A GENERALIZATION OF ODLYZKO'S CONJECTURE:
THE COEFFICIENTS
OF \((1 - q)^j/((1 - q^{2n}) \cdots (1 - q^{2n+2j}))\) ALTERNATE IN SIGN

JANE FRIEDMAN AND DORON ZEILBERGER

(Communicated by Jeffery N. Kahn)

ABSTRACT. A positivity result is proved that generalizes a conjecture of Odlyzko,
previously proved by Stanton and Zeilberger.

Let \(N, a, b, i, j, r, n\) denote arbitrary nonnegative integers, and let
\[
\begin{align*}
(x)_N & := \prod_{i=1}^{N-1} (1 - q^i x), \\
G(a, b) & := \frac{(q)_{a+b}}{(q)_a (q)_b}, \\
A & := \{ f(q); (-1)^i f^{(i)}(0) \geq 0, \ 0 \leq i < \infty \}.
\end{align*}
\]
Odlyzko conjectured that \((1 - q)^j/(q)_j \in A\). This was proved in [1], where the
more general fact that \((1 - q)^j G(2j, r) \in A\) was proved. Here we show that this
last result also implies the statement of the title, that it generalizes Odlyzko’s
conjecture (for even \(j\)) in a different direction. To wit: set \(t = q^{2n}, N = 2j\),
in the \(q\)-binomial theorem \(1/(t)_{N+1} = \sum_{r \geq 0} G(N, r) t^r \), and then multiply by
\((1 - q)^j\). \(\square\)

REFERENCE

1. D. Stanton and D. Zeilberger, The Odlyzko conjecture and O’Hara’s unimodality proof,

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF SAN DIEGO, 5998 ALCALA PARK, SAN DIEGO,
CALIFORNIA 92210
E-mail address: janef@teetot.acusd.edu

DEPARTMENT OF MATHEMATICS, TEMPLE UNIVERSITY, PHILADELPHIA, PENNSYLVANIA 19122
E-mail address: zeilberg@euclid.math.temple.edu

Received by the editors July 19, 1991 and, in revised form, November 5, 1991.
1991 Mathematics Subject Classification. Primary 05A17, 10A45.
The second author was supported by NSF grant DMS8901690.