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We prove a general ``pentagonal sieve'' theorem that has corollaries such as the
following. First, the number of pairs of partitions of n that have no parts in com-
mon is

p(n)2& p(n&1)2& p(n&2)2+ p(n&5)2+ p(n&7)2& } } } .

Second, if two unlabeled rooted forests of the same number of vertices are chosen
i.u.a.r., then the probability that they have no common tree is .8705... . Third, if f,
g are two monic polynomials of the same degree over the field GF(q), then the
probability that f, g are relatively prime is 1&1�q. We give explicit involutions for
the pentagonal sieve theorem, generalizing earlier mappings found by Bressoud and
Zeilberger. � 1998 Academic Press
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1. THE MAIN THEOREM

The natural context in which our results lie is that of prefabs. A prefab
([1, 3, 4]) P is a combinatorial structure in which each object | is
uniquely representable as a product (``synthesis'') of powers of prime
objects, and in which there is an order function | � ||| # Z+ which
satisfies |||$|=|||+||$|. We denote the primes of P by p1 , p2 , ... .
Examples of prefabs are integer partitions, rooted unlabeled forests, plane
partitions, etc.

Let P be a prefab in which the number of objects of order n is f (n), for
n=0, 1, 2, ..., and the number of ``prime'' objects of order n is bn , for n�1.
The unique factorization of all objects in P into products of powers of
prime objects is expressed by the formula

:
n�0

f (n) xn= `
i�1

1
(1&xi)bi

. (1)

For a fixed positive integer m, we are interested here in the number fm(n),
of m-tuples of objects of order n in P, such that no prime object is a factor
of every member of the m-tuple. We will call such a tuple coprime. As spe-
cial cases we mention the number of pairs of partitions of n with no com-
mon part, the number of pairs of rooted forests with no common tree, and
the number of relatively prime pairs of monic polynomials over a finite
field.

To find fm(n) we note that we can uniquely factor an m-tuple (|1 , ..., |m)
of objects of order n into a product of their ``gcd'' : and an m-tuple
(|$1 , ..., |$m) of coprime objects of orders n&|:|. Thus

:
n�0

f (n)m xn=
1

>i�1 (1&xi)bi
:

n�0

fm(n) xn,

which yields

:
n�0

fm(n) xn=\ :
n�0

f (n)m xn+\`
i�1

(1&xi)bi+ . (2)

This is the general form of the pentagonal number sieve. The effect of mul-
tiplying by the product on the right is to sieve out of the generating func-
tion for all m-tuples of objects of order n, the gf for just the coprime tuples.

Some consequences of the sieve (2) are as follows.

(A) In the prefab of integer partitions, (2) yields the following.
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Proposition 1. The number of m-tuples of partitions of n that have no
part in common is

p(n)m& p(n&1)m& p(n&2)m+ p(n&5)m

+ p(n&7)m& p(n&12)m& p(n&15)m+ } } } , (3)

in which the decrements are the pentagonal numbers [ j(3j\1)�2]j�0 .

(B) Let P be the prefab of rooted, unlabeled forests. For fixed n, the
probability that if we choose two forests of n vertices i.u.a.r. then they will
have no tree in common, is, according to (2) with m=2,

1+c1 \ f (n&1)
f (n) +

2

+c2 \ f (n&2)
f (n) +

2

+ } } } ,

in which >i�1 (1&xi)bi=�i ci xi defines the c's. Now it is well known that
the number of rooted forests of n vertices is f (n)tKCn�n1.5, where
C=2.95576... . Hence each ( f (n&k)� f (n))2 above approaches C&2k, and
in the limit as n � � we obtain the following.1

Proposition 2. The probability that two rooted forests of n vertices have
no tree in common approaches

1+
c1

C2+
c2

C4+ } } } = `
i�1

\1&
1

C2+
bi

=0.8705...

as n � �.

