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Summary. It is shown that every 'proper-hypergeometric '  multisum/integral 
identity, or q-identity, with a fixed number of summations and/or integration 
signs, possesses a short, computer-constructible proof. We give a fast algorithm 
for finding such proofs. Most of the identities that involve the classical special 
functions of mathematical physics are readily reducible to the kind of identities 
treated here. We give many examples of the method, including computer-generat- 
ed proofs of identities of Mehta-Dyson, Selberg, Hille-Hardy, q-Saalsch/itz, and 
others. The prospect of using the method for proving multivariate identities 
that involve an arbitrary number of summations/integrations is discussed. 
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Preface 

We now know [Z1, WZ1] that a large class of special function identities and 
binomial coefficient identities, are verifiable in a finite number of steps, since 
they can be embedded in the class of holonomic function identities, the elements 
of which are specifiable by a finite amount of data. Alas, the finite is usually 
a very big finite, and for most identities the holonomic approach [Z1], that 
uses an elimination algorithm in the Weyl algebra, is only of theoretical interest. 
In [Z2, Z3, WZ1], and [WZ2],  it was shown that for single sum terminating 
hypergeometric identities (i.e. binomial) and transformation formulas there exists 
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a fast algorithm producing one- or two-line elegant proofs (called "certificates") 
for any desired identity. Very often [-WZ2] one also obtains, as a bonus, new 
identities, called the dual and the companion. 

In this paper we show that these fast algorithms can be extended to the 
much larger class of multisum terminating hypergeometric (or equivalently, bino- 
mial coefficient) identities, to constant term identities of Dyson-Macdonald type, 
to Mehta-Dyson type integrals, and more generally, to identities involving any 
(fixed) number of sums and integrals of products of special functions of hypergeo- 
metric type. The computer-generated proofs obtained by our algorithms are 
always short, are often very elegant, and like the single-sum case, sometimes 
yield the discovery and proof of new identities. We also do the same for single- 
and multi-(terminating) q-hypergeometric identities, with continuous and/or  dis- 
crete variables. 

Here we describe these algorithms in general, and prove their validity. The 
validity is an immediate consequence of what we call "The fundamental theorem 
of hypergeometric summation and integration", a result which we believe is 
of independent theoretical interest and beauty. The technical aspects of our 
algorithms, as well as their implementation in Maple, will be described in a 
forthcoming paper. 

It is possible, and sometimes preferable, to enjoy a magic show without 
understanding how the tricks are performed. Hence we invite casual readers 
to go directly to section 6, in which we give several examples of one- or two-line 
proofs generated by our method. In order to understand these proofs, and con- 
vince oneself of their correctness, one doesn't need to know how they were 
generated. Readers can generate many more examples on their own once they 
obtain a copy of our Maple program, that is available upon request from 
<zeilberg @ euclid, math. temple, edu). 

The present work generalizes from one to many variables, our previous work 
[Z2, Z3, WZ1, WZ2, AZ], i.e. from one X or ~ to several such. However, 
it is not possible yet to generalize from specifically many to arbitrarily many, 
by purely computerized methods. For example Macdonald's [Ma] constant term 
conjectures for root systems, for a specific root system, is doable by the present 
method, but we can not yet do it for all root systems at once. However, as 
our computers keep getting better and better, we can use them to generate 
proofs of special cases of multivariate identities, for small numbers of variables, 
or root  systems. Then a human might detect a common pattern that can be 
generalized to give a "one-line" 1, though human, proof of the general identity, 
valid for an arbitrary number of S's and variables. Examples of this process 
are given in section 6.5, where we give a new, extremely short and elementary, 
proof  of Holman's [Ho]  U(N) generalization of Gauss's hypergeometric identity, 
and a new proof of Selberg's [-Se, An l ]  celebrated generalization of Euler's 
beta-integral. These proofs would not have been possible (at least for us), without 
the computer-generated WZ proofs given for the cases N = 1, 2, 3, which pos- 
sessed a clear, easily generalizable, pattern. We feel that such uses of our algo- 

The reason we put one line in quotes, is that unlike identities with fixed numbers of sigmas 
and integrals, in which the one line is a purely routine finite algebraic identity, the "one 
line" for multivariate identities for a general number of sigmas and/or integral signs, is not 
purely routine (at present) and requires a "human" proof, though probably a very simple 
o n e  
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rithms are the most interesting and humanly rewarding, and will make them 
a useful research tool in the still young subject of multivariate identities. 

We illustrate the stage of development of our research program by the trivial 
example of the binomial theorem, For the Renaissance mathematician, for a 
junior high school student, and for a Fortran programmer the formulas 

(x + y)2=x2 + 2xy+  yZ,(x + y)3 =x3 + 3x2y+ 3xy2 + y3, 

are "interesting" general facts, since they contain an infinite number of numeri- 
cals facts, obtained by plugging in specific values for x and y. However, to 
a senior high school student, a 17th century mathematician, or a Maple program- 
mer, these are purely routine single facts, since x and y are considered as indeter- 
minates. One can then use Maple to expand (x+y) n, for n = l ,  2, 3, 4 . . . . .  and 
conjecture empirically the general binomial theorem 

(x+ y)" = k 

which before the appearance of [Z1, Z2, WZI,  WZ2] was considered a "human"  
theorem. Thanks to these papers, this is now purely routine, since it can be 
proved by computer. The present paper makes it possible to prove the trinomial, 
and more generally, the muhinomial theorem for any fixed number (in practice 
< 10) of variables. However we still need a human to do this for the general 
multinomial theorem involving an arbitrary number of variables. 

Our theory is concerned directly only with terminating identities, but many 
non-terminating identities (Koornwinder [K]  conjectures all) are immediate 
(human) consequences of terminating ones, usually with extra parameters. For 
example, the Rogers-Ramanujan identities themselves are not computer prov- 
able (by our algorithms), but their "finite form" extensions are [ET]. Hence 
the present theory applies, albeit indirectly, to non-terminating identities. 

We will now describe the contents of the paper. Section 1 presents the histori- 
cal and mathematical context of our work, and introduces the notion of hyper- 
geometric terms. Section 2 presents our centerpiece result, the fundamental theo- 
rem of hypergeometric summation and integration, in the full generality of func- 
tions of several discrete and continuous variables, as well as its q-analog. They 
follow almost immediately from our  fundamental lemma, and its q-analog, respec- 
tively. Our proof for the ordinary case uses holonomic systems [Be], [Bj], as 
applied in [Z1]. This proof has the drawback, however, that although it guaran- 
tees the existence of the things promised by the fundamental theorem, it doesn't 
produce effective upper bounds for the orders of the recurrences and differential 
equations involved. That is why, in sections 3 and 4, we present an alternative 
approach in the case of discrete hypergeometric functions, that yields explicit 
upper bounds, and furthermore is entirely elementary. This method, based on 
the pioneering work of Sister Celine Fasenmyer [Fa] (see also [Ve], [Z0-]), 
also has the advantage that it generalizes naturally to the proof of the q-funda- 
mental lemma, which is carried out  in section 5. Luckily, in this case, no extra 
effort is required for the continuous case, since, as we will show, it's completely 
"isomorphic".  The final section contains many examples that, as pointed out 
above, can be read and understood independently of the rest of the paper. 
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A few words about nomenclature. Throughout  this paper, (a), denotes the 
rising factorial a(a + 1)... (a + n = 1), whenever it appears in an ordinary hypergeo- 
metric series. When it appears in a q-series, however, it means (a; q), . .=(1-a)(1 
- q a ) . . . ( l  - q " - l  a). 

1. Introduction 

1.1 Special functions of mathematical physics 

Laplace and his contemporaries believed that the universe is governed exactly 
by differential equations, and, that given the initial conditions, one would be 
able to predict the future for ever after. That  is why late-18th and 19th century 
mathematicians (most of whom were also physicists) were occupied in trying 
to solve explicitly Laplace's equation, the wave equation, and other partial differ- 
ential equations, under various symmetries. By separation of variables, one was 
able to go from one partial differential equation to several ordinary differential 
equations, and thus were born the special functions of mathematical physics: 
the functions and polynomials bearing the names of Legendre, Hermite, 
Laguerre, Jacobi, Bessel, etc. When Laplace's world-view was shattered by 
Heisenberg and his school, these special functions did not become passO, but 
on the contrary, adapted themselves to serve the new reigning quantum queen 
very much as Laplace himself adapted, and managed always to save his head 
during the political changes in his lifetime. The reason was, of course, that 
the wave equation of classical physics became Schr6dinger's equation of quan- 
tum physics, and so the loot of special functions was used with a vengeance. 
In our own century, new special functions were found, and some of them, like 
the Krawchouk polynomials, turned out to be useful in that by-product of 
twentieth century electronic communication called coding theory, and other 
branches of discrete mathematics. 

The so-called special functions of mathematical physics turn out to have 
beautiful and useful properties. Perhaps the most striking feature is that very 
often they are orthogonal with respect to an appropriate weight (measure). This 
implies nice properties of their zeroes, and so we can use them for numerical 
quadrature, as was shown by Gauss. Another surprising property, that is not 
unrelated to the foregoing, is that they are usually expressible as hypergeometric 
series. 

Recall that a series ~ ak is hypergeometric if the ratio of consecutive terms 
k = 0  

ak+l/a k is a rational function of k. This property leads to a systematized and 
unified notation and theory for special functions. However, a much stronger 
property, that must have been used implicitly many times, but that was not 
distilled and pointed out until recently ([Z0], [Zl ] ,  [WZ2])  holds in the vast 
majority of cases. Most special functions can be written as 

= ~ f(n, k), 
k = O  

where n is an auxiliary parameter, and one has that not only is F(n, k + 1)/F(n, k) 
a rational function in k, but is a rational function in (k, n), and in addition, 



Algorithmic theory for hypergeometric multisum/integral identities 579 

so is F(n+ 1, k)/F(n, k). We will call such an F a hypergeometric term. This makes 
the object of interest an entirely rational, finitary object, and raises the possibility, 
already realized in [Z1], [WZ1], [WZ2],  that it can be handled by finite methods 
and machines. 

We pause for a moment to look at some venerable special functions. 
For  the Hermite polynomials 

(Hermite) H,,(x),=n!~ ( -  1)k(2 x)"-2k 
(n--2k)! k! ' 

we have F(n+ 1, k)/F(n, k)= 2x(n+ 1)/(n- 2 k -  I), and F(n, k+ l)/F(n, k)= - ( n  
- 2k)(n - 2 k -  1)/(4x z (k + 1)). 

The Laguerre polynomials 

(Laguerre) L~,(x)..=~ ( :  + ~)(--x)k 
k! ' 

k 

have F(n+ 1, k)/F(n, k)=(n+c~+ 1)~(n-k+ 1), and 
-x)/((~ + k + 1)(k + 1)). 

In the Legendre case, we have 

F(n, k+ 1)/F(n, k)=(n--k)( 

(Legendre) 

and then F (n + 1, k)/F (n, k) = ((x + 1)/2) (n + 1)2/(n - k + 1)2 and F (n, k + 1)/F (n, k) 
= (n - k) 2 (x - l)/((x + 1)(k + 1)2). 

For  the general Jacobi polynomials 

(Jacobi) 

we find that 

and 

1 n + a  n+f l  

F(n,k+l)  ( x + l ) ( n + ~ + l ) ( n + f l + l )  

F(n,k) ( n - k + l ) ( n + f l - k + l )  ' 

F ( n + I , k )  ( x - 1 ) ( n - k ) ( n + f l - k )  
F(n,k) (~+k+t) (k+l) (x+l )"  

We notice that in addition to the distinguished discrete parameter n, there 
are other parameters/variables. First there is the continuous variable x, and in 
case of the Laguerre polynomials we have another parameter c~, while in the 
case of the Jacobi polynomials we have two extra parameters ~ and/~. It turns 
out that whenever that is the case, it is also true that F is hypergeometric 
in all of its variables and parameters. In other words, the ratios F(ce+ 1)/F(c 0, 
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and F(fl+ 1)/F(fl) are rational functions in all of the variables. Indeed, calling 
the summand of (Jacobi) F(n, k, ~, fl, x), we have that 

F(n+l,k,o~,fl, x) F(n,k+l ,~, f l ,  x) F(n,k,c~+l, fl, x) 
F(n,k, cqfl, x) ' F(n,k,a, fl, x) ' F(n,k,a, fl, x) ' 

F(n,k,a, fl+ l,x) 1 OF(n,k,a, fi, x) 
F(n, k, o~, fl, x) ' F(n, k, ~, fl, x) c3x ' 

are all rational functions of all of the arguments (n, k, c~, fl, x). 
Special functions and hypergeometric series satisfy many identities. For 

example 2 (see [As], p. 39), 

t 1 A k A, ._  k A . _ k  
(Adams) j" P, , (x )P , (x )P, ,+,_zk(x)dx- (m+n+l /2_k  ) A.,+,-k ' 

- 1  

where Ak:=(1/2)k/k!. Another typical formula is the following, which received 
a beautiful combinatorial proof, and was generalized to several variables, by 
Foata and Strehl [FS]: 

(Hille-Hardy) 

= ( l _ u ) ( _ , _ l ) e x p { - ( x + y ) u }  1 ( x y u  ]" 
(i-u5 Z 

Readers are encouraged to browse through JR] and [Er] for literally 
hundreds of other formulas involving special functions. In I-Z1] it was shown 
that all such formulas, involving summations and integrations of products of 
special functions of hypergeometric type are verifiable in a finite number of 
steps. This was done by noting that since the summand is always proper hyper- 
geometric (see below), it is in particular holonomic, and hence, the sum itself 
is holonomic. Since a holonomic function is specifiable by a finite amount of 
information, in a uniform way, and it is possible to find representations for 
products, sums, and integrals, it followed that all such identities were decidable 
in a finite number of steps. 

Alas, what is true in principle turns out to be very time consuming in practice. 
In [Z2], [Z3], [WZl] ,  and [WZ2] it was noticed that for single hypergeometric 
sums, and for single so-called hyperexponential integrals [AZ], there exist ex- 
tremely fast algorithms, that exploit fully the fact that the summand is hypergeo- 
metric, as opposed to the holonomic approach, that uses only the fact that 
the summand is holonomic. These algorithms used an extension of Gosper's 
[Gos] algorithm for single-sum indefinite hypergeometric summation, and of 
its continuous analog. 

We will show that these fast algorithms of [Z2], [WZl] ,  [WZ2],  and [AZ] 
extend naturally to the most general situation of multisums/integrals of special 
functions of hypergeometric type. The key observation is that every expression 
involving definite sums and integrals of special functions of hypergeometric type 

2 This formula is the sister of a planet: Adams also discovered Neptune! 
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can be rewritten as another expression, usually with more sigmas and integral 
signs, but in which the integrand-summand is a hypergeometric term. 

For example the fully expanded version of (Adams) obtained by plugging 
(Legendre) into it is 

1 

(Adams-expanded) _~ 
1 2 $3 \ $ 1 ]  $ 2  $3  

�9 ( x -  1)sl +s2+S3(x + 1) 2"+ 2"-2k-~l-s2-" 

1 A k A,._k A,_k  
(m+n+ l/2--k) A,.+.-k 

Hence Adams's formula has the form 

1 

dx Z Z Z F(m,n,k,s,,s2,s3, x)=G(m,n,k), 
-- I Sl $2 $3 

where F is hypergeometric in discrete variables m, n, k, sl,  s2, s3 and the continu- 
ous variable x, and G(m, n, k) is hypergeometric in discrete variables m, n, and 
k. Similarly, the spelled out Hille-Hardy formula, reads as 

(Hille-Hardy-expanded) 
u"n! ( -y )  k2 

= ( 1 - - u ) - ' - ' e x p ~  (x+y)u~ 1 { xyu ]" 
t 

The format of the Hille-Hardy identity is thus 

~, ~ ~,F(n, kl ,k2,x  y, u)=Z G(n,x, y,u), 
n k l  k2 n 

where F and G are hypergeometric functions of their arguments. 
The two examples above assert the equality of two expressions of the kind 

(general-integral-sum) ~f(n, k, x, y) d y, 
k 

where F is a hypergeometric term. Such expressions, and identities between 
them, are the "objects" of study in our theory. In the above formula, k, n, 
are discrete multi-variables, while x and y, are continuous multi-variables, and 
F is hypergeometric in all of its arguments�9 Sometimes, as in the right side 
of Adams's formula, k and y are empty, so the right side is already hypergeomet- 
ric. We will present a general algorithm that produces a one- or two-line proof 
of any such identity. 

Two special cases of the general (integral-sum) deserve special mention. One 
is the case of the pure multi-sum (i.e. y is empty), in which we get a combinatorial 
sum, and the other is the case of the pure multi-integral, (i.e. k is empty), which 
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includes Dyson-Macdonald constant term expressions. Selberg's integral, and 
Mehta-Dyson-Macdonald integrals. Let's say a little more about these. 

