory Ser. A 31 (1981) 289-339.
[2] J. Remmel, Bijective proofs of some classical partition identities, to appear.
[3] H.S. Wilf, Sieve equivalence in generalized partition theory, J. Combin. Theory Ser. A 34 (1983) 80-89.