(C) Now let P be the prefab of monic polynomials over a finite field
GF(q). There are qn such polynomials of order (degree) n, so (1) reads as

1
1&qx

= `
i�1

1
(1&xi)bi

,

where bi is the number of irreducible monic polynomials of degree i. Now
from (2) we find that

:
n�0

fm(n) xn=\ :
n�0

qnmxn+\`
i�1

(1&xi)bi+=
1&qx

1&qmx
.

If we compare the coefficients of like powers of x on both sides, we find the
following.

Proposition 3. The number of coprime m-tuples of monic polynomials of
degree n over GF(q) is qnm&q(n&1) m+1. Alternatively, if m monic polynomials

1 Dr. Don Zagier observes that this proposition remains true even if the polynomials are
(nonconstant and) of different degrees.
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of degree n over GF(q) are chosen i.u.a.r., then the probability that their gcd
is 1 is 1&1�qm&1.

(D) What is the average number of different parts that m randomly
chosen partitions of the integer n have in common? We use a well known
property of the sieve method: the average number of properties that objects
have is � N($i)�N, where i runs over all single properties, N($[i]) is the
number of objects that have at least the ith property, and N is the total
number of objects. In the present case, the average number of common
parts is

1
p(n)

( p(n&1)m+ p(n&2)m+ } } } + p(1)m+1).

If we now use the classical asymptotic formula for p(n) it is easy to see
that this last expression is t- 6n�(m?). It is well known that the average
number of distinct parts in a single random partition of n is t- 6n�?. It
follows that the average number of different parts that are common to all
members of an m-tuple of partitions of n is 1�mth of the average number of
distinct parts in a single partition. For instance, the average number of
different common parts in a random pair of partitions of n is one-half of
the average number of distinct parts in a single partition of n.

A Question. A special case of Proposition 3 is this: Among the ordered
pairs of monic polynomials of degree n over GF(2) there are as many
relatively prime pairs as non-relatively prime pairs. What is a nice simple
bijection that proves this result?

2. COMBINATORIAL PROOFS

We give combinatorial proofs of (2) and (3) from Section 1.
We rewrite (2) as

fm(n)= :
k�0

f (n&k)m (qe(k)&qo(k)), (4)

where qe(k) (resp. qo(k)) is the number of objects of order k which consist
of an even (resp. odd) number of distinct primes. We claim that any parity-
changing involution which establishes this equation in the m=1 case,

$n, 0= :
k�0

f (n&k)(qe(k)&qo(k)), (5)

will generalize to an involution for the m>1 case.
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To see this, let F(n)m, Fm(n) be the sets counted by f (n)m, fm(n), respec-
tively. For an object : and for 0=(|1 , |2 , ..., |m) # F(n)m, let :0 denote
the m-tuple (:|1 , :|2 , ..., :|m) # F(n+|:| )m. Then any 0 # F(n)m can be
decomposed uniquely as :0$ for some object : and some 0$ # Fm(n&|:| ).
Thus

f (n)m= :
l�0

fm(n&l ) } f (l ). (6)

Then using (6) followed by (5) we find

:
k�0

f (n&k)m (qe(k)&qo(k))= :
k, l�0

fm(n&k&l ) } f (l ) } (qe(k)&qo(k))

= :
j�0

fm(n& j) :
k�0

f ( j&k) } (qe(k)&qo(k))

= :
j�0

fm(n& j) } $j, 0= fm(n). (7)

Let Qe(k), Qo(k) be the sets of objects counted by qe(k), qo(k), respec-
tively. Now, suppose we have an involution proof of (5). Specifically, let

�1: .
k�0

F(n&k)_F(k) � .
k�0

F(n&k)_F(k)

be an involution satisfying (i) �1(:, ;)=(:, ;) if and only if :;=*, the
empty object (i.e. n=0) and otherwise (ii) if �1(:, ;)=(#, $) then ; # Qe(k)
if and only if $ # Qo(k).