1.2 Combinatorial sums In enumerative combinatorics or discrete probability, 
one attempts to find expressions a (n) enumerating families of finite sets described 
by certain conditions that are parametrized by n. Many times, complex combina- 
torial sets can be expressed as (disjoint) unions and cartesian products of"bas ic  
events", that very often turn out to be acts of "choosing". Hence, the importance 

in combinatorics of the binomial coefficients (~ )=n , / ( k , (n -k ) , ) ,  pronounced 

n choose k, the number of ways of choosing k objects out of n objects, and 
more generally, the multinomiat coefficients 

(multinomial) ( ml +... +mr]= (m~+... +mr)! 
ml , . . . ,mr  / m~!...mr! 

which are the number of ways of choosing m~ objects to do one thing, m2 
objects to do a second thing . . . . .  mr objects to do an rth thing, out of a total 
of m 1 + . . .  + mr objects. The operation of cartesian product turns, upon counting, 
into multiplication, and that of disjoint union, into addition. Thus, we often 
get sums of  products of binomial and multinomial coefficients, all of which fall 
under the present heading, For  example, if on each day of Christmastide one 
tosses a fair coin n times, the probability that one gets the same number of 
heads each day is 

n 1 2  

The Jewish analog of this is 

1 
(n) = 48, 

n )8 
(0~, ~,"1' ~ '  ~ 

1.3 Multi-integrals and constant term expressions 

Dyson's erstwhile conjecture (see [Goo],  [Ma]) states that 

constant t e rmof  YI (1 x~]"_(na)! 
1~=i.~<=, x j /  a!" ' 

i , j  

0 of the Laurent polyno- where "constant  term" means the coefficient of x~ x, 
mial. The constant term identity of Dyson, as well as its generalizations by 
Macdonald [-Ma] to other root systems (whose proofs were recently completed 
by Opdam [O]) all involve "evaluating" expressions of the form 

constant term of P(x I , ..., x,) a, 
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where P(x~, ..., x,) is a given Laurent polynomial, and more generally, 

R 

constant term of Po(xl . . . . .  x,) H P,(xt . . . . .  x.)% 
r = l  

where g are given Laurent polynomials. Replacing the operation of constant 
term by that of contour integration: 

constant term o f f ( x ,  x , )=  1 (2~zi)"c ~ . ~c dx l  . . d x .  ' " "  "" x~ . . ~  f ( x ,  . . . . .  x ,) ,  

where C is any circle surrounding the origin, we see that these expressions 
all have the right format since the integrand 

R 

H P r ( X '  . . . . .  xn)a~ 

F ( a l , . . . ,  at, Xl, ..., x,).'= Po(xl . . . . .  x,,) ,=1 
X 1 . . . X  n 

is easily seen to be hypergeometric. Indeed 

F(al ,  a 2 . . . . .  a i +  1 . . . . .  a t ,  x I . . . . .  Xn) 

F (al, a 2 . . . . .  ai . . . . .  at ,x1 . . . . .  x,) -- Pi(xl . . . . .  x,), 

which is a rational function, and the logarithmic derivatives of F w.r.t, each 
of the xl are also easily seen to be rational functions. 

The celebrated Selberg integral [Se] (see also ]-An 1], ]-Ma]) 

0 0 i= l<i<j<=n 

-_ f i  ( x + ( j - 1 ) z ) ! ( y + ( j - 1 ) z ) ! ( j z ) !  

s= l  ( x + y + ~ ) z + ~  ' 

and the Mehta-Dyson integral (see [Ma]) 

(Mehta-Dyson) 

1 of ~ e x p ( - - t ~ / 2 - - . . . - t z . / 2 )  I-[ ( t , - t s ) 2 ~ d t , . . . d t .  
(2~) "/2 -oo "'" -oo 1 <=i<j<=n 

= ( I  (zj)! 
z! ' 

j = l  

as well as its various generalizations by Macdonald [Ma]  and Richards [Ri] 
are also obviously of this kind. 

Our present work implies that for any specific number  of variables, there 
is a short and elegant prof  of any such identity. 

Another application is to combinatorial  sums. It is always possible to express 
a combinatorial  sum or multisum as a multi-contour integral of the kind treated 
here (see [Eg]), and thus in addition to the direct approach to sums, one can 



584 H.S. Wilf and D. Zeilberger 

go through this roundabout  way. The advantage is that we get brand-new compan- 
ion identities quite different from the ones one gets by the direct approach. 
For  example, Dixon's identity (see [EK2]) 

(a+b](a+c]{b+c] (a+b+c)! 
2 ( -1)k \a+kl \c+k] \b+k]  = ~.b!c! k 

can be rewritten as the multi-contour integral 

l ~ c  ~c Z~a+'z2b+lz~ c+' (27.t5i)3 dZl d22 S d2"3 (21 --z2)a+b(z3--Zl)a+c(22--Z3)b+c 
C 

= ( _  l)a+b+ ~ (a+b+c)! 
a!b!c! 

1.4 Hypergeometric and holonomic functions, and the fundamental lemma 

It's about time that we formally define the notion of hypergeometric that we 
informally introduced above. It will be convenient, at this point, to recall the 
shift operators E, acting on functions that depend on the discrete variable a 
(and possibly other variables) by changing a to a + 1. In symbols: 

E,~f(a, b, x) =f(a + 1, b, x). 

Also, as always, Dr will denote the partial derivative w.r.t.x. 

Definition. A function F(x~ ..... x,, al,...,  a,,) of n continuous and m discrete 
variables is a hypergeometric term if for every discrete variable ai, and every 
continuous variable x j, 

E~ F _  P~ ( i=1,  ..,m) 
F Qi' 

and 

Dxs F = P j  
0"=1 . . . . .  n), 

F Q) 

where P~, Q~, Pj and Q) are all polynomials in the variables (x~ . . . . .  x, ,  a~, ..., a,~). 
Phrased otherwise, F is a solution of the system of linear recurrence and 

linear differential equations 

(Q,E,-P~)F =0, ( i=1 . . . . .  m); 

' O  . ,  (Qj x j -  Pj) F = 0, ( j=  1,.. n). 

Note that these m+n equations are of first order! Functions that satisfy 
a system of linear differential-recurrence equations with polynomial coefficients, 
not necessarily of the first order, such that the dimension of the space of solutions 
of that system is finite are called holonomic. The theory of holonomic functions 
and D-modules (for functions of continuous variables) was initiated by Joseph 
N. Bernstein [-Be], and today is a very active field, see for example [-Bo]. It 
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was observed in [ZI]  that the theory extends naturally to functions of several 
discrete and continuous variables, and its importance for proving special func- 
tion identities is realized. We refer the reader to [Z1] for a leisurely treatment, 
but the present paper is largely independent of holonomic functions, as will 
become apparent soon. 

For  nice things to happen the terms have to be first of all holonomic, and 
for really nice things to happen, they have to be also hypergeometric. Note 
that being hypergeometric is not enough, and one has to require that our terms 
be both hypergeometric and holonomic. For  example F ( n , k ) = l / ( n 2 + k 2 ) ,  is 
hypergeometric but not holonomic, as will be proved in the next subsection. 

In [Z1] it is shown how to check for holonomicity, and in particular it 
is proved that the following class of proper-hypergeometric .[unctions are holon- 
omic. 

Definition. A term F(x l  . . . . .  x , ,  al . . . . .  am) is proper-hypergeometric if it has 
the form 

P 

P(x t  . . . .  , x , ,  al . . . . .  am) exp{R0(Xl . . . . .  x,)} ]-I Sp(xt . . . . .  x,)  ~'' 
p = l  

m 1 

l q  R (x, . . . . .  x.)  ~ 1-1 + . . .  am +f,)! 
j = l  i - 1  

where 
(i) P(x~ . . . . .  x , ,  a~ . . . .  , am) is a polynomial, 
(ii) Ro, Sp, and Rj are rational functions in (xl . . . . .  x,), 
(iii) c. and f~ are commuting indeterminates, or, if one wishes, complex numbers, 
(iv) e~ ) . . . . .  el~ ~ and gi(i= 1 . . . . .  I), are (positive or negative) integers. 

Our examples are all proper-hypergeometric. We conjecture that a hypergeo- 
metric term is proper-hypergeometric if and only if it is holonomic. 

1.5 The .fundamental lemma 

Our major tool is the following result, which is due to J. Bernstein, and is 
reproduced in [Z1], lemma 4.1. 

The fundamental lemma. For every holonomic function F(x~ . . . . .  x , ,  a~ . . . .  , a,,), 
and any continuous variable xi (respectively discrete variable aj), there exist non- 
zero linear recurrence-differential operators 

Pi(xl; D . . . . . . .  Dx.; E . . . . . . .  E~,,), (resp. Cj(aj; D . . . . . . .  Dx,; Eo,, .... E~m) ) 

that annihilate F. 

An operator P is said to annihilate a function F if PF=O.  For example 
E 2 - E. - I annihilates the Fibonacci sequence, and D 2 + I annihilates cos x. 

The drawback of the proof in [ZI]  is that it doesn't give a priori bounds 
for the orders (i.e. degrees) in the D's and E's. Hence we also give an entirely 
elementary proof of the fundamental lemma for the special case of discrete proper- 
hypergeometric functions that yields explicit a priori bounds for the orders. 
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We are sure that this proof  can be generalized to proper-hypergeometric functions 
of discrete and continuous variables, but the formidable details deter us from 
carrying it out. At any rate, the a priori bounds are of only theoretical interest, 
since they are more pessimistic than one obtains in practice. 

The main raison d'Otre of the elementary approach is that it generalizes 
to q-sums/integrals, for which there is no holonomic theory yet, and which 
is of even greater significance than the ordinary case. Before discussing these, 
let's fulfill our promise and prove that F(n, k)=  1/(n2+k 2) is not holonomic, 
although it's obviously hypergeometric. Were it holonomic, the fundamental 
lemma would have guaranteed a non-empty set S of non-negative integer pairs 
(i, j), such that 

a~,~(n) 
~" (n + i)2 + (k +j)2 = 0, 

(i , j)eS 

where not all the ai.j are identically zero. Looking at the left side as a mero- 
morphic function of k, we see that at any pole of one term, the other terms 
remain finite, getting that ~ = finite, a contradiction. 

1.6 q-series and integrals 

The simplest non-trivial hypergeometric sequence is f(n):=n!, since f(n)/f(n 
- 1 ) = n ,  and n is the simplest non-constant  rational function. As we saw, it 
is the building block from which all discrete proper-hypergeometric functions 
are built. Combinatorially, n! is the number  of permutat ions of n objects. If 
instead of naive counting, one assigns to every permutat ion n, qinV(~), where 
inv(n), denotes the number  of inversions of n, i.e. the number  of pairs 1 <=i<j <= n 
such that n(i)>n(j), then we find (e.g. [-An]) that the weighted count, denoted 
by [n] I, is 

In] ! = (1)(1 +q)(1 +q+q2).. .  (1 + q + q 2  + ... + q,-1), 

which is called the q-analog of n !, and it can be rewritten in the form 

Enid- 
(1--q)(1--q2) . . . (1--q")  

(1 --q)" 

It turns out that  the denominator  ( l - q ) "  is inessential, so one discards 
it, and instead considers the numerator  above, written (q),, as the fundamental  
atom of q-theory. In fact, one needs a slightly more general creature, that emu- 
lates (n + c) !. It is 

(c),.'=(1 --c)(1 - cq)... (1 - cq"- '), 

which agrees with the previous notation when c=q. What 's  nice about  it is 
that  f(n),=(c),, satisfies f (n  + 1)/f(n)=(1--cq"), which is the simplest non-con- 
stant rational function of q". There is also a natural  q-analog of the binomial 
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coefficients, probably known to Euler, but called the Gaussian polynomials, defined 
by 

(Gaussian) (n) (q), (1-q")(1-q"-t)...(1-q "-"+t) 
m q : ~  (q)m (q)n- rn (I - q)... (l - qm) 

These are much more subtle than the binomial coefficients, since they involve 
the parameter q, and they have many counting interpretations, both as generating 
functions, in which the coefficients of powers of q count important things, and 
as functions of q =p", when they themselves count the m-dimensional subspaces 
of n-dimensional space over GF(q). We refer the readers to the classic [An], 
and its sequel JAn1], for the combinatorial and analytical aspects of q-theory, 
as well as for some surprising applications elsewhere in mathematics, and to 
the soon-to-be-classic [GR], which in addition to the classical q-theory contains 
a very readable and charming account of the state of the art of q-series, in 
particular, the impressive work of Askey and Wilson lAW], and the complex 
yet elegant results of Gasper and Rahman themselves, and that of the many 
others, who together with Askey, caught the "q-disease'. 

There are q-analogs, known or conjectured, to almost everything. For exam- 
ple, the q-analog of the binomial theorem, that goes back at least as far as 
Cauchy. Recall that the the binomial theorem may be written 

Its q-analog reads 

( l_x) ,+ 1 - x k. 
k = 0  

(X)(n+ 1) k = H q 

Other famous examples are the Vandermonde-Chu binomial coefficient identity, 

whose q-analog is 

k2 a ~q (k)q (bl =(a+bl, 
\k/q \ a ]q 

the q-analog of the Pfaff-Saalschiitz identity 

~ (  a+b+c-n ~ (a+b~fa+c~fb+c~ 
\a-n, b-n, c-n, n-k,  n+k]=\a+k]\c+ k]\b+k]' (Saalschfitz) 

which is 

(q-Saalschfitz) ~n q(n_k)(n+k)( a+b+c-n ) 
\a -n ,b -n ,c -n ,n -k ,n+k  

_[a+b~ [a+c~ [b+c~ 
- ia + k/q !~c + k/q [b + k/q' 
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and the q-analog of Dixon's identity (e.g. [Ek2]) 

(Dixon) ~(_l,k(aa~b~[a+c][b+c~ (a+b+c), 
k k]\c+k]\b+k]=\ a,b,c 

which is 

(q-Dixon) ~(--1)kqk~3k+l'/2(a+b) {a+c] {b+c] [a+b+c] 
k a+k q\c+k]q\b+kJq=\ a,b,c ]q" 

Perhaps the most striking q-analog of an ordinary hypergeometric series 
identity is Watson's q-analog of Whipple's transformation ([Ba], p. 69), that 
implies the Rogers-Ramanujan identities and many others. Quite recently Gus- 
tafson (e.g. [Gu]) and Milne (e.g. [Mi]) separately and together EGuMi], dis- 
covered many q-analogs of multivariate hypergeometric identities. We will show 
that all such identities, single-sums, and multi-sums (with a specified number 
of summations), possess short proofs that can be found by computer. We will 
give a few examples in the last section. But first we must make the notion 
of q-hypergeometric precise. 

So far we have dealt only with discrete functions, but what about continuous 
ones? Let's look at the function f(x):=(x)~. Its claim to fame is that it satisfies 
the functional equation f(qx)/f(x)= 1/(1-x). It turns out that one can also 
take (x)~ as the "a tom"  of q-theory, since 

( , _  (q)~ 
q t k -- ( q~-) . 

There are many identities involving products of (x)~, or (X)k. These are usually 
constant term identities. We mention here only the q-Dyson identity, conjectured 
by Andrews and proved in [ZB]. It asserts that (from now on, CT,="constant 
term of") 

(q-Dyson) CT ;s (x-i] (qxj] (q )a ,+ . . .+ , .  
1 < = ~ , \  x l  / , j  ( q )~ , . . . ( q ) , . , "  

We will show that (q-Dyson) and any other identity of the same genre, 
for a fixed number of variables, possesses a computer-generated one-line proof. 

Recall that Ek, deotes the shift operator in the k i variable, obtained by incre- 
menting ki by 1. Motivated by the fact that (qx)~/(x)~ is nice (i.e. 1/( l-x)) ,  
we also introduce the dilation operators for every variable x by 

Q~f(x, y):=f(qx, y). 

From these one can form the q-derivative 

f(qx, y)--f(x,  y) (Q~- 1)f(x, y) 
D~ ) f (x, y) = 

(q-- 1) x (x(q-- 1)) ' 

which by L'Hospital's and the chain rules, tends to D~, as q ~ 1. 
It is now clear what the definition of q-hypergeometric should be. 
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Definition. A term F(k~ . . . . .  kr, y~ . . . . .  Ys) in r discrete variables k and s continu- 
ous variables y, is q-hypergeometr ic  if for every discrete variable k i, (Ek, F) /F  
and for every continuous variable y j ,  (Qy jF/F) ,  all are rational functions of 
(qkl, . . . .  qkr, Yl . . . . .  Ys) and possibly other constant parameters, including q. 

As of this writing, we do not know of any q-extension of the holonomic 
theory, although it appears that it should be possible, especially in view of 
Antony Joseph's (see [Eh], p. 178) beautiful and short proof  of Bernstein's in- 
equality that seems to be q-generalizable. Be that as it may, we will stick to 
the elementary approach,  and henceforth consider only q-proper-hypergeometr ic  
terms. 

It is clear what should be included. Polynomials 

(qPH-I) p(qkl ,  . . . .  qk,., Yl . . . . .  Y~) 

should obviously qualify, as should any expression of the form 

(qPH-II) (c y~' ... y ~  qt~, k, ... q~rkr)'~, 

where the ~i and/~j and ,/are (positive or negative) integers,  and c is any commut-  
ing indeterminate constant or parameter. Then there is one more creature that 
is not the q-analog of anything ordinary, or if one wishes, is the q-analog of 
1. It is q raised to any quadratic polynomial, with integer coefficients, in 
kl . . . . .  k~, i.e., 

(qPH-III)  q~'.~ a"~ + X'biki, 

where the ai,; and the b~ are (positive or negative) integers or half-integers. 
Finally there are expressions 

(qPH-IV) z] ' . .  k~ 
�9 Z r �9 

We are now ready to define q-proper-hypergeometr ic  terms.  

