DENERT’S PERMUTATION STATISTIC
IS INDEED EULER-MAHONIAN

BY
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ABSTRACT. — A conjecture by Marleen Denert concerning a bivariate statistic on
the permutation group is proved. The statistic has the same distribution as the pair
consisting of the number of descents and the major index.

1. Introduction

In this paper we prove a conjecture of Marleen Denert ([Del], [De2])
concerning a new permutation statistic that she has recently discovered.
Namely we will prove that her statistic when taken jointly with the number
of excedences, has the same joint distribution as that of the pair of classical
permutation statistics that consists of the major index and the number of
descents.

Let us start with a little history and background. The Hebrew book of
Creation, Sepher Yetsira (c. 300 C.E., [SU], p. 109, see also [Kn], p. 23),
stated the number of permutations of n objects for n < 7. Saadia Gaon
(882-942 C.E.) gave the general rule that the number of permutations of
n objects is n times the number of permutations of (n — 1) objects by
stating it explicitly for n < 11, and then saying that “if you want to know
the [permutations| of still larger numbers, you may operate according to
the same method” ([Gal, p. 496). Saadia, however, was only interested in
these numbers up to n = 11, since the largest word to be found in the
Bible contains eleven letters, like the word “ve ha a kh shder panim.”
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The general formula was proved rigorously in 1321 by Levi Ben Gerson,
by what may have been the first use of complete mathematical induction
([Le], see also [Carle]).

More recently, more refined counts of permutations, according to vari-
ous statistics, have been undertaken. The naive count of a family of sets
A, is simply a formula for the number of elements in A,, :

an :zZl (a € Ay),

where every element carries weight 1. Often, however, the elements of A,
possess several significant numerical attributes, called statistics (like age,
height, weight for people), say, fi(a), ..., fr(a). Then one is interested in
the refined count according to these statistics

an(ty,... t) =Y 1 @ (g e Ay),

where every element of A, carries weight t/'(* ... #{"(*) rather than 1. It
is then desired to find explicit formulas, and properties of the polynomials
an(tl, ey tr).

Various statistics on permutations have been discussed in the past.
Netto considered the number of inversions, and MacMahon considered
the major index. Another important statistic is the number of descents.
These statistics are defined on the symmetric group S,, as follows :

inv = #{i < j; n(i) > ()}, majm = Zz (m(i) > w(i + 1)),

desm := #{i; 7(i) > n(i+1)}.

The generating functions according to these statistics are well known
(see, for example, [Fo2]) and due to Netto, MacMahon and Euler, respec-
tively. Using the notation [n], = (1 — ¢")/(1 — ¢) we have

Y™ =g 2lg - [ng; (MAJ)
TES,

Yo AT =12 - [0l (INV)
TES,

Z tdesn’ — An(t); (DES)
TES,

where A,,(t) are the so-called Eulerian polynomials, that do not have closed
forms by themselves, but do have a nice generating function (see [Fo2]).
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Carlitz [Carli] considered the bi-variate refined counting of S,, according
to the pair (des, maj). Namely he defined (in a slightly different notation):

Bn(t) — Z tdesrrqmajrr,
TESy

and proved that if one writes

then the coefficients B, 1 (¢) satisfy the recurrence :
Bn,k (q) = [k + 1]an—1,k(Q) + qk [n - k]an—l,k—l(Q)a (CARLITZ)

subject to the initial conditions By x(q) = do k-

Refined permutation-counting reached new heights with the papers by
Garsia and Gessel [G-G] and Rawlings [Ra], who found the generating
function for the quadruple (des,ides, maj,imaj), where idesm = des 7!
and imaj7 = majn~!. This work was extended to colored permutations,
and shown to find its natural habitat in the theory of tableaux and Schur
functions by Désarménien and Foata [D-F1], [D-F2].

Two statistics that have the same generating function are said to be
equi-distributed, and a natural question then is whether there is a‘“natural”
reason for this, i.e., whether there is a bijection of the set to itself that sends
one statistic to the other. For example, since the right sides of (INV) and
(MAJ) are identical, the two statistics inv and maj are equi-distributed, as
was first noticed by MacMahon [Ma]. In 1968 a natural bijection that sends
inv to maj was given ([Fol], see also [Kn], ex. 5.1.1.19), that explained in
a direct manner why inv and maj are equi-distributed. A permutation
statistic that is equi-distributed with maj (or, equivalently, inv), is called
Mahonian, and one that is equi-distributed with des is called Fulerian
([Fo2]). Furthermore, if a pair of statistics has the same joint distribution
as (des, maj) that pair is called Fuler-Mahonian. Many examples of equi-
distributed pairs are given in [Fo2].

In studying the genus zeta function, Denert ([Del], [De2]) introduced
a new permutation statistic, that we will christen “den.” Her statistic, in
a somewhat simpler form, reads :

denm:=#{1 <l <k <n; n(k)<n(l) <k}
+#{1<li<k<n; n(l) <k<n(k)} (DEN)
+H#L <<k <nm k<m(k) <m()}.
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The companion statistic to den in Denert’s conjecture is simple and well
known. It is simply the number of excedences of a permutation, defined by

excr := #{1 <1 < n; 7(i) > i}. (EXC)

We are now ready to state the main result of this paper, that was
conjectured by Denert ([Del], [De2]).

THEOREM 1. — The pairs of permutation statistics (exc,den) and
(des, maj) are equi-distributed. In other words, if By, (t,q) are Carlitz’s q-
Eulerian polynomials introduced above, then

Z texc'/rqdenvr — Bn(t,q).

TES,

The most natural proof of this result would be in terms of a bijection
from S, to itself that sends the pair (des, maj) simultaneously to the pair
(exc, den). Although it is rather easy to find a bijection that sends maj
to den (see next section), and it is now trivial (see, e.g., [Lo], chap. 10.2)
to find a bijection that sends exc to des, we are unable, at present, to
find a bijection that does both at the same time. Instead, we will have
to make do with an indirect proof. We really hope that such a bijective
proof of Denert’s conjecture will be found, and that it will take less than
the fifty-five years that elapsed between MacMahon’s [Ma] first proof of
(MAJ) and Foata’s [Fol] bijective proof.

