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A distinct covering system (henceforth DCS) is a set of congruences 

a1 (mod dl), a, (mod d,), ..., a, (mod d,); dl < d, < .. . < d, 

that cover the integers. For example 

0 (mod 2), 0 (mod 3), 1 (mod 4), 5 (mod 6), 7 (mod 12) 

is such a system. Guy (Section F13 of [5]) gives many fascinating problems on 
DCS's. For instance, does a DCS exist with all moduli odd? In this paper we 
shall be mainly concerned with DCS's whose moduli are square free. Such 
DCS's exist (see [5], p. 140) but none are known to exist with moduli odd and 
square free. This is in spite of Erdos's conjecture [4] that for every t there is 
a distinct covering system in which all moduli are square-free integers all of 
whose prime factors are greater than p,, the tth prime. We shall prove that if 
a DCS exists with all moduli odd and square-free, then the least common 
multiple of the moduli must be the product of at least 18 primes. This improves 
a result of Berger, Felzenbaum and Fraenkel [2] who showed that at least 13 
primes were necessary. 

The paper contains three theorems. With the first of these we show that if 
a DCS exist's whose moduli are divisible by the primes p,, p,, . . . , p,, then 
a DCS exists in which p,, p,, . . . , pk are the first k primes. If p,, p,, . . . , p, are 
required to satisfy some constraint, such as all being odd, then we may assume 
that these are the k smallest primes satisfying this constraint. 

In the second theorem of the paper we give a sieve theoretic lower bound 
on the number of integers which are left uncovered by a set of congruences with 
given square-free moduli. 

In the third theorem we use notions connected with set partitions and Bell 
numbers to simplify the bound given in Theorem 2. This gives a result which 
can be easily applied to questions about DCS's with square-free moduli. 

THEOREM 1. Let q be a prime and suppose that {ai (mod qaldi): 
i = 1, ..., k), where (4, d,) = 1 for each i ,  is a DCS,  and let qaP be the lowest 
common multiple ofqaldl, . . . , qakdk. Suppose that p is a prime such that p < q, 
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pXP. Then there exists a collection of congruences which covers the integers with 
moduli paid,, pa2d,, . . . , pZkdk. 

Proof .  We construct a collection of congruences (a; (mod paidi): 
i = 1, . .., k) according to the following rules. 

Suppose 

(1) a i -1  ai -- eo,i+el.iq+e2,iq2+ . . . +e,.i-l,,iq (mod qai) 

where 0 < ej,, < q for j = 0, . . ., a,- 1. Then let a* be an integer satisfying: 

(2) a* - a, (mod d,), 

(3) a* 

eo,i + el,,p + . . . + e,,,- ,,,,pai-' (mod pai) if ej.i < p for j = 0, . . . , a,- 1, 
0 (mod pai) otherwise. 

We show that this new collection covers the integers. Let m be any integer, 
and suppose 

(4) m = fo+flp+f2p2+ ... +fa-lpa-l (mod pa), 

where 0 < fj < p for j = 0, 1, . . . , a - 1. Now there exists an integer n satisfying 

(5) n r m (mod P), 

(6) n = fo+flq+ ... +fa-,qa-l (mod qa). 

Since the original collection covers the integers, n must belong to 
a, (modqaidi) for some i. Without loss of generality suppose 

(7)  n - a, (mod qald,). 

Then by (6), 

a, s fo+ f ;q+  - - .  +f,-lqa-l  (mod qal), 

and so, since or, < or, 
a, 3 fo + fig + - . - + fal - ,gal-' (mod qal). 

a1 - 1 But a, = e o , ~  +e1,,q+ .. . +eca,-lj,lq (mod qal) by (I), so we have4 = ej,, 
for j = 0, . . . , a, - 1 and each ej,, < p. By (3) and (4) we then have 

(8) m=aT (mod pal). 

Since d ,JP we also have m = n (mod dl) by (5), a, z a: (mod dl) by (2) so 
that: 

(9) m = a: (mod dl) .  

Together (8) and (9) imply m -= a? (mod padl), that is, m belongs to 
a congruence class in the new collection. This applies to every m so the new 
collection covers the integers as required. 

4. 
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We will need the following 

COROLLARY 1. Let B be some subset of the primes. If there exists a DCS 
whose moduli have all prime factors in the set ( q ,  , q 2 ,  . . . , q,} E 9' then we can 
construct a new DCS whose moduli have all prime .factors in the set (p, ,  

P2 7 ..., p,), the set of the k smallest primes in 9. 
Further, if the original DCS has square-free moduli, then so will the new 

D CS. 

P r o o f .  If p, # q ,  then the theorem says we can replace q ,  with p, in the 
prime factorisation of each modulus, and still have a DCS. We can similarly 
replace q2 with p2 and so on. 