Definition. A term F ( k l  . . . . .  k~, y l  . . . .  , ys) that involves r discrete variables and 
s continuous variables is q-proper-hypergeometr ic  if it is a product of an expres- 
sion of type (qPH-I) (i.e. a polynomial), of an expression of type (qPH-III)  (i.e. 
q raised to a quadratic form), of a monomial  (qPH-IV), and of any finite number  
of expressions of type (qPH-II). 

In section 5 we will prove the following fundamental result. 

The q-fundamental lemma. For  every  q-proper-hypergeometr ic  term 

F ( x l  . . . . .  x , , a l ,  . . . ,a , , ) ,  

and every  cont inuous  variable x i (respect ively  discrete  variable aj), there ex is t  
non-zero linear recurrence-q-di f ferent ial  operators  

Pi(xi; Q . . . . . . .  Q~.; E . . . . . . .  E~,,)(resp. Cj(q"J; Q . . . . . . .  Q~.; E . . . . . . .  E,~)), 

annihilating F. 
Since a continuous variable x can be converted to a discrete variable, by 

setting x = qk and using (cqk)~ = (e)o~/(e)k, we can w.l.o.g, assume that n = O, i.e., 
consider only functions of discrete variables. Of course, we could have taken 
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on the other extreme, but given our predilections, we prefer to be discrete, whenev- 
er possible. 

After the discrete version of the operator is found, one gets back the original 
operator by substituting qk for x and Ek for Qx. This is legitimate because 
our proof and our algorithm use only the commutation relation Ek qk=qqkEk, 
which is "isomorphic" to Q~x=qxQ~.  In the accompanying certificate (see 
below) we substitute (C)k for (c)~/(cx)~. 

2. The fundamental theorem of hypergeometric summationfintegration 

2.1 Introduction 

We need two more concepts. 

Definition. A function F(kx . . . .  , k,, y~ . . . .  , y~) vanishes at infinity, if for every 
variable kl and y j, 

lira F(k ,y )=0 ,  lira F(k ,y)=0 .  
Ikd-~ ~o lyjl ~ co 

Definition. An integral-sum 

(general-integral-sum) .g(n, x)..=~ S F(n, k, x, y) dy, 
k y 

is pointwise trivially evaluable, if for every specific specialization of the auxiliary 
variables (parameters) n, x there is an algorithm that will evaluate it. 

For example, in the case of pure sums that are terminating 

(general-s urn) g (n).'= ~ F  (n, k), 
k 

where the sum is always finite for every specific choice of n (since F(n,.) has 
finite support), we have both properties. 

We are now ready for the fundamental theorem of hypergeometric summation- 
integration. 

The fundamental theorem. Let Ak, denote the forward difference operator in ki: 
Ak,.-=(Ki- 1 ). Let F(n, kl . . . . .  kr, Yl . . . .  ,Ys) (resp. F(x, kl ,  . . . ,kr, Yl . . . . .  ys)) be 
hypergeometric and holonomic (both hold if it is proper-hypergeometric) in (k, 
y) and n (resp. x), where n, k are discrete variables and x, y are continuous variables. 
There exists a linear ordinary recurrence (resp. differential) operator with polyno- 
mial coefficients P (N, n) (resp. P (D~, x)), and rational functions (in all the variables) 
R1 . . . . .  Rr, Sx . . . . .  S~ such that 

(2.1.1) P(N, n) F (resp. P(Dx, x) F)= ~, Ak,(Ri F)+ ~" Drj(S 1F). 
i=1 j = l  

Furthermore, if F is proper-hypergeometric, it is possible to find a priori 
bounds for the order of P(N, n) (resp. P(Dx, x)), and it is possible to predict 
denominators for Ri and S i. 
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It is easy to see that once the operator P(N, n) (or P(Dx, x)) and the rational 
functions R~ and St are given, the verification of (2.1.1) is a purely routine matter. 
Indeed, dividing through by F, and taking advantage of the hypergeometric 
form, it is seen that (2.1.1) reduces, in any given instance, to a finite identity 
involving sums and products of rational functions, and hence, by clearing denom- 
inators, of polynomials. Of course, thanks to our algorithm, the generation of 
(2.1.1), in any given case, is also a purely routine matter. 

Proof of the fundamental theorem. By the fundamental lemma, there exists an 
operator 

A(n; gn,  E k . . . . . .  Ek.; Dr,, . . . ,  D y )  

annihilating F. It is possible to write (in many ways): 

(2.1.2) A(n; E,, E k . . . . . .  Ek~ ; D r . . . . . .  Drs)= 

P(n, E,)-- ~ (Ek,--1) Bi(n; E,, Eke, ..., Ekr; Dr,, ..., Dr) 
i = 1  

- ~" Dy~ Bj(n; E,, Ek,, .... Eke; Dr,,..., Dys). 
j = l  

Now apply F to the above operator equation. Since the operator A annihilates 
F, we get that 

(2.1.3) 0 = P(n, E.) F -- ~ (Ekl- I) Bi(n, E., E k . . . . . .  ERr; Dr . . . . . .  Drs ) F 
i = 1  

- ~ Dr~ B~(n, E., E k . . . . . .  Ek,.; D r . . . . . .  Dr) F. 
j = l  

Since F is hypergeometric, Ek, F/F, and Dr~ F/F are rational functions. It 
follows by induction that for any "opera tor  monomial"  

(Op-Mon) Mon:=E• ~ f i  E~: FI D#yJ 
i = 1  j = l  

(MonF)/F is a rational function. Hence for any operator 

T(n, kl , ..., kr; Yl . . . . .  Ys; En, Ek . . . . . .  Ekr; Dr . . . . . .  Drs)'  

TF/F is a rational function, since T is a linear combination with coefficients 
that are polynomials in all of the variables, of operator monomials. In particular, 

B,(F)=RiF, Bj(F)=SjF, 

for some rational functions R~ and S t. Putting these in (2.1.3) completes the 
proof. The case in which the auxiliary variable is x rather than n is similar. []  
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In proving the fundamental theorem, we used the fact that we could find 
an operator annihilating F of the form 

s 

P(N, n)-- Z Ai Bi-- ~ Dy~ Bj. 
i - 1  j = l  

If P(N, n) (or P(Dx, x)) happens to be the zero operator, then it is possible 
to use (2.1.1) to get another, nonzero, operator that annihilates f (n)  (resp. f(x).) 

Because of the fundamental lemma, we had that the B i and /3j had the 
additional "nice" property that they were independent of (k 1, ..., kr; Yl . . . .  , Y s ) "  

Gert Almkvist observed that this luxury is unnecessary for the fundamental 
theorem to work! Although both the proofs in [ZlJ  and the new elementary 
proof for proper-hypergeometric functions given in section 4 are constructive, 
they yield far from optimal operators P(N, n) and accompanying certificates 
R~, Sj, and hence are mainly of theoretical value. 

The significance of the fundamental theorem is manifest from its 

Fundamental eoroUary. / f  F(n, k, y) (resp. F(x, k, y)) is as above, and vanishes 
at infinity for every f ixed n (resp. x), then 

(2.1.4) f (n)  :=~. ~ V(n, k, y) dy  (resp. f ( x ) : = Z  ~ F(x, k, y) dy) 
k k 

satisfies a linear recurrence (resp. differential) equation with polynomial coeffi- 
cients: 

(2.1.5) P(N, n) f(n)=O (resp. P(D x, x)f(x)=O). 

Proof. Sum-integrate (2.1.1) w.r.t, kl,  ..., k,, Yl . . . . .  Ys. [] 
Extending the terminology of [-WZ2], we call the rational functions Ri, 

Sj the certificates of the identity (2.1.5). 

2.2 How to find P(N, n) and the certificates 

Now that we have the theoretical certitude that there exist a P(N, n) and certifi- 
cates R~, Sj that are rational functions, such that (2.1.1) is true, we can use 
(2.1.1) itself to find them! All we do is use the method of undetermined coeffi- 
cients. We first "guess" the order of P(N, n), say L, and set 

L 

(2.2.1) P(N, n)= ~ bi(n) N ~, 
i = 0  

where bi(n) are as yet unknown polynomials (or rational functions) in n. 
In practice there is no guessing, we just start with the optimistic extreme 

L = 0, try it, and work our way up. We know that eventually we will be successful, 
and, for discrete proper-hypergeometric functions, we can find an effective upper 
bound for L (see theorem 4.1 below). Next we have to "guess ' ,  or rather predict, 
the denominators of the rational functions Ri and Sj. This is always possible, 
since by looking at the functional equation obtained from (2.1.1), by plugging 
in (2.2.1) and then dividing throughout by F, it is possible to predict both 
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the "wors t"  and the "bes t "  conceivable denominators for the certificates /~, 
Sj. Then one tries out all the possibilities from best to worst. Details, describing 
various shortcuts, will appear  in the above-mentioned forthcoming paper. Final- 
ly, we determine the "generic" degrees of the polynomials that are the numera- 
tors of the R i and S j, express them generically, with undetermined coefficients, 
and put it all in the above-mentioned functional equation implied by (2.1.1). 
We then clear denominators,  and equate coefficients of all the monomials  

k~...k~yq~...y~ ". 

What  results is a huge system of linear equations in the unknowns bi and 
the coefficients of the numerators of the certificates, over the "ground field" 
of rational functions in n. If we find a nonzero solution, we are done. If not, 
just make the denominators "bigger",  or increase L. The fundamental theorem 
promises you eventual success. 

Luckily, in most real life examples the computer time is not prohibitive, 
as we will illustrate with the numerous examples given in section 6. 

2.3 How to prove identities fast: WZ-tuples 

Suppose we have to prove an identity of the form 

(general-identity) ZSF(n, k, y ) d y =  Z I G(n, k', y ' )dy  
k k '  

Let's call the left side Left ~") and the right side Right ("). We find an operator  
P(N, n) annihilating Left ("~ and an operator  P(N, n) annihilating Right ~"), with 
the appropriate  certificates. If, as is usually the case, P and P are identical, 
this proves the identity once the initial conditions Left ~")=Righfl "), 
n = 0, 1 . . . .  , L -  1 are checked. This is always trivial if, as we assume, the integral- 
sums in question are pointwise trivially evaluable. In the rare event that P 
and P are different, one can use the Euclidean algorithm (adapted to the non- 
commutat ive ring of linear recurrence operators with polynomial coefficients) 
to find a "minimal"  operator  A(N, n) such that both P and P are left multiples 
of it. It follows that both Lef(") and Righfl ") are annihilated by A(N, n) if 
it is true up to n=max(order(P), order(P)). In the above, we tacitly assumed 
that the coefficients of the leading terms of both P and P do not have positive 
integer zeroes. It they do, just shift the starting value of n to the largest such, 
and check the identity case by case until then (we do not know of any case 
where this actually happens). 

The treatment for integral-sums whose free variable is a continuous x rather 
than a discrete n is similar. If, as in the "general integral-sum" the free variables 
are multi: Left(n, x), Right(n, x), then one does things for every single variable 
separately, or builds up one variable at a time. 

A very important  special case is that in which Right ("~ is a plain hypergeomet- 
ric term. In that case we can divide by it, and get an identity of the form 

(explicitly-evaluable) ~ S F(n, k, y) dy  = 1 
k 
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Now we need to work only with the left side. Getting the operator P(N, 
n) and checking that indeed Left("~=l for n = 0 , . . . , o r d e r ( P ) - l ,  all we have 
to prove is that P(N, n) annihilates the constant sequence 1. In other words, 
writing 

L 

P(N, n)= ~ bi(n) N i, 
i = 0  

we have to check that 
L 

bi(n) =0.  
i = O  

But, if all goes well, P(N, n) would be of minimal order, i.e. a multiple by 
a scalar of the minimal operator annihilating 1, which is I - -N ,  so L =  1, and 
P(N, n)= bo(n)(I-N). Absorbing the factor bo(n) inside the certificates, (2.1.1) 
becomes 

(WZ-tuple) A,F+ i AR~(RIF)+ ~ Dyj(SjF)=O. 
i = 1  j = l  

We call the tuple (F, R1F ..... R,F; S1F ..... SsF) a WZ-tuple. This is a 
natural generalization of the notion of 14rZ pair introduced in [-W22]. Recall 
that any WZ pair produced two (terminating) identities, the original one, and 
a new one, which we called the companion. A WZ-tuple yields 1 + r + s identities: 
the original one, and r+s "bonuses".  The proofs are all obtained in the same 
stroke. Once we know that we have a WZ-tuple, summing-integrating w.r.t. 
all the variables save the preferred one, yields it. So the r + s  bonus identities 
a r e  

(bonus-discrete) ~ l(Ri F) dy = Constant (i = 1 . . . . .  r) 
k l  . . . . .  k i . . . . k r  

and 

(bonus-continuous) 
A 

~(Sj F) dyl dy2.., dye.., dys = Constant, 0 '= 1 . . . . .  s). 
k 

The only catch is that now the integral-sum might diverge, i.e. the "Cons tan t"  
equals ~ .  This is easily overcome by the process of shadowing described in 
[WZ2],  that finds an "equivalent" WZ-tuple for which the integral-sum of 
interest is pointwise trivially evaluable. 

The theme of WZ-tuples is explored extensively in [Z4],  which, however 
lacked the flesh and blood of examples. The present algorithm provides them 
amply. 

2.4 The q-case 

The statement, and proof, of the fundamental theorem for q-proper-hypergeo- 
metric functions follow almost verbatim. Also all the discussion above applies. 
Only now we must restrict to proper q-hypergeometric functions. 
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The q-fundamental theorem. Let AR, denote the forward difference operator in 
ki: Ak :=(K i -  1); for any variable y, let Qy be the q-dilation operator in that 
variable: Qy f(y),=f(qy). Let F(n, k, y) (resp. F(x, k, y)) be a q-proper-hypergeo- 
metric function in (k, y) and n (resp. x), where n, k are discrete variables and 
x, y are continuous variables. Then there exists a linear ordinary recurrence (resp. 
q-differential) operator with polynomial coefficients (the polynomials being in (q", 
q) or (x, q) respectively) P(N, q", q) (resp. P(Qx, x, q)), and rational functions 
(in (q", qkl, .... qkr, Yl . . . .  , Ys, q)) Rt . . . . .  Rr, $1 . . . . .  S s such that 

(2.4.1) P(N, q", q) F (resp. P(Q~, x, q)F)= ~ A k,(Ri F)+ ~ (Qy~-I)(Sj F). 
i = 1  j - 1  

Furthermore, it is possible to find a priori bounds for the order of P(N, 
q", n) (resp. P(Qx, x, q)), and the denominators of Ri and Sj. 

The q-fundamental theorem follows from the q-fundamental lemma stated 
at the end of section 1.6, the same way that the fundamental Theorem followed 
from the fundamental Lemma. Like its ordinary counterpart, it implies the fol- 
lowing corollary, in which CTy f(y) denote the coefficient of yO...yO in the 
Laurent polynomial f(y). However the result still holds if J'(y) is something 
else and CTy is replaced by ~(f(y)/y) dy provided the integral makes sense. 
Of course CTy is the case where the integral is a contour integral around the 
origin, aside from a constant factor. 

q-fundamental corollary. I f  F (n, k, y) (resp. F (x, k, y)) is q-proper-hypergeometric, 
and vanishes at infinity for every fixed n (resp. x), then 

(2.4.2) f(n) ,=~ CTy F(n, k, y) (resp. f (x )= ~ CTy F(x, k, y)) 
k k 

satisfies a linear recurrence (resp. q-differential) equation with polynomial coeffi- 
cients in (q", q) (resp. (x, q)): 

(2.4.3) P(N, q")f(n)=-O (resp. P(Qx, x)f(x)-O).  

The discussion following the fundamental corollary, about finding the 
P(N, q') and the certificates, applies almost verbatim to this case, and is left 
to the readers. 

3. Recurrence operators via Sister Celine's technique 

In this section and the next we will pursue the elementary and explicit 
approach to single and multivariate hypergeometric summation, specifically to 
the proof of the fundamental lemma. As we already pointed out, this yields 
explicit a priori bounds for the order and "'size" of the certificates, and extends 
naturally (section 5) to the q-case, for which it gives the only known proof 
(for proper q-hypergeometric summation and integration) of the q-fundamental 
lemma. 

The present approach is a systematization, generalization, and quantification 
of the fundamental work of Sister Mary Celine Fasenmyer [Fa], and also builds 
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on work of Verbaeten IV]. We repeat the caveat issued in [Z1], that parts of 
[Z0] are erroneous. The present paper  corrects those errors. 

Another  elementary approach to proving that single and multivariate proper 
hypergeometric sums satisfy linear recurrence equations with polynomial coeffi- 
cients can be pursued by Lipshitz's [L] powerful theorem. This approach, while 
it is explicit in principle, in fact yields an infeasible algorithm, and doesn't prove 
the fundamental theorem with certificates; only the fundamental corollary. Fur- 
thermore it does not seem to extend to q-sums. 