The organization of the paper is as follows. In section 2 we give a coding
for Denert’s statistic that shows that the one-variable “den” is Mahonian.

In section 3 we work out a natural definition for the Denert statistic
in terms of the positions of the excedences and the inversion tables for
the so-called excedence and non-excedence subwords of the permutation
(theorem 2). It is very conceivable that more and more mathematicians
will rely on computer-based proofs, especially for proofs that require basic
and lengthy verifications, as in theorem 2. In section 4 we then sketch
another way of proving theorem 2 that is based on the calculus of the
partial derivatives for the permutation group.

The key object in our derivation is the weighted bracketing whose
properties are developed in section 5. A weighted bracketing can be viewed
as a lattice path in the N x N-quadrant that goes from the origin to a
certain point and whose elementary steps are weighted. For each pair
of integers (a,b) such that a > b there is a set Uy, 4 of such weighted
bracketings and the generating function D(n,a,b) for U, 4 according to
a certain weight (“ind”) can be evaluated (theorem 3).

More interesting for our study is the fact that we can find another recur-
rence relation for D(n,a,b) that specializes to the (CARLITZ) recurrence
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formula for the ¢g-Eulerian numbers when a = b = k (see Theorem 4). This
then proves that D(n, k, k) = B, k(q).

To prove theorem 1 it remains to find a bijection of the set U, ik
onto the subset S, ; of the permutations having k excedences that sends
the ind-statistic of the weighted bracketing onto the den-statistic of the
permutation. This is done in section 7 (theorem 5).

We end the paper by constructing another bijection of the set U, , 5 into
a set of objects called gravid permutations. Again, when a = b = k, the
bijection sends the weighted bracketings onto the (ordinary) permutations
having k descents. The Mahonian statistic “ind” is then sent over a new
Mahonian statistic involving the values of the descents, that we have
baptized mak (see section 8). As a companion to the Eulerian statistic
des, we now have two Mahonian statistics, maj and mak. The former one
depends on the positions of the descents, the latter one on its values.

The paper ends with a table of the polynomials D(n,a,b) for n < 6
and with a description of all the bijections used in the paper for the
permutation group Sjy.

2. A coding for Denert’s statistic that proves
that it is Mahonian

Like the clasical “inversion table” (e.g., Knuth [Kn], p. 21), it is possible
to use the definition (DEN) to introduce the Denert table by, where for
k=1,...,n the integer by is the contribution that came to den from the
k-th entry 7(k) :

b H i<k w(k)y<w(l) <k}, if m(k) < k;
kmy_{#U<hﬂm§k}+#ﬂ<hﬂM<W@L if w(k) > k.

Of course, den 7 is the sum of the by (7)’s.
For instance, for the following permutation we have :

<123456789>
7154926 38
Denert table= 00 2 03 2 1 4 1

In particular, denm = 13. It is obvious that by < k — 1, and it is easy to
see that the mapping m — (bg (7)) is injective, and thus a bijection.

To recover 7 from its Denert table (by), first let 7(n) = n —b,,. Suppose
that w(k + 1), ..., m(n) have been determined from the sequence by, 1,
..., b,. Then write the sequence

k(k—1),...,2,1,n,(n—1),...,(k+1),
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and delete all the elements in this list that are equal to m(I) for some
Il > k+ 1. Then w(k) is the (bx + 1)-st term in the resulting list when
scanned from left to right.

It follows that the Denert statistic is Mahonian :

Z g = [1q[2]g - [nlg-

TESy

The bijection of [Fol] implies a natural mapping between permutations
7 and sequences ag such that 0 < ap < k — 1 such that maj goes to the
sum of the sequence : majnw = a; + - -+ + a,. Composing with the present
correspondence we get a natural mapping from &,, to itself that sends maj
to den.

3. A less unwieldy definition for Denert’s statistic

We will now give an alternative definition of den in terms of a more
familiar objects. Let 7 = 7(1)7(2) ...m(n) be a permutation of order n. If
1 <i<n—1and (i) > i, say that i is an excedence-place for m, and 7 (1) is
an excedence-letter for 7 [to paraphrase the celebrated letter-place algebras
dear to our bon Maitre Gian-Carlo Rota [DRS]]. Let iy < iy < --+ < i, be
the increasing sequence of the excedence places and j; < jo < -+ < Jn—k
the increasing sequence of non-excedence places.

The subwords Exco = o(i1)...0(ix) and Nexco = o(j1)...0(jn—x)
are referred to as the excedence-letter and non-excedence-letter subwords.

A permutation o is said to be bi-increasing if both subwords Exc o and
Nexc o are increasing. For instance

:(123456789)
415269378

is bi-increasing, since Exco = 4,5,6,9 and Nexco = 1,2, 3,7, 8 are both
increasing.

THEOREM 2. — Let 0 = 0(1)0(2)...0(n) be a permutation. Let iy,
..., i be its excedence-place sequence. Then

deno =141 + 19 + -+ i + inv Exco + inv Nexc o.

For instance, for the permutation m shown in section 2 we have i1 = 1,
1o = 3, %3 = 5, Excm = 7,5,9, Nexcm = 1,4,2,6,3,8, invExcm = 1,
inv Nexcm = 3, and then denm=1+4+3+5+1+ 3 = 13.

Proof. — First we prove the theorem for bi-increasing permutations.
In such a case inv Exc o = inv Nexc o = 0 and we have to show that

dena:i1+i2+---+ik.
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For n = 1 there is nothing to prove. Suppose n > 2 and let ¢ =
0(1)o(2)...0(n) be a bi-increasing permutation whose excedence-place
sequence is i; < iy < .-+ < ir. Again we can assume that o(ix) = n,

for otherwise we would have o(n) = n and the result would follow by
induction.

Denote by (by(0),b2(0),...,b,(0)) the Denert table of o. In particular
b, (o) is equal to the number of occurrences of the letters < i; in the left
factor 0(1)o(2)...0(ik—1). For j = ix, + 1,ix + 2,...,n, let €; be equal 1
or 0, according as j does or does not occur in o(1)o(2)...0(ix—1). We
then have

bi, (0) =ik — 1 — (€541 + €52 + -+ + €n).