Then it follows from (7) that for any m>1, �1 extends to the following
parity-changing involution �m on �k�0 (F(n&k)m_F(k)), in which the
fixed points are Fm(n)_[*]. For 0 # F(n&k)m and ; # F(k), decompose 0
as :0$, where 0$ # Fm(n&k&|:| ). Then �m is defined by

�m((0, ;))=�m((:0$, ;))=(#0$, $),

where (#, $)=�1((:, ;)), thus establishing (4).
Some examples follow.

v The involution of [5] for the inclusion-exclusion principle, adapted
for (5) gives the following involution, �m , to prove (2). Let (0, ;) #
F(n&k)m_F(k). Decompose 0 as :0$, where 0$ # Fm(n&k&|:| ) and let
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p be the prime factor of largest index, in some fixed list p1 , p2 , ... of all
primes in the prefab, occurring in :;. Then �m is defined by

(0, ;) if :;=*
�m((0, ;))=�m((:0$, ;))={(:p0$, ;& p)) if p # ;

((:& p) 0$, ;p) otherwise,

where :& p denotes the object obtained from : by removing one copy
of p, and similarly for ;& p.

v In the prefab of integer partitions, we will write a partition of n as
a nonincreasing sequence of positive integers ?(1)�?(2)� } } } �?(t)>0
such that |?|=?(1)+?(2)+ } } } +?(t)=n. The set of partitions of n is
denoted by P(n), its cardinality by p(n). Euler's identity for p(n), n�1,

:
j even

p(n&a( j))= :
j odd

p(n&a( j)),

where the a( j)=(3j2+ j)�2 are the pentagonal numbers, and j ranges over
all integers, was proved in [2] by exhibiting a bijection between the sets
So=�j odd P(n&a( j)) and Se=�j even P(n&a( j)) for n>0. The bijection
can be interpreted as a parity-changing involution 81 on Se _ So , where
when n=0, 81(*)=*. This gives a proof of (5), where first Euler's pen-
tagonal number theorem is applied in (5) to replace qe(k)&qo(k) by (&1) j

if k=(3j 2\j)�2 and by 0 otherwise. Thus, 81 extends to a parity-changing
involution, 8m on

.
j even

P(n&a( j))m _ .
j odd

P(n&a( j))m,

to prove (3). The involution 8m is defined as follows. For 6=:6$ #
P(n&a( j))m, where :=(:(1), ..., :(t)) and 6$ # Pm(n&|:| ),

6, if j=0 and |:|=0
(t+3j&1, :(1)&1, ..., :(t)&1) 6$,

8m(6)=8m(:6$)={ if t+3j�:(1),
(:(2)+1, ..., :(t)+1, 1, ..., 1) 6$, where

there are (?(1)&3j&t&1) ones at the end,
otherwise.

As a further check, note that 8m(6)=6 if and only if 6 # Pm(n).
Otherwise, 6 # Pe(n) if and only if 8m(6) # Po(n), where Pe(n)=
�j even P(n&a( j))m and Po(n)=� j odd P(n&a( j))m. It can be checked that
8m is its own inverse.

191NOTE



File: DISTL2 284607 . By:BV . Date:10:04:98 . Time:14:39 LOP8M. V8.B. Page 01:01
Codes: 2333 Signs: 658 . Length: 45 pic 0 pts, 190 mm

REFERENCES

1. E. A. Bender and J. R. Goldman, Enumerative uses of generating functions, Indiana Univ.
Math. J. 20 (1971), 753�765.

2. D. M. Bressoud and D. Zeilberger, Bijecting Euler's partitions-recurrence, Amer. Math.
Monthly 92, No. 1 (1985) 54�55.

3. D. Foata and M. Schu� tzenberger, ``The� orie ge� ometrique des polynomes euleriens,'' Lecture
Notes in Math., Vol. 138, Springer-Verlag, Berlin�New York, 1970.

4. A. Nijenhuis and H. S. Wilf, ``Combinatorial Algorithms,'' 2nd ed., Academic Press, New
York, 1978.

5. D. Zeilberger, Garsia and Milne's bijective proof of the inclusion-exclusion principle,
Discrete Math. 51, No. 1 (1984) 109�110.

192 NOTE