3.1 The k-Jree recurrence in the case of one variable 

We begin with the case of a single variable of summation. Although it is known 
that such sums satisfy recurrence relations, a study of this case will serve to 
introduce the methods of sections 3, 4, and 5 of this paper. These methods 
will be essentially the same in the cases of multivariate, q, etc. identities, though 
their implementation will become more demanding there. Even in the one-vari- 
able case, however, we will obtain some new results, namely explicit bounds 
for the orders of the recurrence relations whose existence is guaranteed by the 
theory. 

Definition. A proper-hypergeomtric term is a function of the form 

PP 

I] (a~n+bsk +cs)! 
(3.i.I) F(n, k)= P(n, k) "= l ~k, 

qq 

H (u~n+vsk+ws)! 
$ = 1  

where P is a polynomial and ~ is a parameter.  The a's, b's, u's and v's are 
assumed to be specific integers, i.e., they are integers and do not depend on 
any other parameters.  The c's and the w's are also integers, but they may depend 
on parameters.  We will say that F is well-defined at (n, k) if none of the numbers 
{as n +bs k+ G} pp is a negative integer. We will say that F(n, k ) = 0  if F is well- 
defined at (n, k) and at least one of the numbers {us n + v, k + w,} qq is a negative 
integer, or P(n, k)=0.  

The word ' p rope r '  in the above definition is intended to underscore the 
absence of a denominator  polynomial in (3.t.1). If additional parameters  are 
present in the c's and/or  the w's then the conditions that F be well-defined, 
be nonzero, etc. will translate into certain restrictions on the allowable values 
of those parameters.  

Though our goal is to obtain recurrence relations for definite sums, our 
starting point will always be to obtain a certain kind of recurrence relation 
(k-free recurrence) for the proper-hypergeometric term F itself. This approach 
has a number  of advantages. First, the conditions on F that insure that it 
possesses a k-free recurrence are very mild. Second, with some extra conditions 
we will be able to deduce recurrences that are satisfied by polynomials whose 
coefficients are the given term, and for sums of values of the term. Third, the 
k-free recurrence for F will be an excellent starting point for the telescoping 
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certification of identities (sec. 3.2), and will streamline the derivations there. 
Fourth, the difficulties of multivariable and q generalizations will be minimized. 

Definition. A proper-hypergeometric term F is said to satisfy a k-free recurrence 
at a point (n o, k0)E~E z if there are integers I, J and polynomials c~i.j=c~.j(n) 
that do not depend on k and are not all zero, such that the relation 

I J 

(3.1.2) ~. ~ ~zi.~(n ) F ( n - j ,  k - i ) = 0  
i = 0  j = O  

holds for all (n, k) in s o m e  ]R  2 neighborhood of (no, ko), in the sense that F 
is well-defined at all of the arguments that occur, and the relation (3.1.2) is 
true. 

The main result of the present subject is the following. 

Theorem 3.1 Every proper-hypergeometric term F satisfies a nontrivial k-free 
recurrence relation. Indeed there exist 1, J and polynomials ~i,j(n)(i=O . . . . .  I; 
j = 0 ,  . . . ,J)  not all zero, such that (3.1.2) holds at every point (no, ko)eZ z for 
which F(n o, ko)#O and all of the values F(no- j ,  k o - i )  that occur in (3.1.2) 
are well-defined. Furthermore there exists such a recurrence with (I, J)=(l*, J*), 
where 

(3.1.3) J*=Zlb~l+Zlv~[, l * = l + d e g ( P ) + J * ( { ~ l a s l + Z [ u ~ l } - l ) .  
s s s s 

The best known example of a k-free recurrence for a proper-hypergeometric 
term is undoubtedly the Pascal triangle recurrence 

(;):(;;i)+(";') 
which holds at every grid point in the plane other than the origin. As a slightly 
less trivial example we will use the recurrence 

for the squares of the binomial coefficients, which can be recognized as a disgu- 
ised form of the familiar recurrence for the Legendre polynomials. 

We now prove theorem 3.1. Fix some 1, J > 0 ,  and suppose (no, ko) is a 
point that satisfies the two conditions of the theorem. Since we assumed that 
all of the as, bs, u ,  v~ in (3.1.1) are integers, we have that for all (n, k) in some 
IR 2 neighborhood of (no, ko), all of the ratios F(n--j, k - i ) /F(n ,  k} are well-defined 
rational functions of n and k. Hence we can form a linear combination 

t J F(n --j ,  k -  i) 
(3.1.5) Z Y~ ~,,~(n) F(n, k) 

i = 0  j = O  



598 H.S. Wilf and D. Zeilberger 

of these rational functions, in which the s  are to be determined, if possible, 
so as to make the sum vanish identically in the neighborhood. 

The idea is the following. We will find a common denominator for the sum- 
mands in (3.1.5), and will express (3.1.5) as a single polynomial in k whose 
coefficients involve n (polynomially) and all of the s  (linearly), divided by that 
common denominator. To make (3.1.5) vanish identically it will suffice to make 
the coefficient of every power of k that occurs in the numerator  polynomial 
vanish, by choosing the s  appropriately. This will yield a system of linear 
homogeneous equations to solve for the s and for which we will want to 
assert that a nontrivial solution exists. To do that we will compare the number 
of equations that must be satisfied, which is 1 greater than the degree in k 
of the numerator  polynomial, with the number of s  that are available, namely 
( I+  1)(J+ 1), and show that I and J can be chosen so that the latter exceeds 
the former. 

Next we give the details about what all of these polynomials look like. 
To do that we define the functions rf, prf, ff, pff, in which the names are to 
be suggestive of 'rising factorial', 'partial rising factorial', etc.: 

(3.1.6) (a) if(x, y):= ISI (y +j) 
j=l 

Y.  

(3.1.6)(b) prf(x,y,u):= I-[ (u+j) 
j = x + l  

x- -1  

(3.1.6)(c) if(x, u):= 1-I (u--j) 
j=o 

y - 1  

(3.1.6)(d) pff(x, y, u):= I I  (u - j )  
j = x  

P P  

(3.1.6)(e) pt(i,j,k):=yI "{rf((-jar-ibr)+,arn+brk+cr) 
r = l  

pff(lar + ibr) +, J(ar) + + I(br) +, ar n+br k + Cr)} 

qq 

(3.16)(t) p2(i,j,k):=l- I .{ff(jus+iVs)+,Usn+vsk+ws) 
S = I  

prf((-jUs--ivs) +, J(--u~) + + I(--Vs) + , Us n + vs k +  Ws)} 

For  a real number x we define x + = max {0, x}. 
In terms of these functions the numerator polynomial of the sum in (3.1.5), 

after finding a common denominator  and collecting all terms over that denomi- 
nator, is 

! ,I 

(3.1.7) ~. ~. aij(n) P(n--j, k - i )  p, (i,j, k) p2(i,j, k). 
i=O  j = O  
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It should be emphas ized  that  every te rm in (3.1.7) is a po lynomia l  in k, all 
cancellat ions and divisions having been done  in advance.  The  degree of (3.1.7), 
as a po lynomia l  in k is therefore at mos t  

I {~,lb, I + ~lv~l} + J  { ~  [a~l + ~,[u~[} + deg(P), 
r s r s 

= 7 I + 6 J + ~ ,  say. 
The  n u m b e r  of pa ramete r s  aij that  are available is ( I + l ) ( J + l ) ,  and the 

num be r  of  linear, homogeneous  condi t ions  that  they mus t  satisfy is 1 + ~;I + bJ 
+ e 3. Hence  a nontr ivial  set of  a's exists if (I + 1)(J + 1) > 1 + 7I + 6 J  + ~. This 
inequali ty surely holds for all sufficiently large ! provided that  J >7.  Further ,  
if J = 7, then the inequali ty holds provided I > 7 ( 3 -  1) + 1 + ~. Hence  there surely 
exists a nontr ivial  recurrence of orders 

J *  = ~ l b r l - t - ~ ] v s ] ,  
r s 

I* = 1 + d e g ( e ) +  J*({~la~l + ~lu~l} - 1), 
r s 

and the p roo f  of theorem 3.1 is complete.  

3.2 The certification of identities in one summation variable 

In the previous  section we established tha t  p roper -hypergeomet r i c  terms them- 
selves satisfy k-free linear recurrences with polynomial - in-n  coefficients. N o w  
we will give one of the corollaries of that  fact, which is a very effective certification 
procedure for identities. 

To  certify an identi ty is to give some  addit ional  informat ion,  beyond  the 
identity itself, that  will enable  another  person to verify tha t  the identi ty is true 
much  more  easily than  if the addi t ional  informat ion  (certificate) were not  avail-  
able. The  second person has the tasks of  first showing that  the alleged certificate 
is true, and  then showing that  the certificate implies the identi ty in question. 

The  ma in  result on the certification of identities in one variable of  s u m m a t i o n  
is the following. 

T h e o r e m  3.2A Let F be a proper-hypergeomtric term, and let (n, k)E• 2 be a 
point at which F (n, k) ~ 0 and such that F (n - j ,  k-- i) is well-defined for all 0 < i <- I 
and O<j<J.  Then there are polynomials ao(n ) . . . . .  as(n), not all zero, and a 
function G(n, k) such that G(n, k)=R(n, k) F(n, k) for some rational function 
R and such that 

(3.2.1) 
a0 (n) F (n, k) + a 1 (n) F (n -- 1, k) + . . .  + a j  (n) F (n - J,  k) = G (n, k) - G (n, k - 1 ). 

Proof Let there be given a k-free recurrence for some p roper -hypergeomet r i c  
term F. We  write the recurrence,  using ope ra to r  nota t ion,  in the form H(N, 
K, n) F(n, k)=0 ,  where  the backwards  shift opera to r s  N and K are defined 

3 It is precisely here that we use the lack of a denominator polynomial in the assumed form 
(3.1.1) of F. Certain kinds of denominator polynomials would be admissible, and the question 
of characterizing them is an interesting one 
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by Ng(n, k ) = g ( n - 1 ,  k) and Kg(n, k)=g(n, k-- l ) .  Since H is a polynomial 
in its arguments we can expand it as 

H(N, K, n)=H(U, 1, n)+(K-- 1) V(N, K, n). 

Thus we have 

(3.2.2) 0 = H ( N ,  K, n) F(n, k)=H(N, 1, n) F(n, k ) + ( K -  1) V(N, K, n) F(n, k) 
=H(N, l ,n )V(n ,k )+(K-1)G(n ,k )  (say) 

= H(N, 1, n) F(n, k) + G(n, k - 1 ) -  G(n, k). 

Thus we have H(N, 1, n) F(n, k)=G(n, k)-G(n, k - l ) ,  which is of the form 
(3.2.1). Furthermore G is a rational multiple of F because VF is a linear combina- 
tion, with polynomial coefficients, of the values of F that occur in its k-free 
recurrence. Because of the form (3.1.1) of F, each of these F(n- j ,  k - i )  is a 
rational multiple of F(n, k), and the proof is complete. []  

Example A. In the case F(n, k)= the k-free recurrence is (3.1.4). We rewrite 

it using the operators N and K as 

{n-- (2 n-- 1)(N + KN) + (n-- 1)(N 2 - 2N 2 + N 2 K 2)} F(n, k) = O, 

which defines the operator H(N, K, n) of (3.2.2). We can expand H as 

H(N, K, n)=H(N, 1, n ) + ( K -  l) V(N, K, n) 
={n- -2 (2n- -1 )  N } + ( K - -  1){--(2n-- 1) N+(n--  1) NZ(K - l)}. 

Thus the assertion (3.2.1) of theorem 3.2A becomes, in this example, 

where 

G ( n , k ) = V ( N , K , n ) F ( n , k ) = { - ( 2 n - 1 ) N + ( n - 1 ) N 2 ( K - l )  (~)2 

2 

We can already see that (3.2.3) is a certification for the familiar identity 

{n~ z = [ 2 , ]  
(3.2.4) V 

g \k] \ n ]" 

For  first of all it is easy to check that (3.2.3) is true, by dividing through by 

and resultin  rationa,  unct on identity S cond easy 

to prove (3.2.4) from the certificate (3.2.3): just sum (3.2.3) over, say, k = 0  . . . . .  n, 
and notice the telescoping on the right side. The result will be a recurrence 
of order 1 for the sum. Finally, just check that the right side of (3.2.4) satisfies 
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the same recurrence and the proof will be complete. In this example, of course, 
the amount of work was more than the identity "deserved", but the method 
is completely general, and works every time. []  

3.3 Standard boundary conditions 

So far the theorems have been about the summand itself. The main objects 
of study, of course, are definite sums over k of F(n, k), and we now turn our 
attention to them. This subject subdivides according to whether the limits of 
the sum include all nonzero values of the summand or not. Thus in the sum 

k k all nonzero values are included, so we can rewrite such a sum as ~k 

~) without confusion. In such cases we speak of standard boundary conditions, 

in which the phrase refers to the fact that the summand vanishes outside the 
range of summation. 

+ (3n~ 
In other cases, such as in ~ , the limits of the sum bear no discernible 

k=O\ k ] 
relationship to the vanishing or nonvanishing of the summand, and we speak 
of nonstandard boundary conditions. 

In both cases the attack on the problem begins with finding the k-free recur- 
rence for the summand, as in the previous section. In the case of standard 
boundary conditions, summation of that recurrence will yield a homogeneous 
recurrence relation with polynomial-in-n coefficients, for the unknown sums. 
In the case of nonstandard boundary conditions we will obtain an inhomoge- 
neous recurrence for the sums. 

In this section we discuss the case of standard boundary conditions and 
the associated sums. The nicest way to get at the sums, it turns out, is through 
an intermediate step that is not without intrinsic interest: hypergeometric series. 
Indeed, finding recurrences for such series was the main motivation of Sister 
Celine [Fa] in developing some of these techniques. If F is a proper hypergeomet- 
ric term, then associated with F there is the hypergeometric series ~. F(n,k) 
x k, in which we will now discuss the limits of the summation, k 

For  a fixed integer n, we let B(n)= [a(n), b(n)] denote a maximal interval 
of integer values of k for which F(n, k) is well-defined and nonzero. Just outside 
of the interval B(n) we suppose that there are intervals e(n)<k<a(n) and 
b(n)<k<fl(n) in which F is well-defined and is equal to 0. We call the interval 
B(n) a natural support of F. 'Usual ly '  there will be only one such interval B(n). 
However the polynomial factor P(n,k) in F may have isolated zeroes which 
may create several such supports B(n). Such cases will be ruled out by the 
conditions that we are now formulating, which roughly require that the support 
be surrounded by zones of zero values. 

Definition. An admissible hypergeometric term F(n, k) is one in which, for all 
sufficiently large n there is a natural support B(n) such that B(n) is compact 
and 

B(n)~_B(n+ 1 ) ~ B ( n + 2 ) _ . . .  (n>no) 
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and such that the intervals of zero values which surround B(n) satisfy 

(3.3.1) fl(n-j)>b(n)+l and ~(n- j )<a(n)-I  

for 0 < j < J  and n>no ,  where I and J are the orders of a k-free recurrence 
that F satisfies. 

Example B. The function F(n, k ) = ( ~ ) ( 2 n - 2 k ) ! / ( 2 n +  2k), has a natural support  

B(n) = [0, n]. However  the function ceases to be well-defined immediately above 
b(n), and does not have the buffer zone of zero values that (3.3.1) requires. 
Hence this F is not admissible, we will not find a homogeneous recurrence 

satisfied by f ( n ) =  ~ F(n, k) by the methods of this section. In the following 
k = 0  

section we note that such sums always satisfy inhomogeneous recurrences that 
are easy to find from the k-free recurrence of the summand. 

The function F(n, k)=(~)(2n+ 2k)!/(2n-2k)!, which looks similar, is quite 

different. It is also supported on [-0, n], and furthermore it vanishes on [ - n ,  0) 
and on (n, m). Hence it is admissible and our theory will find a recurrence 

for the sums f(n) = ~ F(n, k). 
k = 0  

Definition. Let F be an admissible hypergeometric term. Then the hypergeomet- 
ric polynomials associated with F are the power series 

f , ( x ) =  ~ F(n,k)x k (n>no). 
keB(n) 

Our goal now is to find a recurrence relation that is satisfied by the (f,(x)}. 
We return to the k-free recurrence (3.1.2) that F satisfies, we multiply it by 
x k and sum from k=a(n) to k=b(n)+I. This yields 

J I b(n)+l 
2 ~ O~i,J(n) Xi Z F ( n - - j , k - - i )  xk - i  

j = 0  i = o  k=a(n) 
J I b(n)+l-i 

= ~, ~, ~i,j(n) x i ~ F(n-j,  m) x m. 
j = O  i = 0  m=a(n)--i 

The summand F(n--j, m) in the innermost sum vanishes for values of m that 
lie outside of the support  interval B(n-j)= [a(n--j), b(n-j)], for suppose that 
a(n)--i<m<a(n-j). Then m>a(n)-I>c~(n-j), by (3.3.1), so m lies in the zone 
of zero values of F that surrounds B(n-j). Similarly, suppose that 
b(n- j )<m<b(n)+I- i .  Then m<b(n)+I-i<b(n)+I<fl(n-j) ,  again by (3.3.1). 