Note that €, = 0. Define a permutation ¢’ in S,,_1 by

v (), if § < in:
o (j) = {0(j+1), ifip <j<n-—L
Note that 7x, + 1, ..., n — 1, n are non-excedence places for o, so that
o(ix+1)<o(ix+2)<--<o(n—-1) <o(n) <n,
and thus o(ix + 1) < dg, o(ipg +2) < g+ 1, ..., 0(n—-1) < n—2
on)<n-1.

Thus ¢’ is also a bi-increasing permutation whose excedence-place
sequence is 41,42, ...,ik—1. Now bi(c) = by1(0’), ..., bs,_,(0) = b;,_,(0").
Let j = ig,ix +1,...,n —2. The component b;(c’) is equal to the number
of lsuch that 1 <! <j—1and o'(j) <o'(l) <j. Butifip <Il<j-—1,
we have o'(l) < o'(j), since the word o(ix + 1)o(ix + 2)...0(n) =
o'(ig)o’(ix, +1)...0'(n — 1) is increasing. Hence b;(c’) is equal to the
number of [ such 1 <1 <i; —1and o/'(j) <o'(l) < j,ie, 1 <1 <ip—1
and o(j 4+ 1) < o(l) < j. Hence, for each j = ix,ix_1,...,n — 2 we have

bj(0") = bj+1(0) — €j41.
Finally,
bn_1(c')=n—1-cd'(n—1)=n—-1-0(n)=(n—0(n))—1="by(c) — 1.
Altogether,
deno = by(0) + ba(0) + -+ - + by (0)
=b1(0") + - + by —1(0")
+ig—1—€p 41— €2 — - —€n_1
+ (b3, (07) + €0, 41) + (biy1(07) + €3 42) + -+

+ (bp—2(c') + €n_1) + bp_1(c’) + 1.
This is equal to
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bi(o) + - +bp_1(0’) + ik,
which by induction equals
AT SR o PR 7

This completes the proof for bi-increasing permutations.

To prove the general case let inv Exco = a, inv Nexco = b. We prove
it by induction on ¢(c) := a + b. Keep the same notation as above. In
particular, let Exco = o(i1)o(iz) ... o(ix) and Nexco = o(j1) ... 0(Jn—&)-
If Exco is not increasing, let m be the smallest integer satisfying 1 <
m < k—1and (i) > 0(ims1). Define a new permutation 7 by letting

7(k) = o(k) for all k except k = im,imi1, and 7(iy) = 0(lma1),
and 7(im41) = 0(im). By definition of Exco we have i, < im41,
o(im) > 0(im+1), and tm < 0(im), Imy1 = 0(imt1), ooy tmy1 — 1 2>

0(tms1 — 1), imy1 < 0(imy1). Hence iy < i1 < 0(imy1) = 7(im) and
im+1 < 0(ims1) < 0(im) = T(ime1)- Thus i1is .. .4 is also the excedence
place sequence for 7. Furthermore Exc 7 = o(i1) ... 0(tmi1)0(im) - - . 0(ig),
NexcT = 0(j1)0(j2) - .- 0(jn—k) = Nexc o, and inv 7 = inv Exc 0—1. Hence
c(r)=c(o) — 1.

On the other hand, by(7) = bg(o) for every k # i, imy1. But
b;,. (1) = b;,, (o), and b; . (7) = b;,,,,(0) — 1. Hence,

deno =by(0) +--- + b, (0)
=bi(7)+ -+ by(1)+1
= (i1 + -+ -+ ix) + invExc 7 + inv Nexc 7 + 1 [by induction]

= (i1 + - - - + ix) + inv Exc o + inv Nexco.

Now suppose that Exco is increasing and let m be the smallest
integer satisfying o (j,) > 0(jmsr1). Again define the permutation 7 to
be o with o(j,) and o(j,a1) trading places. Once again j,, < Jmi1,
Jm = O'(.jm)v Jm+1 = U(jm—{—l)- Hence j, > U(jm) > U(jm+1) = T(.jm)a
and jm41 > Jjm > 0(jm) = 7(jm+1). This shows that Exct = Exco.
In particular the excedence place sequence iy ...7; is the same for both
permutations. Also

NexcT = 0(j1)0 (Jm+1)0(m) - - - 0 (Jn—k)

and thus inv Nexc 7 = inv Nexco — 1.

Now let’s compare the Denert tables of 7 and o. First b,.(7) = b,.(0)
forr=1,...,m —1and r = jput1 + 1,...,n. By definition of j,, we
have o(j1) < 0(j2) < -+ < 0(jm) < jm. Hence b;, (o) = 0. Also b;, ., (o)
is equal to the number of [ such that 1 <[ < j,,01 — 1 and 0 (Jime1) <
o(l) < jms1, i-e., such that 1 <1 < j,, and 0(jm41) < 0(l) < jm- As
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0(jm+1) < 0(jm), that number is one plus the number of [ such that
1 <1<jm—1and 0(jm+s1) < o(l) < jm. Hence b;,, ., (o) = b;, (1) + 1.
Now b;, +1(7) = 0 since o(j1) < o(j2) <+ < 0(Jm+1) < 0(Jm)-

If i;, is an excedence place between j,, and j,11, the number of [ such
that 1 <! < i, —1and 1 < o(l) < iy is equal to the number of [ such
that 1 < [ < j, and 1 < o(l) < jp, i.e., m. The number of [ such
that 1 <[ < j,, and 1 < 7(I) < j,, is also m. Hence by, (1) = by(c) for
jn <h< jm—i—l-

Altogether den o = den7 + 1, to be compared with ¢(o) = ¢(7) +1. We
conclude, as above, that the identity of the theorem also holds for . |}

4. A “short” proof of Theorem 2

We will now give an alternative proof of theorem 2 that in some sense
is longer (and less elegant) than the preceding proof, but in another sense
is shorter (and more elegant!). Up to purely routine calculations (that can
be easily programmed and done by computer) the new proof is shorter. On
the other hand, readers who refuse to use computers can still easily follow
the new proof and fill in all the details by hand, but then the resulting
proof is messier, longer, and “uglier.” In fact the new proof is in a sense
a condensation of the previous proof, but since we are no longer afraid of
messy (but routine) calculations, we are not obligated to be “clever.”