Notation. Let 9 = { d l ,  . . . , d,) be a sequence of (not necessarily distinct) 
positive integers, and let P be any common multiple of d l ,  . . . , d,. 

Define M (9) to be a rational number such that the product PM (9) is the 
minimum number of residues modulo P that can be left uncovered by t 
arithmetic progressions with common differences d l ,  . . . , d,. It is clear that 
M ( 9 )  is independent of P.  

We further define S ( 9 )  to be the set of all those subsequences of 9, 
including 0 ,  whose members are pairwise relatively prime. 

If d is any integer then 9 ( d )  is the subsequence of 9 consisting of those 
members of 9 which are relatively prime to d. 

For example, if 9 = ( d l ,  d,, d3 ,  d4)  = ( 2 ,  3 ,  3 ,  15 )  then 

In most of the results that follow the order of the elements of a sequence 9 
is immaterial and 9 can be regarded as a "multi-set". We will use the notation 
D c 9 to mean D is a subsequence of 9 and 0 to be the "empty sequence". We 
hope this abuse of notatior, will not cause confusion. 

We next define X (9) by 

We will now prove a number of technical results concerning the function 
X ( 9 ) .  The purpose of these is to prove Theorem 2, which states that under 
certain conditions X ( 9 )  is a lower bound for M ( 9 ) .  

LEMMA 1. Let 9 be afinite sequence of positive integers with the property 
that 

9, E ?, 9 k # 9  * x ( 9 k ) > 0 .  

If 9i, 9, are such that 9i E g j  G 9 then 
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P r o o f. It is sufficient to show that (10) holds when gj = ai u (6) for 
some 6 ~ 9 \ 9 ~ .  In this case 

X ( 9 i ) - ( l / )  1 (-l) 'D'/fld=X(9i)-(l/6)X(9i(6)). 
D ~ S ( g i ( 6 ) )  deD 

Note that gi (6) E gi E 9 ,  9i(6) # 9 ,  hence X(g i  (6)) 3 0, by assumption. Thus 
X (gj) 6 X (gi), as required. rn 

LEMMA 2. Let 9 be a finite sequence of positive integers and 9, a sub- 
sequence of $2 with the property that 

(11) g k C g l  - X ( 9 k ) > 0 .  
Then 

x (9)  2 x (9\91)  - (1/4X (9\g1 (dl). 
d e B  1 

Proof.  Define Y ( 9 ,  g j ) .  where gj G 9 by 

We note that 

(12) Y ( 9 , 0 )  = X(9).  

We first show that if $2, G Bj G 9 then 

!i- 
To demonstrate (13) it is sacient to show that if 6 ~ 9 ,  6$9 ,  then 

Y ( 9 , 9 &  u {h}) G Y(9, 9,). %.f 
' I  

." 
The position of 6 in the subsequence 9, u (6) is immaterial. We have 

= Y - /  (l/dj)X(9(6dj)) G Y(9, 9,) 
d,e9(6) 

by (11). This establishes (13). I 
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We now show that 

The left hand side of (14) equals 

Finally we set 9, = 0, g j  = 9, in (13) and apply (12) to get X ( 9 )  
2 Y ( 9 ,  9,). Applying (14) now gives the statement of the lemma. w 

LEMMA 3. Let 9,  and 9, be sequences such that ((lcm 9,), (lcm 9,)) = 1 ,  
where lcm denotes the least common multiple of the members of a sequence, and 
the outer parentheses denote greatest common divisor. Then 

where the ordering of the members of 9,  u9 ,  is immaterial. 

Proof .  

Notation: Let 9 = { d l ,  d2,  . . . , d,} be a finite sequence of positive integers, 
define gi, i = 1, . . ., t ,  by 

Then if X ( g i )  > 0 for i = 1 ,  . .., t we say that the sequence 9 is regular. 

LEMMA 4. If 9 = { d l ,  . . . , dt} is regular, f is any permutation of 1 ,  . . ., t ,  
then {dJ(,,, . . . , d,(,,} is regular. 

P r o of. The proof uses a combination of induction and contradiction. 
The statement of the lemma clearly holds when t = 1 .  We assume it holds for 
t < t o ,  and show by contradiction that it holds when t = to. 