Hence the innermost sum is exactly f,,_j(x) for every i=0 ,  1 . . . . .  I, and we 
have found that 

J 

(3.3.2) ~ ~j(n,x)~_j(x)=O (n>n0), 
j = O  
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in which the coefficients are 

I 

(3.3.3) o~j(n,x)= ~ ~i,j(n)x i 0"=0, 1 . . . . .  J). 
i = 0  

This recurrence is nontr ivial  because (3.1.2) was. 

Theorem 3.2B Let F(n, k) be an admissible hypergeometric term. Then the asso- 
ciated hypergeometric series f ,(x) = ~ F(n, k) x k satisfy the nontrivial recurrence 

keB(n) 

(3.3.2). [ ]  
Finally we will ob ta in  a nontr ivial  recurrence for the sums f ( n ) =  ~ F(n, k). 

k~B(n) 

In (3.3.2), let ( x -  l) p be the highest power  of  x -  1 tha t  divides all of the coeffi- 
cients ~i,j(n, x ) ( j = 0  . . . . .  J), and then divide th rough  (3.3.2) by ( x - l )  p. Thus 
we can assume w.l.o.g, that  at  least one of  the coefficients c~j(n,x) does  not 
vanish at x - 1 .  N o w  let x =  1 in (3.3.2) to  obtain a nontr ivial  recurrence for 
the sums. 

Theorem 3.2C Let F(n, k) be an admissible hypergeometric term. Then the asso- 
ciated sums f (n)= ~ F(n, k) satisfy a nontrivial recurrence 

k~B(n) 

c o ( n ) f ( n ) + c , ( n ) f ( n - 1 ) + . . . + c j ( n ) f ( n - - J ) = O  (n>n0),  

whose coefficients are polynomials in n. 
This recurrence is nontrivial  because the coefficients are given 

= ej(n, 1)(j = 0, 1 . . . .  , J )  and not  all of  the e ' s  vanish at  x = 1. [ ]  
by cj 

3.4 Non-standard boundary conditions 

In the previous  section we dealt  with the case in which the s u m m a t i o n  index 
runs over  all values of  k for which the s u m m a n d  is nonzero,  and  fur thermore  
in which tha t  suppor t  lies well inside a larger set in which the s u m m a n d  remains  
well defined and vanishes. In such cases the limits of  the sum are determined 
by the s u m m a n d  itself. 

Often, of  course, one is interested in sums  in which the limits are no t  the 
natural ones referred to above. F o r  instance, we might  be interested in proving  
the assert ion that  

(3.4.1) 
(2n--2k)I(2k)!  ( 2 n ;  1) 

f ( n ) =  k ! ( k + l ) ! ( n _ k ) !  2 = . 
k = O  

In this case the suppor t  of  the s u m m a n d  is indeed the same as the interval 
of  summat ion ,  but the suppor t  is not nested inside a larger set in which the 
s u m m a n d  is well defined and vanishes. This  causes no essential difficulty. It 
s imply results in an inhomogeneous recurrence relat ion for the sum, instead of 
the homogeneous  ones  that  we found in the previous section. 
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Example C. In the case of (3.4.1), the s u m m a n d  F(n, k) satisfies the k-free recur- 
rence 

(3.4.2) 
1 6 ( n -  1) F ( n - 2 ,  k -  1 ) -  2(2n + 1) F ( n -  1, k ) - 2 ( 2 n -  1) F ( n -  1, k -  1)+(n  

+l)F(n,k)=O, 

as guaran teed  by Theo rem 3.1, for 1 <k<n,  n > 2 ,  but  not  for k = 0  because 
the t e rm F(n--2, k - 1 )  is undefined when k = 0 .  To  find a recurrence for f (n)  
of(3.4.l),  we sum (3.4.2) only over  l < k < n. This yields, after some rear rangement ,  
the recurrence 

(3"4"3) 16(n-1)  f ( n - 2 ) - 8 n  f ( n -1 )+(n  + l) f (n)= - 2-( 2 n 5 2  ) n (n > 2), 

for the sums f(n), which certainly p roves  the eva lua t ion  (3.4.1) since the claimed 
right hand  side trivially satisfies (3.4.3). []  

Example D. For  ano the r  example,  consider the pret ty  identi ty 

k = O  

of [ G K P ] ,  in which the uppe r  limit of  summat ion  is not  a " n a t u r a l "  one, in 
the sense of  the preceding section. If F(n, k) denotes  the summand ,  then it satisfies 
the k-free recurrence 2F(n,k)--F(n, k - 1 ) - 2 F ( n - l , k ) = O  for n, k > l .  If f (n)  
is the sum on the left side of  (3.4.4), then by  summing  the k-free recurrence 
from k = 0 to n we find that  2 f (n) - ( f  (n) - F (n, n)) -- 2 ( f  (n - 1) + F (n -- 1, n)) = 0, 
which simplifies to f ( n ) - 2 f ( n -  1)--0, and the result follows. [ ]  

The  k-free recurrence for the s u m m a n d  will result in a p roo f  of  a claimed 
identity a long as the interval  of s u m m a t i o n  is of  the form [rn+s, un+v]  
and the s u m m a n d  is well-defined t h roughou t  the range. Indeed,  suppose  F is 
a p roper -hypergeomet r i c  term, and tha t  we are interested in the sums 

u n  -I- v 

/ ( n ) =  Z F(n,k), 
k ~ r n + s  

where r, s, u, v are fixed integers. Then  by summing  (3.2.1) on k we ob ta in  
the recurrence 

(3.4.4) a o (n) f (n) +.. .  + a s (n) f (n - J) = G (n, u n + v) - G (n, r n + s - 1) + 7 (n), 

where 

J 

(3.4.5) 7(n)= Z aj(n){ ~ - ~ } F(n, k). 
j = 0  ( n - - j ) r + s < k < r n + s  ( n - - j ) u + v < k < n u + v  

Since only  a fixed number  of  terms are in 7(n), in any  par t icular  case we can 
calculate it explicitly and then check that  (3.4.4) is satisfied, to p rove  a c laimed 
identity. 
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4. The r-variable case 

4.1 The recurrence in the case of r variables 

We generalize the results of the previous section to r summation indices, with 
a view to finding recurrences that are satisfied by sums of the form 

kr (4.1.1) f , ( x ) =  ~ F(n, kl ,k2 . . . . .  kr) x]'. . .xr 
kl  . . . . .  kr 

for integer n, where r > 1 and the summand F is a proper-hypergeometric term. 
The form of F in this case is 

P 

[I (a~n+b~.k +G)! 
(4.1.2) F(n, k)=  P(n, k) s= 1 z k 

q 

I] (u~n+v,.k +w~)! 
S = I  

where P is a polynomial, the a's, u's, b's and v's are integers that contain no 
additional parameters, and the c's and w's are integers that may involve unspeci- 
fied parameters. 

Define, for integer u, 

1, if u = 0 ;  

A,(a)= ( a+  1) a, if u > 0 ;  
1/(a+ l-[uD I"1, if u<O. 

This A, is ' real ly '  just (u + a)!/a!, rewritten to emphasize that it is a polyno- 
mial in a of degree u, if the integer u is >0,  or the reciprocal of a polynomial 
of degree ]u[ , / fu<0.  

We will write x + for max(x, 0). Bold face letters will denote r-vectors, so 
that, e.g., k = ( k l  . . . . .  kr), and (4.1.1) may  be rewritten as f , ( x ) = ~  F(n, k) x k. 

k 

An inequality between bold quantities, such as k > 0, will mean that the inequali- 
ty holds between all of their components.  

We will now show that the term F itself satisfies a k-free recurrence relation, 
of the form 

(4.1.3) ~ ~ a(i,j,n)F(n-j,k-i)=O, 
O<j<_J O_<i~<| 

where the a's are polynomials in n, and we will find explicit bounds for I and J. 
Fix a positive integer n and a point k such that F(n, k) is well defined 

and nonzero. Then there is a neighborhood ./V(k) in, say, the complex r-dimen- 
sional space of k, throughout  which F(n, k) remains well-defined and nonzero. 
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We divide equation (4.1.3) by P(n, k), which is everything in F except for the 
polynomial factor P(n, k), to obtain an equation in rational functions, 

�9 . f F , n - j , k - - i , ' l = O  ~ d e f  

(4.1.4) W(k)= E E 0~(l,J, n) ~ ff(n,k) 
O<j '<J O _ < i < l  

We propose to find a nontrivial set of ~'s for which the quantity W(k) 
vanishes identically in k. To do that we will first put W(k), which is a sum 
of rational functions of k, over a common denominator. Next we will show 
that if i and J are large enough, then we have more cds at our disposal than 
conditions that they must satisfy, so the cds will exist. 

The conditions on the a's are that the coefficients of all monomials k a in 
the numerator of 

(4.1.5) W(k)=~.  a(i,j, n) F(n--j, k - i )  
i,j F(n, k) 

P 

1-[ A-J~.-b,.,(a~n+bs'k +c~) 
= ~  a(i,j, n) 2= I. 

q 

i.j 1-[ A-j,,s-,,s.i(usn+v~'k+w,) 
S = I  

P (n --j, k - i) z -  i 

must vanish. 
We want to put this expression for W(k) over a common denominator, 

and then consider the degrees of the numerator  and the denominator polyno- 
mials in k. 

A common denominator  for W(k) is (note that we can ignore z -i, which 
does not involve k) 

where 

P q 

n Ao~,)(a~n+b,'k+c,) l-I A,~,)(u,n+v~.k+%) 
3 = 1  s = l  

p (s) = m a x  {0, m a x  {j a~ + b~. i} } __< J as+ + I (b,) +.  1, 
J*! 

a(s) = max {0, max { - j u , -  vs.i} } <=J(--u,) + + I ( - -  v,) + .1, 
J , l  

and 1 is a vector of r l's. This common denominator is a polynomial in k 
of degree 

d = I  ( b , )+ . l+  ( - v ) , + . l  + J  a,++ (-u~)+ . 
8 8 = 1  S 1 S 
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Next we consider a single term in W(k), say the term (i, j) in the last member 
of (4.1.4). The degree of the numerator of that single term, as a polynomial 
in k, is 

p q 

vi,j = ~ ( - j a s - i ' b s ) +  + ~ (Ju,+i'%)+ +deg(P), 
s = l  s = l  

where deg(P) is the degree of the polynomial P, and the degree of its denominator is 

p q 

hi,j = ~ (Ja~+i'b~) + + ~, ( - j u s - i . v , )  +. 
s = l  s = l  

Therefore when that single term is put over the common denominator it 
will contribute to the common numerator a polynomial in k of degree at most 

A + m a x ( v i ,  j - -  6 i , j )  
l , j  

< A + m a x  --J Z a~-  ~ ( i . b ~ ) + j  ~ u~+ ~ ( i . L )  +deg(P) 
l , j  ~ s ~  1 s = 1 s = 1 s = 1 

N A + J  a~ + u~ 
s 1 

} + I  ( - b s ) + . l  + (L)+ �9 1 + deg(P) 
'~s= 1 s =  1 

= r(b~)r, l+ I(v~),. z 
s 1 r ' = l  s = l  r ' = l  

+ a + +  - at + u, + (-u~) + J + d e g ( P )  
s 1 s ~ l  S S = I  

d e f  
= ~I+?J+deg(P), say. 

The number of monomials in a polynomial of degree flI+yJ+deg(P) in 

r variables is (r+ flI + ?J +(P)], and the coefficients of all of these monomials 
\ r l 

must vanish. The number of available coefficients a(i,j, n) is (J + 1)(I + 1) r. Conse- 
quently we will be able to find a nontrivial set of ~'s if 

(J + l)(I + l)r>(r + flI + ?] +deg(P))+ l. 

The question is this: how large must J, the order of the recurrence, be in order 
to guarantee the existence of some sufficiently large I for which the above in- 
equality is true? 
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It J is fixed, then for 1 large we have 

(r +fl l  + 7~ +deg(P))_f l  ~Y 
r! " 

Hence ( l + l ) r ( J + l )  will surely be larger than this, for all large enough 1, if 
J>f l r / r ! -  1, i.e., if 

(4.1.6) J >  [(bs)rt + ~', [(v~)r,t . 
�9 s r ' = l  s = l  r ' = l  

Theorem 4,1 Every proper-hypergeometric term in r variables satisfies a nontrivial 
k-free recurrence relation. Indeed there exist I, J and polynomials a(i, j, n), not 
all zero, such that (4.1.3) holds at every point (no, ko)~ 7Z~+~ for which F(no, 
k o ) ~ 0  and all of the values F(no- j ,  k o - i )  that occur in (4.1.3) are well defined. 
Furthermore there is such a recurrence in which J =  J*, where J* is the right 
member of(4.1.6) above. [] 

4.2 Certification of multivariable identities 

In this section we will develop the r-variate analogs of the certification theorems 
of section 3.2 above. These will all be consequences of theorem 4.1. The hypothe- 
ses of that theorem will suffice for our results that apply to the summand F 
itself, but we will, as before, need stronger hypotheses to deal with recurrences 
for definite sums of values of the summand, 

The k-free recurrence (4.1.3) that is satisfied by the summand F can be written 
in operator  form. We let be the operator  that shifts (down) the variable n: 
N f ( n ) = f ( n - 1 ) .  Further, for each i=  1, .. . ,  r we let K i be the operator  that 
shifts the variable ki:  K i f ( k ) = f ( k l ,  . . . , k i_ , ,  k i - - 1  , k i+ 1 . . . .  ,kr), and we will 
use At for the forward difference operator  on the ith coordinate, 

Then (4.1.3) is equivalent to an assertion 

H(N, n, K~ . . . . .  K,) F(n, k)=0 ,  

where H is a polynomial in its arguments and does not involve k. We can 
expand H in a Taylor 's  series about  K = 1, to obtain 

H(N,n,K)=H(N,n,I)+ ~ (K/-- 1) VI(N, n,K) 
i = 1  

in which the Vii are polynomials in their arguments. It follows that 

H(N, n, l) F(n, k)=  ~ (1 -K~)  V~(N, n, k) F(n, k) 
i = 1  

d e f  r 

= ~" {G~(n, k, . . . . .  k , , . . . ,  k , ) -  G,(n, k, ,  ..., k~-  1 . . . .  , k,)}. 
i = l  
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Thus  we have the following general izat ion of theorem 3.2 A .  

Theorem 4.2A Let F be a proper-hypergeometrie term. Then there are a positive 
integer J, polynomials ao(n) . . . . .  as(n) and hypergeometric functions G1 . . . . .  G~ such 
that for every (n, k ) ~ N  ~+1 at which F+O and F is well-defined at all of the 
arguments that appear in (4.1.3) we have 

ao(n ) F(n, k ) +  ... +al(n) F ( n - J ,  k ) =  ~, A i Gi(n, k). 
i = 1  

Moreover this recurrence is nontrivial, and each Gi(n, k) is of the form R~(n, 
k) F(n, k), where the R's are rational.]'unctions of their arguments. [] 

Next  we will pass f rom theorems abou t  the s u m m a n d  F to theorems about  
the sums ~, F(n, k) and we will now formulate  condi t ions that  will permit  this, 

k 
for s tandard  bounda ry  condit ions.  

F r o m  the form (4.1.2) of  the p roper -hypergeomet r i c  te rm F in the mul t ivar ia te  
9" case, we define two convex polyhedra  in IE r. The first of  these is �9 (n), the 

support of F(n,'), which is 
q 

J(n)= 0 {k:u~n+vs.k+ws>=O}. 
s = l  

The second is the set ~ ( n )  on which F is well-defined, and  it is 

q 

~#/(n)= ~ {k :a ,n+b , . k+c~>O}.  
s = l  

If ke~/g'(n)\SP(n) then F(n, k ) = 0 .  
Next  we define a set T(n), which is a n / - n e i g h b o r h o o d  of S(n). It is 

T (n )=  {k: 3 k 'eSe(n)  s.t. II k - k ' l l  ~ _<_I}. 

Definition. Let F be a p roper -hypergeomet r i c  te rm tha t  has a k-free recurrence 
of orders  (I, J). Then F is an admissible hypergeomet r ic  te rm if for all n > n  o 
we have 

H1 (The sums are t e r m i n a t i n g ) ~ ( n )  is compac t  and 5/(n)~_ f ' ( n ) ,  and 
H 2  5P(n)~5~(n+ 1)~_ .... and 
H 3  (Existence of zone of O's outside of  5~(n)) For  each j = 0  . . . . .  J,  and for 

all i s . t .  Ililb ~ < I we have T(n) + i ~_ W(n- j ) .  
The mul t i sums that  we are now consider ing are those in which the summa-  

tion indices k run  over  all lattice points  in 5~(n), i.e., the case of s tandard  bound-  
ary conditions.  

We define the hypergeomet r ic  po lynomia ls  

(4.2.1) f , ( x ) =  y" F(n,k) x k, 
kE c,~(n) 

and we seek a recurrence that  they satisfy. 
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To find this we multiply (4.1.3) by x k and sum over kE T(n). This gives 

O= ~ ~ ~(i,j,n) Z F(n- - j , k - i )  xk 
O<=j<J O_<i~<l k~ T(n) 

= Z Z a( i , j ,n)x '  Z F(n- - j , k - i )  xk-i 
O < j < J  O-<i-<I k~ T(n) 

= Z • ~(i , j ,  n) X i Z F(n--j, k') x k'. 
O<j<=d O ~ i - < l  k ' ~ T ( n ) - i  

Consider the innermost sum for some fixed i. We claim that it is exactly 
the hypergeometric series f ,_j(x) of (4.2.1). 