Often in analysis it is required to prove that two functions F(z) and
G(z) are identical, but it is hard, or impossible, to do it directly. Then
one tries to prove that their derivatives are equal: F'(z) = G'(z), form
which follows, of course that F' and G differ by a constant, which is easily
evaluated by plugging in an easy value. This is, for example, the way the
Weierstrass elliptic function is proved to be doubly periodic ([Rai], p. 309).
We will use a permutation group analog of this method. But first we must
define the notion of partial derivatives on permutation statistics.

Given any permutation statistic f (), define 9, f(7) := f((a,a+1)7) —
f(r). Here (a,a + 1) is the transposition that exchanges a and (a + 1).
In other words 0, f(m) measures the difference in f(7) resulting from
swapping 7(a) and 7(a + 1) in 7. For example, 9, inv(7w) = 2x(7w(a) >
m(a 4+ 1)) — 1, and consequently divinv(w) = 2 des(w) — (n — 1), where
“div” is the sum of all the partial derivatives 0,, a =1,...,n — 1.

Let us denote the right side of the identity of theorem 2 by denbis. It
is easy to see that denbis may be defined as follows

denbism = #{1 <l <k <n; k < x(k) < ()}
+#{1<I<k<nyn(k)<n(l) <l}
+#{1<I<k<n;k<n(k)}.
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We have to prove that den(7) = denbis(r), for every permutation 7. Since

the definitions of den and denbis are so close, it seems at first sight that

it would be trivial to prove that they are identical, using elementary (and

routine) Boolean algebra. However, we see immediately that the difference

g(m) := den(w) — denbis(7) does not disappear by simply manipulating

sets. However some cancellation occurs and leads to

g(m) =#{1 <l <k <n;n(k)<n(l) <k}

+#{1<l<k<n;n(l) <k<mn(k)}
—#{1<l<k<n;n(k)<n(l) <k}
—#{1<I<k<n;k<mn(k)}.

Looking at the “fundamental events” and expressing the above as a linear
combination of cardinalities of certain intersections of these fundamental
sets, does not give 0. In other words, the fact that den = denbis is not
a tautology, and depends on complex dependence between these sets. It
would be futile to try and study these complex dependencies, since they
differ from permutation to permutation.

However the partial derivatives d,¢ all vanish identically! It is a
completely routine matter to find an expression for 9,¢(m). When we
express it in terms of sums of cardinalities of intersections of “elementary
events,” all these elementary events turn out to be independent. It follows
that if 9,9(7) is indeed 0 it must necessarily be so for a tautologous reason.

A long and tedious calculation (that, however takes a few seconds on
a computer) then shows that indeed d,9 = 0, for a = 1,...,n — 1. It
follows that g(7) = g((a,a + 1)7), and since the transpositions (a,a + 1)
generate the permutation group, it follows that g is identically constant.
The “convenient” point is, of course, the identity permutation, for which
g vanishes, and so the constant is 0. It follows that g is identically zero,
and thus that den = denbis, proving theorem 2.

5. Weighted bracketings

Those bracketings will serve in section 7 to code permutations. First
consider the four-letter alphabet A = {[(,[],)], X}, whose letters will be
designated by “kappa,” “Oh,” “reverse kappa” and “Khi,” respectively.
Of course, those four letters are simply made of left and right angle
parentheses and left and right brackets. We have preferred to keep this
typographical design, rather than adopt the usual font designs for kappa,
O and chi for reasons that will appear to be clear in section 7.

If w= ziz5...2, is a word whose letters are taken from A and if y
is one of the letters [, [], )], X, we denote, as usual, by |z1z>...2,|, the
number of occurrences of y in the word w = x12s...2,.

10
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A word w = z125 . ..z, is said to be legal, if the following two properties
hold :

(i) w122 ... 2| — [z122 ... 2p |y > 0 for each r =1,2,...,n;

(ii) whenever |z1z2 ...z [ —|z122 ... 2r[y = 0and r < n,thenz,41 =
or []. (In particular, z; = [ or [].)

When a > b, the set of all legal words w of length n such that
(5.1) jwly + |wly = a; |wly + wly = b;

will be denoted by W, 4.
Each letter z, of a word w = z125...2, belonging to W, .4 is given
the following mazximum weight v, defined by

[1;
-

Finally, for each triple (n,a,b) we introduce the set U, o of all pairs
u = (w,t), where w = x125 ...z, belongs to W, o p and t = t1ty...t, is a
sequence of integers satisfying the inequalities :

(5.2) L |x1...acr_1|[<—|x1...1:r_1|>], if z, = or
' " or

|y .. .ac,«_1|[< — |z .. .1:,,_1|>] -1, ifz, =)

(5.3) 0<t, <vp, for each r =1,2,...,n.

The elements of U, ., Will be referred to as weighted bracketings.

A weighted bracketing can also be viewed as a weighted path defined as
follows. In the N x N-quadrant consider the lattice paths going from (0, 0)
to (n,a — b) whose basic steps are one of the four kinds :

(i) North-East steps (NE) joining vertices (4,j) and (i + 1,5+ 1) :

(i) blue horizontal steps (blue) joining vertices (7, j) and (i + 1, j);

(iii) red horizontal steps (red) joining vertices (7, j) and (i + 1, j);

(iv) South-East steps (SE) joining vertices (7,j) and (i + 1,7 — 1).

Notice that there are two kinds of horizontal steps. With the correspon-
dence NE < [, blue <+ [], red <> ), SE <+ )], we see that each element w
in W, o corresponds to a lattice path going from (0,0) to (n,a —b). The
fact that w is legal insures the fact that the lattice path always remains
in the N x N-quadrant.

For instance the word

w={ [, 11,6 10,0 10,

that belongs to Wy 33 corresponds to the lattice path drawn in Fig. 1,
where the red step has been represented by a dotted line.