Assume then that the sequence 9 = { d l ,  . . . , dto} is regular, b t t  that some 
permutation of 9 is not. Thus there exists a subsequence 9' of 9 such that 
X ( 9 ' )  < 0. Let f be some permutation of 1,  2, ..., to and suppose that 
{dnl , ,  . . . , d ,  ,,,,) is regular. Clearly (d,,,, . . . , d ,,to- ,,) is also regular. In order 
to avoid a counterexample to the lemma with t = to - 1 ,  we must have 
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df(,,, E 9'. Thus 

(1 5) {dfcl,, . . . , df,,,,) is regular, X(9')  b 0 * dS(,,) E 9 ' .  1 
Now suppose g is a permutation of 1, ..., to such that {d, ,,,, . . ., d,(,,,) is 1 

not regular; that is, there exists some initial subsequence, 9" say, of 1 

{dg(,), . . . , dg(,,)) such that X (9") b 0. 9" cannot equal Id,(,,, . . . , d,(,,,) since 
X (d,(,,, . . . , d,!,,,) = X (9) > 0. If h is any other permutation such that 
h(to) = g (t,), then {dh(,), . . . , dh!,,)) is not regular, for if it were (15) would imply 
dh(,,, = d,,,,, E 9" .  This is impossible since 9" E {dg(,,, . . . , d,(,,- ,,). Sum- 
marising: if dg(,,, = dh(,,, then {d,(,,, . . . , d,(,,,) is regular if and only if 
{dh(l), - . . dh(ro)) is regular. 

We can therefore partition the moduli into two classes as follows. 
A modulus di is good if there exists a regular ordering of 9 which finishes 

with d,, otherwise it is bad. 
Display (15) may then be stated as: 

(16) If di is good, X (9') < 0 then d, E 9' 

Now let d, be any good modulus, db be any bad modulus, and let 

Note that any ordering of 9 with db as the last element and d, as the 
second to last element cannot be regular, by the definition of bad. It must 
therefore contain an initial subsequence 9 ' ,  say, such that X (9') < 0. This initial 
subsequence must contain d, by (16), and so it must be 9, u {d,}. That is, 

Now, 

We then have by (17), 

Next, since 9 = 9, u {d,, db}, we have X (9, u {d,, d,}) > 0. This can be 
expanded in the same way as X (9, u {d,)). If d, and d, have a common divisor 
we get 

(18) and (19) imply that 
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This is impossible in view of (1 6)  and the fact that if (d,, d,) # 1 then 
t 
i 

d $9 (d,). Therefore we conclude that (d,, d,) = I .  This applies to any choice 
9 

a good modulus and a bad modulus. Setting 

9 , = ( d ~ 9 :  d is good), 9 , = ( d ~ 9 :  d is bad}, 

we therefore have 

(lcm ( 9 J ,  lcm (9,)) = 1 

BY Lemma 3 and the requirement that X (9) > 0 we have 

1f X (9,) < 0 we would have, by ( l6) ,  9, G $3,: which is impossible. Hence, 

Now if X (9') < 0 ,  (16) implies that 9, G 9', that is, !af = 9, u 9" where 
9'' c_ 9,. By Lemma 3 we have 

We have assumed that the left-hand side is non-positive, but by (20) and 
the contrapositive of (16) each term on the right-hand side is positive. This is 
impossible, hence our assumption that $3 had an initial subsequence !a' with 
X ( 9 ' )  < 0 was false. The case t = to  of the lemma follows and the lemma is 
proven by induction. B 

THEOREM 2. Let p ,  , . . . , p,, p,+ be a sequence of distinct prime numbers, 
let {d , ,  d , ,  . . . , d,) be a finite sequence of square-free integers, each of whose 
prime factors belong to the given sequence. For i = 1, . . . , n+ 1 define 

(21) Qi = {d j :  pLldj * l < i }  

Then, if 

(22) X(Qi) > 0 for i = 1 ,  ..., n 

then 

where M was defined after Corollary 1 .  

Proof .  The proof is by induction on n. It is easily checked for n = 1. We 
will suppose that (23) holds for all sequences satisfying (22) and consisting only 
of integers whose prime factors belong to the sequence {p,, . . . , p,). 

Let P = plp, . . . p, and for convenience write $8 for 9, + ,  and p for p, + , . 
To prove the theorem we must show that 
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Suppose we have a collection d of congruences, .a? = {a, (mod d,): 
d i € 9 ) ,  such that the number of residue classes modulo p P  not belonging to I 

U d is pPM (9). 
Fix this collection and partition 9 as 

9 = YOUYl u . . . u Y p  

whe red i~Yo i f andon ly i f (p ,d i )=  l . a n d d , ~ ? . , f o r j =  1, . . . , p  ifandonlyif 
p  divides di and u, = j (mod p). 

"or each j consider those residues modulo pP which are congruent to j 
modulo p  and which do not belong to U d. Let the number of such residue 
classes be 4.. Clearly we have 

Now fix some j. In [7]  it was shown that we can use those congruence 
classes in A? which intersect j (modp) to construct a collection of congruence 
classes which leave N j  residues mod P uncovered, and whose sequence of 
moduli is Yo u Yj* where 

Y* = jd,ip: d,€Yj}. 

The construction is performed by mapping the integers congruent to j (mod p) 
onto the integers in an obvious way. Having performed this construction we 
consider two cases. 