First, every y~SP(n- j )  occurs as a k' in this sum. Indeed, every y in the 
larger set J ( n )  occurs, since 

y~SP(n), I I (y+i) -y[ l~  < = I ~ y + i ~ T ( n ) ~ y e T ( n ) - i .  

Finally, if we fix some k'~ T(n)-  i\SP (n--j) then we claim that F(n- j ,  k')= 0, 
i.e., that k ' r  For, by H3, k'e~/U(n-j).  But k ' r  which 
completes the proof of the following result. 

Theorem 4.2B Let F(n, k) be an admissible hypergeometric term. Then the hyper- 
geometric polynomials {f.(x)}n>,o satisfy a nontrivial recurrence relation 

J 

(4.2.2) ~ ~i(n, x)L_j(x) = 0 
j = 0  

in which the coefficients 

~b(n, X)= ~ ~(i,j, n) x l 
0<--il . . . . .  ir<--I 

are polynomials in n and Xl, ..., xr. [] 
Now divide through (4.2.2) by the highest power of ( x , - 1 )  that divides 

into all of the a j, then let x r=  1. The result is still a nontrivial recurrence. 
Repeat with x ,_ l  . . . . .  xl the operation of dividing out the highest power and 
setting the variable equal to 1 to obtain a nontrivial recurrence for the sums. 

Theorem 4.2C Let F be an admissible hypergeometric term and let 

f (n)= ~ F(n,k) (n>no). 
keS~(n) 

Then {f(n)} satisfies a nontrivial linear, homogeneous recurrence relation of order 
J, with coefficients that are polynomials in n. [] 

The treatment of nonstandard boundary conditions proceeds as in the case 
of a single summation variable, but the boundary terms "snowball" so the 
application will become rapidly more complicated. 
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5. General izat ion to q-sums and q-multisums 

5.1 q-identities 

In this section we will prove that q-proper-hypergeometric terms also satisfy 
recurrence relations with polynomial coefficients, and we will obtain quite explic- 
it bounds for the order of such a recurrence. This will be done first for the 
case of a single variable of summation, and then for multi-q-hypergeometric 
terms as well. As indicated at the end of sub-section 1.6 above, this analysis, 
via the isomorphism stated there, also applies to integration and to taking 
the constant term. 

We will prove this result for q-hypergeometric terms of the form 

(5.1.1) 

I~ Q(asn+bsk, cs) 
s qan2+bnk+ck2+dk+en~k 

F(n, k)= ]-~ Q(u~ n+ v~ k, w~) 
s 

where 

(5.1.2) Q(m, c)=(1 - cq)(l - cq2)... (1 --cqm). 

Our hypotheses about the parameters etc. will be the same as in the preceding 
section. 

As before, we seek 1, J such that for some nontrivial cds we have 

i J 

~ ~(i,j;n)F(n--j,k--i)-=O. 
i=0 j=o 

Theorem 5.1 Let  F be a q-hypergeometric of the form (5.1.1). Then F satisfies 
a k-free recurrence whose order J is at most ~, b~ +E  v2 + 2 Icl. 

s s 

Proof As before, if F(n, k ) # 0  we divide by it to get 

i s F (n --j, k -  i) 
(5.1.3) ~ ~ c~(i,j; n) =0. 

i=o i=o F(n, k) 

Next we will find a common denominator for the (I + t)(J + I) ratios F(n-L  
k -  i)/(F(n, k) that appear. Then we will express each of those ratios as a certain 
numerator divided by that common denominator. The sum of all of the numera- 
tors will then be required to vanish identically in k. In the previous section, 
to achieve this goal we equated to zero the coefficient of each power of k that 
appeared in the common numerator. In this section we will equate to zero 
the coefficients of each power of qk that appears in the common numerator. 
The variable k will not appear in that common numerator in any form other 
than powers of qk, SO these conditions will determine that e's that we seek. 
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We define, by analogy with the rising factorial, for integers e, fl and a complex 
number c, 

(~ +/~, c) { 
(5.1.4) A~(~;c)= QQ(~c )  - 

Now we have 

(1--cq~+~)...(1-cq~+e), if f l>0 ;  

1, if f l=0 ;  

{(1-cq~+~+l) . . . ( l -cq ' )}  -1 if f l<0.  

(5.1.5) 
I]  A-ja,-ib~(a~ n +bs k; Cs) 

F (n - j ,  k - i) s 

F(n,k) - IqA_ j ,_ i~ , (usn+v~k;w~)  

q4a(i,j)n + O(i, J) 

qk(bj + 2 cl) 

Observe that certain factors may  appear  in the denominator of (5.1.5) but actually 
contribute to the numerator of the rational function of qk that (5.1.5) really 
is. When we wish to make this distinction we will speak of the apparent denomi- 
nator of (5.1.5) or of its true denominator.  

We now want to calculate the degree vii of the true numerator  of (5.1.5), 
regarded as a polynomial in t = qk, and the degree 6ij of its true denominator.  
For this purpose there are four estimates to make:  in estimate NN, we will 
find the contribution of a typical factor of the product  in the apparent  Numera to r  
of (5.1.5) to the true Numerator .  In estimate N D  we compute the contribution 
of a factor in the apparent  Numera to r  to the true Denominator ,  and similarly 
for the estimates D N  and DD. 

Estimate ND. Consider a typical factor of the product in the apparent  numerator  
of (5.1.5), 

A _  ja_ib(art + bk;  c ) = (  i --cqan+bk + l ) . . . ( 1 - - cqan+bk  +(- Ja-ib)), 

in which ja+ib<O.  If we let t=q k, then this factor is a polynomial in t h of 
degree [ja + ib]. If b > 0 then this factor does not contribute to the true denomina- 
tor of (5.1.5). If b < 0 then this factor is of the form 

poly of degree [ja+ ib] in t -Ibl = t-lh(J"+ih)l(poly of degree Ija+ib] in tlbl). 

Hence a factor in the apparent  numerator  with ja  + ib < 0  contributes a factor 
t I(-b)+(ja+ib)l to the true denominator  of (5.1.5). 

If, on the other h a n d j a + i b > O  then the factor in question is the reciprocal 
of a polynomial in t b of degree ja+ib .  Hence if b > 0  we have a contribution 
of b(ja+ib) to the degree of the true denominator,  and if b < 0 ,  a contribution 
of [bl(ja + ib). 

To summarize estimate ND,  then, a factor in the apparent  numerator  of 
(5.1.5) contributes a polynomial in t = qk of degree (-- b) + [ja + ibl, i f ja  + ib < 0, 
or of degree [bl(ja+ib), if j a+ib>O,  to the true denominator  of (5.1.5). We 
can write this in a single formula as [bs[ (jas + i bs) + + ( - b ~ ) + ( - j  a~-ibm)+. 

Estimate NN. Ifjas + i b~ > 0 then this same factor of the product  in the apparent  
numerator  is the reciprocal of a polynomial  of degree ja~+ib~ in t b~. If b~>0, 
it makes no contribution to the true numerator.  If b~<0 we would multiply 
top and bo t tom by t Ibsl(ja~+ibs) SO as to obtain a polynomial in t Ib,l in the true 
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denominator.  This process would, in that case, yield a polynomial of degree 
I b~l (J as + ibm) in the true numerator.  

Hence if j a s + i b s > O  we get a factor in the true numerator  of degree 
( -  bs) + (ja~ + ibs). Similarly if jas + ib~ < 0 the contribution to the degree of the 
true numerator  is [b~(j as + i bs)[. 

To summarize estimate NN, a factor in the apparent numerator  of (5.1.5) 
contributes a polynomial in t = q  k of degree ( - b ) + ( j a + i b ) ,  i f j a + i b > O ,  or 
of degree ]b(ja+ib)], i f j a + i b < O ,  to the true numerator  of (5.1.5). 

Estimate DN. Omitting the details, the contribution of a factor of the product 
in the apparent  denominator  of (5.1.5) to the true numerator  is of degree 

Ivsl(ju~+iv~) + +(--v~)+ (--ju~--iv~) + 

Estimate DD. The contribution of a factor of the product in the apparent denomi- 
nator of (5.1.5) to the true denominator  is of degree (-v~)+(ju~+iv~)++fvsr(  
--ju~--ivs) +. 

The above estimates account for the product symbols that appear in (5.1.5). 
The factor qk~b+z~) in (5.1.5) contributes a factor of degree ( j b + 2 i c )  + to the 
true denominator,  and of degree ( - j b - 2 i c )  + to the true numerator.  

We can now write down the degrees of the true numerator  and denominator  
of (5.1.5). The degree of the numerator  is 

(5.1.6) v i j = Z { ( - b ~ ) + ( j a s + i b ~ )  + + l b ~ l ( - j a ~ - i b s )  +} 
s 

+~{Iv~l( ju~+ivs)  + +(--v~) + ( - j u ~ - i v s )  +} + ( - j b - 2 i c )  +, 
S 

and the degree of the denominator  is 

(5.1.7) 6 i j = ~ { ( - b ~ ) + ( - j a s - i b s )  + +lbsl(J'as+ibs) + } 
S 

+~{Iv~l(-- ju~--iVs)  + + (-- v~) + ( jus+ivs)  + } + ( j b + 2 i c )  + . 
s 

What  we want is the degree of a common denominator  of all of the expres- 
sions (5.1.5) as i and j vary. Among the polynomials that contributed to the 
foregoing estimates of the denominator  degree 6i~, there were just two kinds 
of polynomials. First, some were pure powers of t. Evidently all powers of 
t that occur are divisors of t raised to the highest power of t that occurs. 

Second, there were partial products of consecutive terms, of the form (1 
- d l  t)... ( 1 -  d,, tin), in which the ' m '  appears in our degree estimate. These par- 
tial products have the property that if one of them has a higher m than another 
then the second one divides the first one, as long as we maintain the same 
initial coefficients {d~} in both. So once again, the maximum degree that occurs 
can be used as the degree of a single polynomial that is divisible by all of 
the polynomials of this kind that occur. 

The conclusion is that if we maximize every term in the estimate (5.1.7) 
for the denominator  degree 6ij, then we will have an upper bound for the 
degree of a common denominator  for all of the terms that occur in (5.1.3). 
Thus we need an estimate for the maximum of (5.1.7) over all 0<_i<_I and 
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all 0 < j  < J. These estimates are all quite trivial to make and we omit the details. 
The result is that there is a common denominator  for all of the terms in (5.1.3), 
whose degree is at most 

2 ~ ( , , v ~ < 0 , , )  + 2 c + } (5.1.8) A=l{Zba,+~v~ 
s s 

+J{~]a~ bsl z ( " a s > 0  or bs <0" )  + Z l u  ~ v~] z("u, < 0  or vs<O")+b+}, 
s s 

where ~(~) is the truth value ( = 0  or 1) of the proposition ~ .  
Next we will put all of the terms in (5.1.3) over the common denominator  

that was just discussed. We wish to estimate the degree of the common numera- 
tor. When a particular term (i,j) is put over that denominator  it contributes 
a polynomial of degree A § vij--6ij, where these three quantities are given by 
(5.1.8), (5.1.6) and (5.1.7), respectively. If we compute directly from these three 
formulas, and we use the fact that for all a, a + - ( - a )  + = a ,  then we find that 
a great deal of simplification occurs and we have 

vijWA--(}iJ "=A§ Z vs(jus+ivs)-- ~ bs(ja,+ibs)-(jb+2ic) 
v s > O  b s > O  

<=A+ ~ vs(J(us)++Ivs)+ ~ b~J(-a , )++J(-b)++I(-2c)  + 
v s > O  bs> 0 

=l {Z b2 + Z vz~ + 2 lcl} + J {~ la,,bsl + Z lu~v,l + lbl}. 
s $ $ s 

We temporari ly abbreviate the last member  above by ~I+qJ. Now that 
we know the degree of the numerator  in (5.1.3), as a polynomial  in qk, we 
can equate to zero the coefficient of each power of qk that appears. The result 
will be 31+ ~/J + 1 homogeneous linear equations in (I + 1)(J + 1) unknowns eli. 
Hence if (I + 1)(J + 1) > 31 + ~/J + 2 then we will have a nontrivial solution vector 
e, and therefore we will have found a nontrivial recurrence relation of order 
J whose coefficients are of degree < I in x, for the q-hypergeometric functions 
{f.(x)}. 

To find the lowest estimate of J,  we note that ( I+I)(J+l)>~I+tlJ+2 
surely holds for all sufficiently large I provided that J +  1 >3,  i.e., provided 
that j > J*  = [~J. Hence there is certainly a recurrence of order • b~ + Y' v~ + 2]el, 

5 s 

which completes the proof  of theorem 5.1. []  

5.2 Certification and the multi-q case 

The remaining theorems about  q-identities are sufficiently similar to their non-q 
counterparts that in this section we will only summarize them briefly. In regard 
to multi-q identities we wilt choose the route of displaying only a very crude 
upper bound on the order of the claimed recurrence for the sums and for the 
associated polynomials. This will prove the existence of the recurrence but will 
give far from the tightest bounds. In particular cases, however, once one is 
assured that the recurrences exist, it seems best to try computationally to find 
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such recurrences of very low orders, and work upwards slowly, since they seem 
to have much lower orders than one might have expected. 

The definition of a q-admissible proper-hypergeometric term is identical with 
the one in section 4.2 above. The idea of a natural compact support buffered 
by a zone of 0 values is exactly what is needed here also. With that hypothesis 
one has immediately the q-analogs of theorems 4.2B and 4.2C, and they are 
identical in form to those two theorems. 

Obtaining an upper bound on the order of a recurrence in the multi-q case 
is conceptually the same as in the earlier contexts, but the implementation would 
be extremely lengthy because of the complicated estimates of the degrees. So 
we will simplify it considerably, at the cost of some precision. 

As before, we assume a linear combination of the form 

cti,j(n ) F (n --j, k -  i)= 0 
i , j  

in which F is now 

S 

~I Q(asn+b,'k,c,)  
(5.2.1) F ( n ,  k ) =  s= 1 qA(n,k) ~k, 

SS 

I] Q(u,n+vs.k,w,) 
s = l  

where A is a quadratic form in its r +  1 arguments, and we want to determine 
the ' ~S.  

After dividing by a nonzero F(n, k), a typical term of the above, say the 
(i,j) term, looks like (5.1.5), namely 

I-I A _ja_l.b~(as n + b~.k; cs) F(n --j, k - i) s qA(n - j,k--i) ~ -i. 
(5.2.2) 

F(n, k) l ]  A_ju _i.vs(u~ n +v  s.i; %) qA(,,k) 
s 

They key observation is still true, namely that if t~ < t 2 then At,\A,~. Hence 
every denominator that occurs in (5.2.1) is a divisor of a denominator in which 
the A's have the largest possible subscripts. Now let 

B = max {](bs)hl, ](v~)hl, l a~l, l us]} + max l a,.~l, 
s,h It, v 

where now (a,,0 is the coefficient matrix of the quadratic form A that appears 
in (5.2.1). 

The last member of (5.2.2) has the form 

I-I polyl~l(tb0 l~ polyps(t's) 
coast. ~<o #,>o t - 2 A i + c  

I-I p~ H p~ 
~s>0 #s<0 

in which poly.., is a polynomial of degree.., in its argument, and 

t = ( t l , . . . ,  t , )  = (qkl, .... qkO, 
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fls =J  us + i" vs, Ys = J  as + i. b~, and "const ."  is independent of t. 
None of the poly's in the denominator  has degree larger than B ( I + J +  1), 

hence no exponent of any t h in a denominator  factor exceeds Bz(I+J+I) ,  in 
absolute value. Hence in the complete denominator  polynomial,  no exponent 
of any th exceeds (S)(SS) B2(I+J+I) ,  in absolute value. If we multiply top 
and bo t tom by (tl ... tr) ts)tss)B2(~+s+ ~ to make all of the exponents nonnegative, 
then in the numerator  and in the denominator  polynomials none of the variables 
appears to a power higher than 2S(SS) B2(I+J+ 1). Hence after putting the 
entire sum over a common denominator,  the numerator  polynomial, regarded 
as a polynomial in t~ . . . .  ,tr, has no variable raised to a power higher than 
A =4S(SS) B2(I+J+ 1). 

The conditions on our c('s are that the coefficient of each monomial  in the 
numerator  polynomial must  vanish. A polynomial in r variables, the degree 

of each of which is <A, can have no more than (A +r~ m o n o m i a l s . "  - "  Hence if 
\ r ]  

(J + 1)(I + 1)r>( 4s(SS) B2(Ir + J + 1)) 

then a nontrivial set of 7's is guaranteed to exist. Now for fixed J, as I ~ ~ ,  
the right hand member  is ~const.rlr/r!. Hence if J + 1 > constS/r!, a nontrivial 
solution exists. 