It is readily seen from (5.2) and the forementioned correspondence
between bracketings and lattice paths that the maximum weight v, can

11



D. FOATA AND D. ZEILBERGER

also be defined in terms of lattice paths as follows. Let s, be the basic step
whose origin is the point (r — 1, j). Then

7, if s, is NE or blue;
4 =9 . .
(54) vr {j —1, if s, is red or SE.
A pair u = (w,t), where w is such a lattice path and ¢t = ¢1...,t, is a

word satisfying (5.3) is called a weighted path.

r= 1 2 3 4 5 6 7 8 9
vp= 0 1 1 2 1 2 1 1 0
Fig. 1

Such weighted paths have been considered by Viennot [Vi] in his com-
binatorial study of the general orthogonal polynomial. Viennot [Vi] con-
structed a 1-1 correspondence between the set Ua Un,a,a of weighted paths
and S, . In section 7 we will give a completely different 1-1 correspondence
that will serve to prove Denert’s conjecture. Another correspondence be-
tween weighted paths and permutations will lead in section 8 to the dis-
covery of another Euler-Mahonian statistic (des, mak).

Now let u = (w,t) be a weighted bracketing belonging to U, 4.
Furthermore, let w = zyzo...2,, t = tits...t, and v, be defined as
in (5.2). Finally, let iy, is, ..., ix be the places where the letters [ and X
occur in w. In other words, let x;,, z;,, ..., x;, be the letters in w that
are equal either to [( or ). The index ind u of u = (w, t) is defined by :

(5.5) indu=1dy +is+ - +ix+t1+ta+ -+ tn.
For convenience, we will write
indu.

poidsu = ¢

Furthermore, we will denote by D(n,a,b) the generating function
D(n,a,b) = Zpoidsu (u € Up,a,p)-

12
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To compute D(n, a, b) we first evaluate the total contribution to ) poidsu
(u € Upq,p) arising from all the weighted bracketings v = (w,t) having
the same first component w. This contribution is clearly :

(5.6) poidsw = ¢t e[y 4 1], (v + 1], - .. [vn + 14,
in virtue of (5.3).

THEOREM 3. — The generating function D(n,a,b) satisfies the fol-
lowing recurrence for n,a,b > 0, except forn=a=0b=0 :

(6.7) D(n,a,b)=[a—b+1];D(n—1,a,b)+q¢"[a—blgD(n—1,a—1,b)

+la—b+1];D(n—1,a,b—1)+q"[a—blqD(n—1,a—1,b—1).

Note that the recurrence is true for alln,a,b > 0 (except n = a = b = 0)
if one defines

(5.8) D(n,a,b) =0 for a — b < 0.

It can be used to compute D(n,a,b) uniquely in n,a,b > 0 subject to the
boundary conditions

(5.9) D(n,a,b)=0o0on {n=-1}U{a=-1}U{b=—1};
D(0,0,0) = 1.

Proof. — Consider a weighted bracketing u = (w, t) in Uy, 4, and write
W = T1%2...T,. From (5.1) and (5.2) it follows that vy, = |wl|} — [@a[ —
|w|>] - |$n|>] if xn — [< or [], i.e.,

o a—b-—1, ifz,=[;
" la-—b, if z, =[]

In the same manner, v, = |w[y — [zn|y — |wly — |zaly — 1, if @, = X or ),

ie.,
o a—b—1, ifz,=);
" la-b, if 2, = ).

Write w' = zy25...2,_1, so that w = w'z,,. Thus depending on the value
of z,, we have in view of (5.6) :

if z, =[], then w’' € Up_1,4,5 and poidsw = poidsw’.[a — b + 1]4;

if z, = [, then w’ € Up,_1 41,5 and poidsw = poids w’.¢"[a — b]y;

if z, = )|, then w’ € Up,_1,4,p—1 and poids w = poids w’.[a — b],;

if z, = ), then w’ € Up_1 4-1,—1 and poids w = poids w'.¢"[a — b],.

Summing D(n,a,b) = > poids(w'z,) according to the value of z,
yields the desired recurrence relation. |

13
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6. Another recurrence for the weighted bracketings

Our goal is to establish that D(n,k, k) satisfies the (CARLITZ) recur-
rence. A natural way is to find a recurrence for D(n,a,b) that will reduce
to (CARLITZ) on the diagonal a = b = k. Unfortunately this is not true for
the recurrence of theorem 3. However the very fact that D(n, a, b) satisfies
some linear partial recurrence equation with polynomial coefficients (in
q", ¢%, ¢°, q) is good news.

Most discrete functions F'(n, a,b) are not solutions of any linear partial
recurrence equation with polynomial coefficients. However, those that are
solutions of such equations, are annihilated by a whole ideal of operators
in the algebra of linear operators with polynomial coefficients, i.e., are
solutions of an infinite number of such equations ([Ze2], see also [Staf]).
All we have to do is to find the one that suits us. A natural step therefore
is to conjecture a partial linear recurrence that will reduce to (CARLITZ)
upon plugging a = b = k. Since D(n — 1,k — 1, k) is zero, a reasonable
form would be:

D(n7 a, b) - cl(qnv qa7qb7Q)D(n - ]-7 a, b)
+ CZ(qnv qa7qb7Q)D(n - 1? a— ]-7 b— 1) (TRY)
+C3(qnaqa,qb,Q)D(n_ 1aa_ 1ab),

where ¢1, ¢y should reduce to [k + 1] and ¢*[n — k| respectively when
a = b = k. By compiling a short table of D(n,a,b) and trying the
generic form of linear polynomials ¢y, c3, c3 as above, we easily obtained
empirically that D(n, a, b) satisfies the recurrence of theorem 4 below, for
small values of n, a, b. All that remains to do is to prove it rigorously for
all values of n, a, b.

THEOREM 4. — The polynomials D(n,a,b) also satisfy the following
recurrence, for n,a,b>1 :

D(n,a,b) =[a+1];D(n—1,a,b) +¢*n—0b]gD(n—1,a —1,b—1)
+¢"[a—b]gD(n—1,a —1,b).

Proof. — It is convenient to introduce operator notation. We refer
the reader to [Ze] for the general methodology of linear partial recurrence
operators and its role in combinatorics. For any discrete function F'(n, a, b)
let

N7'F(n,a,b) := F(n —1,a,b); A~'F(n,a,b) :== F(n,a — 1,b);
B 'F(n,a,b) := F(n,a,b—1).