(a) If You 9: is regular (the order of the elements in this sequence is 
immaterial by Lemma 4) then (22) is satisfied and so we may apply the 
induction hypothesis. Thus, using Lemma 2, 

2 P  {X (Yo)- (1idi)X ( y o  (a,))]. 
di& 

(b) If Yo u q* is not regular we set 

Suppose that r is the least index such that {dl, . . ., d,) is not regular. Now 
Yo c 9 ,  9 is regular so Yo is regular. So is any subsequence of yo. Thus 
n 2 r > m and if i < r we must have 

On the other hand, since {dl, . . . , d,) is not regular we have 

(26) 

where 

9, = {d,: 1 ,< i < r - 1 ,  (d,, d,)= 1) .  
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Now 

{dl, ..., dr-1) =you{dm+l ,  . . . ,dr-l}. 
1 

Since this sequence is regular we may apply Lemma 2 and obtain 

Now dr does not belong to 9, so 9, is regular, and so is Yo (d,). It is easily 
seen that Yo (d,) G g r ,  so by Lemma 1 

Substituting (27) and (28) in (26) gives 

Furthermore, for i = r + 1, . . . , n, Y,, (di) G Yo and is therefore regular. So 
X (yo (di)) > 0 and the sum above can be extended to include i = r + 1 to n 
while preserving the inequality. Since N j  is clearly non-negative we then have 

This is identical to (25), so (25) holds for each j, j = 1, . . . , p. By (24) we 
then have 

as required. 

We now prove our third theorem. 

THEOREM 3. If P has prime factorisation 

and 9 is the set of all distinct divisors of P excluding 1, and 
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(i) ~ ~ = p j l - k  ... +pjaj.for j = 1 , . . . ,  t ,  

(ii) uO, ol, . . ., 0, are the elemrlltary symmetric functions in x,, . .., X,: 

( t+xl) ... (t+xr) = gotr+ . .- +gr, 
(iii) An is the integer sequence generated by the recurrence 

then 

Proof .  

where the sum ranges over all sets {dl,. . . ,d,j of divisors of P that are pairwise 
relatively prime. The right-hand side of (29) is equal to 

where the inner sum ranges over all sets {dl, . . . , d,) of divisors of P which are 
pairwise relatively prime and whose product is rn. 

Consider now any divisor m of P and let its prime factorisation be 

and 

p;;' . . . p;> 

L = {p- 11, - - ' ,  pi,) C- {PI, ..-, pr). 

Now any factorisation of m corresponds to a set partition of L, so the inner 
sum in (30) corresponds to 

(31) C (- 11 number of sets in partition 

set partitions of L 

But set partitions ring a bell: the famous Bell numbers enumerate the total 
number of set partitions of an n-element set. They satisfy the famous 
recurrence: 

The usual way to prove (32) is to consider the set to which the nth element 
belongs. It may have any number of companions from 0 to n- 1, say n - 1 - k 
companions, and the number of ways of choosing them is 

6 

I 

The remaining k elements can be partitioned in B, ways. 1 : 
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To get (31), however, we need "weighted counting" where each set 
partition gets, not weight 1, but weight ( -  l)number IetS ; calling these new 

i numbers A,, the same argument that yielded (32) gives 
i 

(The minus sign in front of the sum is due to the fact that by deleting the set to 
which n belonged we "lost" a set and thus changed the sign of the partition.) 

Thus (31) is equal to AIL[. From (29) and (30) we then have 

If L = {pil, . . . , pis), the inner sum is clearly equal to xil . . . xi, 
Thus (33) becomes 

This completes the proof. r 

COROLLARY 2. Any DCS consisting o f  odd square-free moduli must involve 
at least 18 different prime divisors. 

P r o  of. We show that no DCS can exist whose moduli have an lcrn 
divisible by at most 17 distinct primes. By Corollary 1 it is sufficient to show 
that no DCS exists whose lcm divides the product of the first 17 odd primes: 3, 
5, ..., 61. 

Trying the products 3, 3-5, 3.5.7, . . . , 3.5.. . :61 as P in Theorem 3 we get 
X ( 9 )  positive in each case. When P is the product of the first 17 odd primes we 
get X ( 9 )  = 0.002596.. . Applying Theorem 2 we therefore have M (9) > 0 
when 9 is the set of divisors greater than 1 of this P. Thus no DCS can exist 
with this set of divisors. 

Remarks.  Corollary 2 gives the best result to date. [I] gave 11 primes 
and [2] 13 primes compared with our 18. 

The disappointing feature of this work is that we have not been able to 
extend Theorem 2 to apply to non-square-free moduli. We believe this is 
possible; if we are able to do so it will be the subject of a subsequent paper. 
With the exceptions of Theorem 2 and Corollary 2 all results herein apply to 
non-square-free moduli. 
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