6. Examples 

In this section we give a number  of examples of identities and their computer-  
discovered proofs. These examples have a number  of features in common. For  
one thing, they are entirely unmotivated, since the computer  places no value 
on the reader's state of mind 4. Second, they are quite easy to check, even though 
they were time-consuming for the computer  to find in the first place. In each 
case we exhibit certain rational functions Ra, R2,. . .  and we invite the reader 
to consider an equation of the form 

(**) (operator acting on the index n) F(n, ..) = Akl (R1 F) + A~2 (R z F) +... 

+Dx,(R ~ F)+ .... 

where "ope ra to r . . "  is a linear difference operator  in n with polynomial coeffi- 
cients and the A's are forward difference operators with respect to the variables 
indicated in their subscripts, and the D's are partial differentiations. 

Concerning this equation there will be two tasks for the reader: first one 
must check that it is true, and second one must  check that it implies the identity 
that we are trying to prove. It must be emphasized that both  of these will 
be trivial tasks. In  order to check that (**) is true one proceeds as follows: 

�9 Carry out the indicated operations on F and on the rational multiples 
of F. 

4 But of course they are meta-motivated by our general method 
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e e  Divide through (**) by F and cancel out factors that can be cancelled. 
Clear denominators. 
o o o  What will remain to verify will be a polynomial identity in several variables 
that will in each case be a triviality. 

In order to check (**) in each case implies the claimed identity one will 
simply sum (and/or integrate) both sides of (**) over all of the variables that 
occur as subscripts of operators on the right side, and notice the telescoping 
that occurs, which, along with the vanishing of the summands at infinity, will 
complete the proof of the claimed identity. 

6.1 Multi-sums 

6.1.1 An example of a proof of an explicitly evaluable double sum 

The following is a computer-generated proof of a recent identity conjectured 
by Szondy and Varga [SzVa]. 

Theorem 6.1.1 Let F(j, m) be 

(-1)J+"(2n-2m+j)!(2k + 1 +j)! i ! (2k-  2i+ 1)! n! (k - i -n ) !  
22"j!(n-m)!(i+m)!(2k + 1 ) ! (k - i ) ! (m- j ) ! (n -m+j ) ! (2k -2 i -2m+ 1 +j)!" 

Then the double sum of F w.r.t, j and m is identically I. 

Proof. This is trivial for n=0 ,  so calling the sum a(n), it would be enough 
to prove that a(n+ 1 ) - a ( n ) = 0 ,  for every non-negative integer n. To this end, 
we construct two rational functions: the function Rl(n,j, m), whose numerator 
is 

(-4j2 k-- 3nj-4j iZ + 4mj-- 2n--j + 2 m - - j 2 - 4 m Z - 4 n 2 - 4 n i Z - 8 m e  k + 4mi z 

-4 jk2  +4n2j -4nZm+8nm+ 3jZn+ 2 n i - 2 m i +  2mk +8mZi+4mkZ-4nk 2 

+4m2n-2nk  + 2 j i - 2 j k  + 4 j z i - 8 m j n + 8 n m k - 8 n m i + 8 k j i - 8 k m i - 8 k n i  

- 4 n j k -  12mji + 4nji + 12mjk)(-j/4) 

and whose denominator is ( 2 n - 2 m + j ) ( - 1 - m + j ) ( n + l + i ) ( - k + i + n ) .  Fur- 
ther we construct the rational function R2 (n,j, m) whose numerator is 

- ( i  + m)(2n- 2m +j + l)(4nzj-4n2 m + j Z n -  2nj k + 4m2 n - 6 m j n - 4 n m  

+6nj + 4 n m k - 4 n m i +  2nij+ 2 j + 4 m j k - 4 m j i - 2 j k  + 2 j i -4m2k +4m2i 

+ 4 m k - 4 m i - 2 m j + j  2) 

and whose denominator is 4 ( n + l - m ) ( n + l - m + j ) ( 2 k - 2 i - 2 m + 2 + j )  
(n + 1 + i ) ( -  k + i + n). It is then routinely verifiable that (check !) 

A, F=Aj(Rt F)+ A,,(R2 F), 

where the A's are the usual forward difference operators, and the assertion fol- 
lows upon double-summing w.r.t, j and m. [] 
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6.1.2 An example of a proof of an identity of the form "double sum=single 
indefinite sum'" 

We give here a computer generated proof of the following identity of Carlitz 
[Ca l ]  (also stated by Comtet  [Co], p. 172): 

( i + j ~ ( j ] k )  k + i  " 2 

The computer found and proved a recurrence satisfied by the left side that 
is easily seen to be also satisfied by the right side, since the recurrence operator 
factorizes nicely into ((n + 2) N - ( 4  n + 6))(N--1). 

Theorem 6.1.2 Let 

F(i,j, n~ . -  (i +j) ! (n --j) ! (n - i)! 
, . -  , 

and let a(n) be its double sum w.r.t, j and i. Let N be the forward shift operator 
in n. The sequence a(n) satisfies the recurrence 

( 4 n + 6 + ( - - 8 - - 5 n )  N + ( 2 + n )  N 2) a(n)=0.  

Proof Let Ai and A~ be the forward difference operators in i and j respectively. 
Define two rational funtions as follows. First, R x(i,j) has for its numerator 

( - - 6 i z -  2iZ n + n3 + 5nZ + 4 + 8n--4 i j  + ni j  + 4i2j + 2 i 3 - 8 j - 1 4 n j -  5n2j 

+ 4nj2 + 6j z - n Z i - - n i + 2 i ) ( n - i +  1) i z 

and its denominator is (i + j -  n - 1) / (i + j  - n - -  2)  2 (i q - j ) .  Next define 

( j - - n -  1 ) j 2 ( - n +  i -  1)(4i 2 + 2 i j - 4 i -  2ni + n j - 4 n - n  2 + 2 j -  4) 
R z (i, j) = (i + j -  n - 1) 2 (i + j  - n - 2) 2 (i +j) 

It is then routinely verifiable that 

( 4 n + 6 + ( - 8 - -  5n )N  +(2 +n) N2) F( i , j , n )=di (R i  F)+ Aj(R2 F) 

and the result follows by summing w.r.t, i and j. [] 

6.1.3 An  example of an identitfy of the form "double sum = single sum" 

The following identity is due to Carlitz [Ca2] (see also [-St], p. 262): 

j + k  k+  ( i+  t ( m + n + l ) ,  1 m n 

j+l=n 

Our algorithm found recurrences for both sides, that turned out to be identical 
and second order.  Hence the identity follows once the two trivial initial values 



Algorithmic theory for hypergeometric multisum/integral identities 619 

n=0 ,1  are checked. Since the right side is a single sum that is handled by 
[Z2]  [Z3],  we give only the certificates for the left. 

The operator  P(N,n)  annihilating a(n), the left side (that also happened 
to annihilate the right side), was found to be 

2(m+ 3+n)(2 + m + n ) 2 - ( 4 n 2  + 2 n m + 1 5 n +  3m+14)(m+ 3+n) N +(5+ 2n)(n 
-1- 2) 2 N z 

and the "certificates" R1 and R 2 that satisfy, (calling the summand on the 
left f (n ,  i,j)) 

P(N, n) F(n, i,j)= Ai(Rt F (n, i,j)) + A j(R 2 F (n, i,j)), 

and whose existence certifies that P(N, n) indeed annihilates the left side a(n) 
are, 

R1 = (P/D), R2 = (Q/D), 
where, 

D,=(--m + i -  1)2(i +j) ( - -n  + j -  2)2(- -n+j  - 1) 2 , 

and P and Q are certain polynomials that are not given here to save space, 
and that can be easily reproduced by the readers once we tell them that P 
has degrees 8 and 5 respectively in i, j, and Q has degree 6 in both i and j. 

6.2 Multi-integrals 

6.2.1 The basketball numbers 

The binomial coefficients [n'mm) m a y / + \  be defined a s t h e  number of possible 
\ [ 

"soccer games"  for which the final score is n:m. Of course they satisfy a first 
order recurrence in both n and m. The basketball analog (in which one "score"  
is either one point or two points) is much more complicated, and turn out 
to satisfy a fourth order recurrence in each of n and m. The output was as 
follows. 

Theorem 6.2.1 Let 

F (x, y, m).'= (1 - -X--X2--y--y2)  xm+ l y "+1 

and let a(m) be its double (contour) integral around the origin, w.r.t, x and y. 
Let M be the forward shift operator in m. The sequence a (m) satisfies the recurrence 

(4(m+ 3 ) (3+n+m) (m+ 2 +n)+ 2 (2mn+ 5n+ 21m+4m2 + 26) (3+n+m)  M 

+(m+ 2 ) ( -  5 m Z - - 5 4 -  3 3 m - 6 m n  - 1 7 n + n  2) M 2 

- ( m  + 3)(m + 2)(34 + 9m + 5n) m 3 

+ 5 (4 + m) (m + 3) (m + 2) M'*) a (m) = O. 
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Proof. It is routinely verifiable that 

(4(m+ 3)(3+n+m)(m+ 2 +n)+ 2(2mn+ 5n+ 21m+4mZ + 26)(3+n+m) M 
+ ( m + 2 ) ( - 5 m 2 - 5 4 - - 3 3 m - - 6 m n  - 17n+n 2) M 2 

--(m+ 3)(m+ 2)(34+ 9m+ 5n) M 3 

+ 5(4 + m)(m + 3)(m + 2) m 4) F(x, y, m) 

=D /certain polynomial of degree 4 in x, degree 1 in y ) 
\ ( 5  - - x - y - F 

+ D~/[certain polynomial ofdegree 2 in x. degree t in  y](1 + 2x) ] 
(1 - x -- x 2 _ y _ ye) x,,, + g y. F] , \ 

and the result follows by double integrating w.r.t, x and y. [] 

6.2.2 An identity equivalent to the Pfaff-Saalschiitz identity 

Gessel and Stanton noticed ([GS], see also [St], p. 192) that the celebrated 
Pfaff-Saalschiitz identity is equivalent to the following identity. 

(Pfaff-Saalschtitz-G S) 
( l+x)k ( l+y)b= ~ (k+n](b+nm)xmy".  
(1--xY) k+b+l m,.>O\ m / 

Indeed, the original Pfaff-Saalschfitz identity (which from our point of view 
is simpler than this equivalent form, and that was proved easily in [WZ1]), 
is obtained by extracting the coefficient of xmy" from both sides. The computer 
proof runs as follows. 

Theorem 6.2.2 Let 

F (x. y, k, b) 
m!n!(k + n - m ) ! ( b + m - n ) ! ( 1  + x)k(1 + y)b 

(1--xy)k+b+lxm+ly"+l(k+n)!(b+m)! 

and let a(k,b) be its double contour integral w.r.t, x and y. Then the discrete 
function a(k, b) satisfies the recurrence Ak a(k, b)=0. 

Proof It is routinely verifiable that 

x(l +x) F(x, y, k, b)) AkF(X 'y ' k 'b )=Dx ( 1 - x y ) ( k + n + l )  

/ xy(1 +y) F(x, y, k, b)), 
+ Dr ~(k +n ~ ) ~ - f i -  1) 

and the result follows by double contour-integrating w.r.t, x and y. By symmetry 
of k and b, also Ab a(k, b)=0, and since trivially a(0, 0)= 1, it follows that a(k, b) 
- 1 .  [] 
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6.2.3 The 3-Dimensional Mehta-Dyson integral 

The Mehta-Dyson integral (Mehta-Dyson) (section 1.3) follows from (Selberg) 
by a simple limiting argument, as was first observed by Bombieri and Selberg 
(see [Ma]). Askey [Asl]  raised the question of a direct proof, which was ans- 
wered by G. Anderson [Ande] who proved it on the lines of his proof [-Andel] 
of the finite field analog of Selberg's integral (conjectured by R. Evans lEvi). 
Here we present only the proof of the case n = 3. The general case is considered 
in [Z7]. 

Theorem 6.2.3 Let F(x,  y, z, c) be 

e-~X2 § y~ + =2)/z [ ( x _  y ) ( x _  z ) ( y -  z)-] 2c, 

and let I(c) be its triple integral w.r.t, x, y, and z. Let C be the .forward shift 
operator in c. The sequence l (c) satisfies the recurrence 

(6(3c + 2)(2c + 1)(3 c + 1) -  C) l(c) = 0. 

Proof. Let 

P(x,  y , z ) : = ( -  3 z -  3 y -  2 z 3 - 2  y3 + 2yZz3 + 2y3z 2 

+ 6 c Z y - 3 c z + 6 c 2 z - 6 c z  3 - 3 c y - 6 c y  3) 

+ (4 + 24c z + 1 2 c -  2y 2 z z + 2y  z -  6 y z  + 2 : :  2 - -  6cyz)  x 

+ ( _ y 3 _ z  3) x 2 + ( _ 2 y z + z  ~+y2) x 3. 

It is then routinely verifiable that 

(6 (3 c + 2)(2 c + 1)(3 c + 1)-  C) F(x,  y, z, c) 

= Dx(P(x, y, z) F(x,  y, z, c)) 

+ O~.( P(y, x, z) F (x, y, z, c)) + Dz( P (z, x, y) F (x, y, z, c)) 

and the result follows by triple integration w.r.t, x, y, and z. [] 
Another example of the use of the present algorithm to evaluate a double 

integral is given in [Ek 3]. 

6.3 Sums/integrals 

The bilinear generating functions for the Hermite, Laguerre, and Jacobi polyno- 
mials, associated with the names of Mehler, Hille-Hardy, and Bailey respectively, 
have received considerable attention in recent years. This was due to Foata's 
(see [Fo]) beautiful combinatorial approach that lead to insightful and beautiful 
combinatorial proofs of the Mehler [Fol  ] and Hille-Hardy [FS] identities. These 
beautiful proofs were naturally extended by Foata and Garsia [FOG-] and Foata 
and Strehl [FS] respectively, leading to multivariate generalizations. As far as 
we know, there is still no Foata-style proof of the Bailey formula, (although 
Strehl [-St] came close) but a short and elegant analytic proof was given by 
Stanton [Sta-]. 
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The present method produced new proofs to the identities, that, we believe, 
give a different kind of insight, which may suggest other generalizations. The 
Mehler formula involves only one integration, and was already given a compu- 
terized proof in [-AZ]. 

6.3.1 The Hille-Hardy bilinear formula for Iaguerre polynomials 

The Hille-Hardy formula is considered by Askey to be "very important"  ([-As 2], 
p. 34). Although we can prove it in the expanded form given in section 1.1 
that equates a triple sum with a single sum, we prefer not to go all the way 
but rather "ext rac t"  the coefficient of u" from the right. We will show the com- 
puter-proof of the equivalent version 

(Hille-Hardy-semi-expanded) 

n! (~+l)---~2~(x)/~.~(y)= j" u-n-1(I_U)-~-I 

�9 exp (ilZ~ui J \~m! (~ -+l )m\ (1 -u )  2j J du. 

To this end, it is enough to prove that the right side is annihilated by 
the well-known second order differential operator annihilating the Laguerre 
polynomials, both w.r.t, x and y. Of course, by symmetry, it suffices to do 
it only for x, but the computer doesn't mind doing it for both x and y. We 
still need to prove that the initial conditions match, but this is really trivial. 
The differential operator annihilating (Laguerre) is easily found by the single-sum 
[Z 3] special case of our algorithm. The computer output was as follows. 

Theorem 6.3.1 Let 

. ( l - -u)  -~-1 [ xyu  \m ( (x+y) u] 
F ( u , m , x ) , = u , + ~ - - m i ~ - ~ + m  ) ~ )  exp ( l - u )  ] '  

and let a(x) be its contour integral w.r.t, u and sum w.r.t, m. Let Dx be differentiation 
w.r.t, x. The function a(x) satisfies the differential equation 

(n + (c~ + 1 - x) Dx + x D~) a (x) = O. 

Proof It is routinely verifiable that 

(n+(a+ 1-x)D~+xD2)F(u,  m, x )=D.( -uF(u ,  m, x))+ A~(--(m(~ 

+ m)/x) F (u, m, x)) 

and the result follows by integrating w.r.t, u and summing w.r.t.m. []  
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6.3.2 The Bailey bilinear formula for Jacobi polynomials 

Bailey [Bal]  found the following bilinear generating function for Jacobi polyno- 
mials: 

(Bailey) 

(l+t)~+p+1 ~ n ! ( ~ + f l + l ) ,  .=0 (~+ 1).(/~ + 1)~ e"(~'e)(x)P"(~'P)(Y)t" 

(~+/~+l)2~m+k, [ t ]m+k 
= ~ k,m!(~+l)k(fl+l), " [ ~ ]  (I+x)~(I+Y)~(I--x)R(a--y)k" 

k , m = O  " 

Stanton [Sta] gave a short and elegant proof of (Bailey), but not as short, 
and not as elegant, as the proof below, found by our computer. 

Theorem 6.3.2 Let F(t, k, m, x) be given by 

(1 _.[_ t)_~r fl_ 1 (~-~-fl'-~l)2(m+k) [ t ]m+k(l+X)m(l+y)=(1--x)k(1--y)k 
k!m!(c~+ l)k(fl+ i).. [ ~ ]  t "+ '  ' 

and let a(x) be its integral w.r.t, t, sum w.r.t, m, k. Let Dx be differentiation w.r.t. 
x. The function a(x) satisfies the differential equation 

((cr 1 +n) n + ( - f l x - ~ x - 2 x + f l - - o O D x + ( 1 - x ) ( 1  +x)D~)a(x)=O. 