14
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Let P and R be the following linear partial recurrence operators :

Pi=T-[a—b+ 1, N T+B"~q"[a—-b N A (T+BY;
R:=I-[a+ 1], Nt —¢*n-b, N TA'B —¢"a—-b, N TA

In operator notation, theorems 3 and 4 can be paraphrased as :

THEOREM 3'. — We have the identity :

7D(D(ﬁn’v a, b)) = 6n,05a,05b,0-

THEOREM 4'. — We have the identity :

R(D(n,a,b)) =0 in {n,a,b> 1}.

We know that D(n,a,b) is annihilated by a certain operator P in the
region {n,a,b > 1} and we want to prove that it is also annihilated by the
operator R. A general algorithm goes as follows.

Find the “simplest” operator in the ideal generated by {P, R}, i.e., find
operators A and B such that Q := AP+ BR is “as simple as possible.” In
particular, if @ = 0 but A and B are not zero, than it is ideal (sic!). Then,
if necessary, try to use the method recursively to prove that given that P
annihilates D(n,a,b), then so does Q. Assuming that we were successful
in proving that Q(D(n,a,b)) = 0, we have

B(R(D(n,a,b))) = —A(P(D(n,a,b))) = 0.

Then one proves that R(D(n,a,b)) = 0 on the boundary of the region of
interest. This would imply that R(D(n,a,b)) = 0 throughout the region
for the following reason.

For any “reasonable” linear recurrence operator B and any “reasonable”
region, F(n,a,b) = 0 on the boundary (appropriately defined) of the
region and B(F(n,a,b)) = 0 in the interior of the region implies that
F(n,a,b) = 0 throughout the region.

One way to find such A and B is to take successive commutators of
R and P. In our case we were lucky, the commutator of P and R is
zero, i.e., P and R commute! (Note that this is a minor miracle, since
the algebra of linear partial recurrence operators with variable coefficients
is not commutative!) In other words, in the above discussion A = R,
B = —P and Q = 0 works.

Proof of Theorem 4’ (and hence of Theorem 4). — A tedious, but
completely mechanical, calculation shows that P and R commute. Now
apply operator R to the identity of theorem 3’ :

R(P D(TL, a, b)) =R 5n,05a,05b,0-

15



D. FOATA AND D. ZEILBERGER

It is easily seen that the right side is zero at {n > 0,a > 0, b > 0} except
for (n,a,b) = (0,0,0), (1,0,0), (1,1,0). Since RP = PR, we then have

(6.1) P(RD(n,a,b))=0in {n >0,a >0,b>0}\{n=0,1}.

On the other hand, RD(0,a,b) = RD(n,0,b) = 0, except for n = a =
b =0 by (5.8) and (5.9). Moreover, when b = 0, we have RD(n,a,b) =
PD(n,a,b) = 6,,004,00p,0 by theorem 3'. Hence

(6.2) RD(n,a,b)=0o0n{n=0}U{a=0}uU{b=0}\{(0,0,0)}.
Now by (5.7)
(6.3) D(1,a,b) =0 for a +b > 2.

Thus (6.2) and (6.3) imply that R D(n,a,b) is zero on the boundary of
the region {n > 1,a > 0, b > 0}. It follows by induction, using (6.1), that
R D(n,a,b) = 0 throughout the region {n,a,b > 1}. 1

Putting a = b = k and using the fact that D(n — 1,k — 1,k) = 0, we
see that D(n, k, k) satisfies the same recurrence (CARLITZ) satisfied by the
B, . Since obviously D(0,0, k) = do,k, we have proved, as a corollary, the
following result conjectured by Denert [Del] :

COROLLARY. — For any k,n > 0 we have : D(n, k, k) = By, x(q).

7. Coding permutations by weighted bracketings

Every permutation 7 in S,, induces two partitions of {1,2,3,...,n} :
F UG and F' UG, such that |F'| = |F|, |G'| = |G|, as well as two
bijections f : F — F' and g : G — G, that satisfy ¢ < f(i) for i in F
and i > ¢(7) for 7 in G. Namely, F is the excedence-place set {iy,..., i },
while G is its complement. Moreover F' = 7 (F) and G’ = 7(G). Finally,
f and g are the restrictions of m to F' and G respectively. Thus there
is a 1-1 correspondence between S,, and the set of pairs of bijections
(f: F— F') g:G— G') as above. Furthermore, by theorem 2,

(7.1) den7 =inv f + inv g + sum of elements of F.

Let us fix the sets F' and F’ and let us consider the set of bijections
f+ F — F' that satisfy ¢ < f(i) for every ¢ in F. We will represent such
a mapping in terms of a subscripted angle parenthesizing as follows.
Write all the integers {1,2,3,...,n} in a line. For each 7 in F put a
left angle parenthesis “(”, also called a langle for short, to the right of i.
Analogously, for each j in F’ put a right angle parenthesis, i.e., a rangle,
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“}” to the left of j. For example, ifn =9, F = {1,3,5},and F' = {5,7,9 },
then the angle parenthesizing corresponding to the pair (F, F’) (observe
that we have not introduced f yet) is :

10 2 3( 4 )5 6 )7 8 ).
Note that there exists a bijection f : FF — F' such that i < f(i) for every
¢ in F, iff the induced angle parenthesizing is legal. Now to represent such
a bijection f, we indicate the fact f(i) = j by having the rangle that lies

after ¢ point to the langle that lies before j. For example, with f(1) =7,
f(3) =5, f(6) =9, we have

1 2 3( 4 )5 6 )7 8 ).

The condition that i < f(7) translates to the requirement that every rangle
should be matched with a certain langle to its left.

(7.2) Definition. — 1If a rangle belongs to the integer r, denote by v,. the
difference between the number of langles and the number of rangles that
lie to the left of r. [Note that the rangle belonging to r is counted in the
difference.]

As each rangle can be matched with a langle to its left, we have v,. > 0.
If r is the i-th integer that possesses a rangle (when 1,2,...,n is read
from left to right), we label it ;. In the previous example, ry =5, ro = 7,
rg=9,and vs =1, v; =1, vg = 0.

Next let us label all the langles to the left of the first rangle 0, 1, ...,
vy, when reading them from left to right. If the arrow pointing to this
first rangle comes from a langle labeled, say, t,,, give the first rangle the
rank t,,. The langle labeled ¢,, will then be called committed. Next erase
this first labeling and relabel 0, 1, ..., v, the uncommitted langles to the
left of the second rangle. If the arrow pointing to this second rangle comess
from a langle labeled t,.,, give the second rangle the rank ¢,.,. Furthermore,
declare the langle labeled t,, committed and erase this second labeling.
Continue this procedure until the last rangle is reached and ranked. With
the previous example, the letter ¢ meaning “committed,” we have :

1 2 3( 4 )5( 6 ) 8 )9

label 0 1

rank 1

label 0 c

rank 0

label c c 0

rank 0

17
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So the final output for f is the following subscripted angle parenthesizing
(7.3) I( 2 3( 4 );5( 6 )7 8 )9

It is easy to see that the sequence of rangle ranks is nothing but the
left to right inversion table of f. With the same example we have :

135
f_<759>

inversion table= (0 1 0

We will now subject the bijection g : G — G’ to an analogous treatment.
To distinguish it from the former case, we will use square brackets “[”
and “]”, later referred to as lbracks and rbracks. Now each element of
G’ receives an lbrack immediately before it, while each element of G
receives an rbrack right after. With the above F' and F' we are forced
to have G = {2,4,6,7,8,9} and G' = {1,2,3,4,6,8}. The bracketing
corresponding to this pair (G,G’) is then :

[t 2] 3 [4 5 [6] 7 [8] 9]

To represent g we make each point j = ¢(i) point to i. For example if
9(2)=1,9(4) =4, g(6) =2, g(7) = 6, g(8) = 3, g(9) = 8, we get :

[t 2] 3 [4 5 [6] 7 [8] 9]

(7.4) Definition. — If an lbrack belongs to the integer s, denote by v, the
difference between the number of rbracks and the number of lbracks that
lie to the right of [s of the bracketed word. [In this difference we include
the lbrack and the rbrack (if any) belonging to s.]

When 1,2,...,n is scanned from right to left, the integers that possess
an lbrack are denoted by si, sz, ... In the previous example we have :
s51=28,850=06,s3=4,s4=3,85=2,s¢=1,and vg =1, vg = 2, vg = 2,
1/3:]_,1/2:1,U1:0.

The ranking on the lbracks is defined in the same way as the ranking
on the langles with the major difference that the word 1, 2, ..., n is
now scanned from right to left. The rbracks to the right of the lbrack s;
belonging to s; are labeled 0, 1, ..., v;, when reading them from right
to left. If the arrow going out of that lbrack points to an rbrack labeled,
say, ts,, give the lbrack belonging to s; the rank ts,. The rbrack labeled
ts, is now committed. Next erase this first labeling and relabel 0, 1, ...,
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vs, the uncommitted rbracks to the right of s,. If the arrow going out of
the lbrack belonging to s2 points to an rbrack labeled t,,, give the lbrack
belonging to so the rank t,,. Furthermore, declare the rbrack labeled ¢,
committed and erase this second labeling. Continue this procedure until
the last lbrack is reached and ranked. With the previous example

(1 [2] [3 [4 5 [6] 7] [8] 9]

label 1 0
rank

label 2 1 0 ¢
rank

label 2 1 ¢ 0 ¢
rank 2

label c 1 ¢ 0 ¢
rank 0

label 1 c 0 ¢c ¢ ¢
rank 0

label 0 c c ¢ ¢ ¢
rank O

The final output for g is the following subscripted bracketing

(7.5) bl 2] 03 4 5 6] 7 [o8] 9]

It is readily seen that the sequence of subscripts is nothing but the right

to left inversion table of g.
With the same example we have :
B ( 2467289 )
g 142638
right to left inversion table= 0 2 0 1 0 0
Consider a typical permutation 7 in S,,. The excedence part, materi-
alized by f, corresponds to a subscripted angle parenthesizing, where the
subscripted are on the rangles. The non-excedence part, described by g
corresponds to a subscripted bracketing, where the subscripts are on the
Ibracks. As each integer from 1 to n belongs to exactly one of the four

subsets FNF', FNG', F' NG, GNG', it possesses exactly one of the four
pairs :

(7.6) N6 I
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that we now consider as real letters as in section 5. However only the
rangles and the [bracks are subscripted. Accordingly, each symbol listed in
(7.6) is given one and only one subscript, when the angle parenthesizing
and the bracketing are superimposed on the sequence 1,2,...,n. If we
write the subscripts as a separate word t = tyts5...t,, we see that each
permutation or order n corresponds to a pair u = (w, t), where w is a word
W = x1T3...T, in the four-letter alphabet (7.6) and t = t1t2...t, is a
sequence of positive integers satisfying 0 < ¢, <, forall r =1,2,...,n.

As both angle parenthesizing and bracketing are legal, the word w is
also legal, as was defined in the beginning of section 5.

Now as F' has k elements i1, %9, ..., i, the word w has exactly k letters
equal to [( or )( and k letters equal to )] or X. Hence, w belongs to W, i ,
as defined in (5.2).

After superimposition the rangles occur in the symbols )] and X. If r
possesses a rangle, the letter z, is either )] or }. Hence, definition (7.2)
implies

Vp = |1:1...ac,«|[< + |x1...a:r|>< — |1:1...acr|>] — |1:1...xr|>< -1
which agrees with the definition of v, given in (5.2).
In the same manner, if s possesses an lbrack, then z; = [( or }. Hence,

by definition (7.4)

Vg = |xs...xn|>] + |1:s...acn|>< — |acs...a:n|[< — |acs...a:n|><

— |$1..$3_1|[<—|$1..$s_1|>],
since [w|, = |w[y. Again this agrees with (5.2). Hence
(77) U = (w,t) € Un,k,k-

Furthermore, the elements of F' are those that possess a langle. Accord-
ingly,

(7.8) F={isai=[or )\ } = {irsiz,...,ix }.
Finally, let p be the juxtaposition product of the inversion table of f

and the left to right inversion table of g. As the word ¢ is a rearrangement
of the word p, we have :

(7.9) invf+invg=t;+to+ - +tn.
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It then follows from (7.1), (7.8) and (7.9) that
(7.10) denm =iy +ig+ -+ +ip +t1 +to+ -+ 1,
i.e., denm = ind u, by (5.5). Clearly each step in the construction can be

reversed. We have just proved the following theorem.