Proof Let Dt be differentiation with respect to t and Ak and A,, be the forward 
shift operators in k and m respectively. It is routinely verifiable that 

( (~+fl+ 1 + n ) n + ( - f l x - ~ t x - 2 x + f l - ~ ) D ~ + ( 1 - x ) ( 1  + x)D~)F(t, k, m, x) 

=D'(  (tm+ t k - t n - c t - f l -  +t F(t, k, m, x 0 

~ x--~ F(t,k,m,x +A~ - 2 m ( m + ~ )  F(t,k,m,x) 
l + x  ' 

and the result follows by contour integrating w.r.t, t, and summing w.r.t, k 
and m. 

6.4 q-sums and integrals 

So far we have only the single-sum (and hence the single-integral) case imple- 
mented. In this case, in fact, one has even a faster algorithm I-Z5], that is a 
q-analog of the algorithm of [Z3], and is based on a q-analog of Gosper's 
algorithm, that is also described in [Z5]. The q-Fundamental Theorem of the 
present paper, for the special case of a single summation variable, provides 
the theoretical guarantee that the q-fast algorithm of [Z5] always works. 

We give three examples. The first is the celebrated q-Saalschfitz identity 
(e.g. [Z6]) as a typical example of a q-sum. The second example is a specialization 
of the q-Vandermonde identity, that while trivial, leads to a highly non-trivial 
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dual identity. The third example is the q-Askey-Wilson identity [AsWi], as a 
representative example of a (contour-)integral, or equivalently, as a constant 
term identity. 

6.4.1 A WZ proof of the q-Saalsch/itz identity 

Theorem 6.4.1 (Jackson) Let, as always, (q),..=(1 -- q) (1 --q2)... (1 - q~), then 

q t,q)n+b+c-k (q)n+b(q),,+c(q)b+c 
~ (q),-k(q)b-k(q)~-k(q)k +,,(q)k-,, (q),+,,(q)b-m(q)~+,,(q),-,,(q)b+m(q)~-,,," 

Proof Let F(n, k) be the summand on the left divided by the right side. We 
have to prove that 

a(n):=~ F(n, k ) -  1. 
k 

This is obviously true for n=0 ,  so it suffices to prove that a(n+l) -a(n) -O.  
To this end, we construct 

q,- k (qk _ qC) (qk __ qk) 
G(n,k):= (l_q,+C+l)(l_q,+b+l) F(n,k), 

with the motive that 

A,F(n, k)=AkG(n, k -  1), (check!) 

(dividing troughout by F(n, k) results in a routinely verifiable identity), and 
the assertion follows upon summing w.r.t.k. [] 

6.4.2 Another example of a q-WZ pair 

We will now present a WZ proof of the following special case of the well-known, 
and almost trivial, q-Vandermonde-Chu identity. 

v~ k2{n~ z 2n 
(q-Chu-equal) ~ q  ~k]q=(n)q. 

Indeed, letting F(n, k) be the summand on the left divided by the right side, 
we construct 

q,+a(q2,+t +q,_2qk) 
G(n,k),= (l_q2,+l)(l+q,+~) V(n,k), 

with the motive that 

F(n+ I, k)-F(n,  k)= G(n, k)-G(n,  k--1), 
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and summing w.r.t, k implies that ~ F(n, k) is independent of n, and hence equals 
k 

its value at n =0, which is seen to be I. [] 

The advantage of the present proof is that, just as in the ordinary case 
[-WZ2], we get two brand new identities as bonuses: the dual and the companion. 
First we present the dual, which is particularly attractive. As in [WZ2], we 
must first take the "shadow" of the whole or parts of G(n, k) to make it of 
finite support in n for every k. The shadow of (q), is (-1)"q~"+l)"/2/(q)_,._~. 
Shadowing the part (q)2/(q)2, in G(n, k), changing n to - n ,  shifting, and finally 
switching n and k, to make k the summation variable, results in the following 
dual identity, which is the q-analog of example 3' (p. 155) of [WZ2]. 

(2kk) (n) 2 (qn-kq-qn--2qk)~o" 
(q-Chu-equal-dual) ~ k (1 + qk) 

k=O q q 

Unlike the ordinary case, in which letting n -~ oo is meaningless or tautologi- 
cal, in the q-case, very often, we get an even nicer, this time non-terminating, 
identity. In the present case, letting n -~ oo leads to 

(q-Chu-dual-limiting) 

qk ( ~ qk(q)2kzll 
k = o (~k = (q)~176 1 + 2 k~=l (q)3 k (q)k-I ]" 

This appears to be a new identity. When we presented it to George Andrews, 
he was able, of course, to prove it independently, but the proof was very long 
and used several esoteric results. At any rate, our unified method discovered, 
and simultaneously proved, a new identity. Undoubtedly, there are many other 
examples of non-terminating q-identities one could find, by specializing, dualizing, 
and then limiting known identities. Another example of the form "single sum = s- 
ingle sum", whose limiting case is the First Rogers-Ramanujan identity, is given 
in [EkT]. 

As regards the companion identity to (q-Chu-equal), it is found, following 
exactly the method of [WZ2], to be 

(q-Chu-companion) 

q"+l(q2"+l +q"--2qk) k q 
(1--02"+1)(1+0 "+1 ) (2n) n>O 

n q 

--q-k:((q)oo ~ q22 1), (k=O) 
j=O ( ~ j  2 .-  

and it appears to be new also. The case k = 0, which reads as 

q , + l ( q 2 , + l + q , _ 2 )  (q)2 

( q ) ~ = l +  Z (1- -q2 ,+l ) (~_-~; i )  (q12, 
n > O  

is already of some interest. 
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6.4.3 The Askey-14qlson integral 

The Askey-Wilson integral is equivalent to the following constant term identity 
(recall that CTz is the constant term w.r.t, z). 

(Askey-Wilson) 
(z2)~ (z- 2)~ 

CTz (az)o~ (a/z)~ (bz)~ (b/z)o~ (cz)~ (c/z)o~ (dz)~ (d/z)o~ 

2 (abcd)~ 
(q)~ (ab)o~ (ac)oo (ad)~ (bd)o~ (bd)~ (cd)o~' 

where lal, Ibl, Icl, Id[ < 1. 
(Askey-Wilson) is needed for the proof of the orthogonality of the q-Askey- 

Wilson polynomials, which are the most general classical orthogonal polyno- 
mials known. The original evaluation in [AsWi] used Cauchy's theorem and 
a miraculous simplification of elliptic functions. Later Askey [As3] verified it 
by showing that both sides satisfy a certain functional equation. A beautiful 
combinatorial proof is given in [ISV]. The present computer-generated proof 
is most akin to that of [As3], but our functional equation is simpler (namely 
(WZ)), and, of course, is machine-made. 

The proof goes as follows. Let S(a, b, c, d) be the left side of (Askey-Wilson) 
divided by its right side. We would like to prove that it is identically 1. A 
direct computation, using the trivial (q; qZ)~(_q; q)~ = 1 (of Euler's "odd-dis- 
tinct" fame), shows that S(1, - 1 ,  ql/2, _ql/2)= 1. The result would follow by 
a density/analytic continuation argument, if we can show that S(qa, b, c, d) 
-S(a,  b, c, d), and similarly for b, c, d, because it would imply it for all {a} 
assuming the values +q", which for q<  1 converge to 0, just as in Askey's 
[As3] proof. It remains to show that (Q,-1)S(a, b, c, d)=0, where, as above, 
Q, f(a):=f(qa). Let F(a, b, c, d, z) be the constant termand of S(a, b, c, d), i.e. 
the left side of (Askey-Wilson) without the CT~, divided by the right side. We 
construct 

(1 - a z )  (1 - b z )  (1 - c z )  (1 -dz) 
G(a, b, c, d, z),= -F(a,  b, c, d, z ) ( ~ - a ~ - - - ~ a c ~ l - a ~ z '  

with the motive that 

(Q, -1 )  F(a, b, c, d, z)= ( 1 -  Q~-1)G (a, b, c, d, z) (check !) 

(dividing through by F results in a purely routine identity involving specific 
rational functions), and the results follow upon taking constant term w.r.t.z. 

6.4.4 An ancient q-WZ proof 

In [BFH] can be found a q-WZ proof that is attributed there to Cayley [Ca]. 
Our work shows that such a proof, possibly generalized as in our q-fundamental 
theorem, always exists, and one does not have to be a Cayley to find it. 
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6.5 From specifically many to arbitrarily many summations and integrations: 
the human factor 

As was pointed out in the introduction, at present it is possible to find electroni- 
cally only proofs of identities with a f ixed number of summation and/or integra- 
tion signs. However, a human eye might detect a discernible pattern, that might 
be generalizable to arbitrarily many summation and integration signs, and then 
prove, humanly, the "one-line" WZ identity, whose proof might require several 
lines. We were able to find such proofs for Selberg's integral [Se] [-Anl] and 
Holman's [Ho]  U(n)-Gauss summation. We are confident that in the future 
it will be possible to find similar proofs of other multivariate identities like 
those of Milne [Mi], Gustafson [Gu],  and the q-Dyson identity [ZBJ. 

Once one knows what to look for, it is conceivable that one may be able 
to dispense with the computer altogether, since general families of multivariate 
identities display elegant symmetries that can be used by humans to find "soft"  
proofs. 

6.5.1 A WZ Proof of Selberg's Integral 

Selberg's integral (Selberg), already mentioned in Sect. 1.3, 

(Selberg) -.- t•(1- ti) r 1-I ( t i - - t j )  2z d t l . . . d t .  
0 0 i l < _ i < _ i < n  

= FI ( x+( j - -1 ) z ) ! ( y+( j - -1 ) z ) ! ( j z ) !  
j=~ ( x + y + ( n + j - - 2 ) z + l ) ! z !  

is proved as follows. They easy part is the same as in Selberg's original proof 
([Anl]):  when x = y = 0 ,  the integral can be transformed by symmetry, to n 
times the integral over 0 < tl, t2 . . . . .  t,_ 1 < t, < 1, and the change of variables 
t i=si t . ,  ( i=1 . . . .  , n - i ) ,  transforms the integral to a special case of the (n 
- 1)-variate case. Let S(x, y, z) be the left side of (Selberg) divided by its right 
side. We would like to show that S(x, y, z) = 1. By induction it is enough to 
show that S(x + 1, y, z ) -  S(x, y, z)=-O and S(x, y+ 1, z ) -  S(x, y, z)=O. By sym- 
metry it is enough to show the former (or the latter). Let F(x, y, z; t~ . . . . .  t.) 
be the integrand of (Selberg) divided by its right side. Let ej(v~ . . . . .  v,,) be the 
elementary symmetric functions in Va . . . . .  v,, : 

We construct 

m 

I](x+vi)= ej(vl . . . .  ,vm)x ~-~. 
i=1 j=o 

n-l~ - - ( j ! ) (n - - j - -1 ) !  
R(u; U1 U n - 1):=U(I U) 

j~=o n!(x + 1 + ( n -  1) z) 

} ejtvl . . . .  , l;n- 1)~ 
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with the motive that 

(WZ-Selberg) 

dxF(x,  y, z; tl . . . . .  t , )= ~" O~,[R(t~; tl . . . . .  {,. . . . . .  t ,)F(x, y, z; tl, ..., t,)], 
i = 1  

whose truth would imply S ( x + l , y , z ) - S ( x , y , z ) = - O ,  by integrating w.r.t. 
tl . . . .  , t, over [0, 1]". The proof of (WZ-Selberg) is, from this point on, no longer 
purely routine, although it is for every specific n. Although not machine-provable 
(at present), it is nevertheless an easy exercise that uses the following simple 
identities. 

(i) ej(t, . . . . .  ~ . . . . .  t , )=(n- j )  ej(t 1 . . . . .  t,), 
i = 1  

(ii) tlej(t 1 . . . . .  ~ . . . .  , t ,)=(j + l)ej+ l(t 1 . . . . .  t,), 
i = 1  

(iii) ~ ( 5< - t~_t~)t i(1-t i)e,( t l  . . . . .  {/ . . . .  , t ,)  
i = l  1 _  _ n  

j * i  

= ( n 2 r ) e r ( t l , . . . , t , )  (r+l)(2n-r-2)2 er+l(tl . . . . .  t.). 

The proofs of (i)-(iii) and their use to prove (WZ-Selberg) are left as pleasant 
exercises to the reader. [] 

The present proof is somewhat reminiscent of Aomoto's [-Ao] beautiful but 
ad hoc proof of Selberg's integral. 

6.5.2 A WZ Proof of Holman's U(n)-Gauss summation 

One of the first general multivariate hypergeometric identities, that inspired 
the impressive work of Milne (e.g. I-Mi]) and Gustafson (e.g. [-Gu]) was Holman's 
U(n) summation formula, that generalizes from one to many summation vari- 
ables Gauss' classical evaluation of zF1 (1). It can be stated as follows. 

(Holman) 

... ~ l<-i<j<=, i=lj=l j=l 

y l = 0  Ynm0 FI ~I( I+Bj- -Bi ) ' j  ( I(b+Bj) 's  
i = 1  j = l  j = l  

( b -  a),, +...+,. 1-I (B i -  B j) 
l < i < j < n  

(b)a l(b-n2)az...(b- nn)a. 
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Here a~ . . . . .  a,  are non-negative integers, while B 1 = 0 ,  B 2 . . . . .  B., b and a are 
commuting indeterminates. By dividing by the right side, (Holman) can be writ- 
ten as 

F,,(al, Y ~ .... , y , )=  1, 
Y I , . . - , Y n  

where the dependence on a2, ..., a , ,  is suppressed, as is the dependence on 
the other parameters Bj, a and b. It is immediate to see that when al =0,  
the identity reduces to the n -  1 case. Calling the left side H(aO it would follow 
that H(al)  = 1, once we can prove that H(a~ + 1 ) - H ( a l ) - 0 .  This, in turn, would 
be an immediate consequence of the existence of rational functions R~ such 
that (recall that Av f(v):=f(v + 1)--f(v)), 

(WZ-Hotman) A~ 1F~= ~ Ay,(RiF,), 
i = 1  

which would imply it by summing w.r.t. Yt, .-., Y,. 
The fundamental theorem guarantees that for each specific n, such rational 

functions exist, (possibly with the Aa, on the left replaced by a certain left multiple 
of it), and that a computer  can find them. Our computer  found them for the 
cases n = 2 ,  3. To our pleasant surprise, these factorized nicely, and we were 
able to conjecture, and then prove, the general expression: 

(y~ + b + Bi -- 1) f i  (y~ + Bi-- B j) 
j = l  

R i - ( b - a + a l  +...+a,,)(Yi-al +Bi -1 )  1-1 (Bi+y~-Bj--YJ)" 
1 <=j<n 

j , i  

The verification of (WZ-Holman) for every specific n, after dividing through- 
out by F,, is a purely routine identity involving sums of rational functions. 
However, the statement for a general n requires a human proof. This proof  
however, is an easy exercise that uses the Lagrange interpolation formula, and 
goes as follows. 

By dividing (WZ-Holman) by F,, it emerges that it is equivalent to the 
following identity, where we have set z~:=y~ + Bi. 

n 

(b+aO [I(-a~ +B~- l) 
(Rational) J= ~ 1 

n 

(b--a+al + ... +a,) l-I (z j -al  - 1) 
j = l  

i :  1 ( z i  - z ~ ) . . .  ( z l  - z i _  1) ( z i  - z~ + ~ ) . . .  ( z i  - z . )  

(a+zl) i~i2 �9 (b-a-~-~+~..+a~).= ( - a j - B j + z , )  

(zi + b - 1) " ] 
(zl--al--1)(b--a+al + +a,) I-I(zi-BJ) ' 

" ' "  j = l  
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which is an easy consequence of the Lagrange interpolation formula. It is proved 
as follows. 
(i) In (Rational), replace ( z i + b -  1)/(zi-a 1 - 1) by 1 + ( b + a O / ( z i - a l  - 1). 
(ii) Recall the formula 

(Lagrange')  

" p ( w i  ) 
Coeffz,-, P (z) X ~ 

i~=l (W i - W 1 ) . . . ( W i - W i _ l ) ( W i - W i + l ) . . . ( W i - W n )  

obtained by taking the coefficient of z ' -  1 in the Lagrange Interpolation Formu- 
la: 

P(wi ) (Z -Wl ) . . . ( z -w i  1) ( Z - -  Wi + l) . . . (Z - -  Wn) (Lagrange) P(z) = 
i=1 ( w i - w  1) . . . (w i - w i _ , ) ( w i - w i + l ) . . . ( w i - w n )  ' 

which is valid for any polynomial P(z) of degree n - 1  and n points wl, ..., w,. 

(iii) Apply (Lagrange') to the degree-n polynomial P(z).'= (]  ( z - B  j) at the n + 1 

points j = 1 

{zl . . . . .  z . , a 1 + l } .  

(iv) Apply (Lagrange') to the degree-(n- 1) polynomial 

n n 

P(z) .'=(a + z) I-I ( z -  a j -  B j ) -  1-[ ( z -  Bj) 
/ = 2  j = l  

at the n points {z, . . . . .  z.} and add to (iii) to obtain (i). [ ]  
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