THEOREM 5. — For each k =0,1,...,(n — 1) the above construction
sets up a bijection m — u between the set Sy i of the permutations having
k excedences and the set Uy i1 of the weighted bracketings having exactly
k letters equal to [ or X and k letters equal to ) or X.

Furthermore, if u = (w,t) with w = z1x5...2, andt = tity...t,, then

(7.11) den 7 = ind u,

and so

den

q = poids u.
By theorem 5 we have

S0t = Ypoidsu  (r € Sy exen = ki uE Vo)
= D(n,k, k) = B, (q),

by the corollary of section 5. This then proves theorem 1.

Epilogue. — The construction of the bijection 7 — u can be summa-
rized and illustrated as follows :
(i) start with a permutation, e.g.,

ro(L234567809)
715492638/

(ii) determine the excedence place set F' = {iy,...,ix} and the non-
excedence place set G = {j1,...,jJn—k}; here FF = {1,3,5}, and G =
{2,4,6,7,8,9).

(iii) set up the bijections f : FF — F’ and g : G — G’ and determine
the inversion table ps«;,y...ps(,) for f(i1)... f(ix) and the right to left
inversion table py(;,) - -Pg(j, ) for g(j1) ... 9(jn—r). Here

f_<135> _<246789>
759 " \14263s
pf= 010 Pg= 020100
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(iv) form the words w =z ...z, and t =t; ...t, as follows :
ifce FNF' let x. =), tc =pc;if c€ F NG, let x. = )|, t. = p¢;
ifce FNG' let x. =, t. =pe;if c€ GNG, let z. =[], t. = pe.

A N I S R
t= 0 0 o0 2 1 1 O o0 o0

8. Another Mahonian mate for the number of descents

We have just seen that there is a natural bijection between weighted
(complete) bracketings and permutations, and used the latter to prove
Denert’s conjecture. However, in order to prove the conjecture, we had to
colonize the more general set of incomplete bracketings, in which in gen-
eral there are more left parentheses than right parentheses. Unfortunately,
the bijection does not seem to extend, and it is not at all clear what are
the permutation counterparts of incomplete bracketings. In this final sec-
tion, we will introduce another bijection, for which incomplete bracketings
correspond to so-called gravid permutations. This, in turn, will induce an-
other Mahonian statistic, mak, on gravid permutations, and in particular,
on regular permutations. By theorem 5, we then know right away that the
pair (des, mak) is also Euler-Mahonian.

A gravid permutation of order n is a usual permutation of order n with
one or more oo symbols inserted in the middle, such that there are never
two consecutive infinities, and there is always an oo at the end. The class
of regular permutations is in 1-1 correspondence with gravid permutations
that only have a single infinity, that is necessarily at the end. For example
oc = 6,3,1,00,4,00,2,5,00 is a gravid permutation with n = 6 and 3
infinities.

Clearly a gravid permutation of order n has at most (n + 1) infinities
and at most n descents. We denote by G, ; i the set of gravid permutations
of order n with [ infinities and k£ descents. Then G, ;) is empty, unless
1<lI<n+4+landl-1<k<n.

Let 0 = 0(1)0(2)...0(n + 1) be a gravid permutation of order n with
[ infinities. Let 1 < ¢ < n + [; if either ¢ = 1 and o(1) > o0(2), or
2<i<n+l—-2and o(i—1) < o(i) > o(i + 1), we say that i is a
peak-place and o (i) a peak-letter. In the same manner, if 2 <i<n+4+1[—1
and o(i — 1) > o(i) < o(i + 1), we say that i is a trough-place and o (i) a
trough-letter. If 2 < i<n-+1—1and o(i — 1) > o(i), we say that (i — 1)
is a descent-place and o (i) is a descent bottom value. The letter o(i — 1)
would be the the descent top value, but the notion will not be used here.

When read from left to right the gravid permutation ¢ has a succession
of peak and trough places, say, pky, tr1, pko, tra, . ... If o(f,,) is the m-th
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letter of o that is not equal to oo, we denote by t,, the number of pairs
(o(pk;), o(trj)) to the left of o(fr) such that

(8.1) o(ok;) > 0 (fm) > o(tr;).

Now if i1, @3, ..., ix are the descent bottom values of o, the mak-statistic
of o is defined by :

(8.2) mako =iy + i+ -+ ip +t1 +ta+ -+ by

This definition is to be compared with the definition of den recalled in
(7.10).
For the following gravid permutation we have :

t1=123 4 5 6 78 9
o(i)=6 31004 0 25 o0
(i1,o.in)= 31 4 2
(t1,..sta) =000 1 13

so that mako =3+1+4+2+1+1+4+3 =15.

As in the previous sections we denote by U, 4 the set of the weighted
bracketings u = (w, t), where w has exactly a letters equal to [ or ), and
b letters equal to X or )], and where 0 < ¢, <wv, (1 <r <n).

We now define a bijection B between U, ,p and Gy p—q+1,6, by re-
cursion, as follows. The map B applied to the empty word is the gravid
permutation oo of G 1,0. Let u = (w, t) be a typical pair in Uy, 4. Let zy,
be the last letter of w, and ¢,, the last component of ¢, and let w’ and ¢’ be
the words obtained by chopping the last letters from w and ¢ respectively :
ie, w =w'e,, s = s't,. Let o/ := B(w',t’) be the gravid permutation
assumed to be obtained by induction. We now define o := B(w, ) in the
following manner :

CaseI: z, = [. Let o be the permutation obtained from ¢’ by inserting
the two-letter word noo right after the (¢,, + 1)-st infinity.

CaseIl: z,, = ). Let o be the permutation obtained from ¢’ by replacing
the (t, + 1)-st infinity by n.

Case III : z, = []. Let o be the permutation obtained from o’ by
inserting n right before the (¢, + 1)-st infinity.

Case IV : z, = ). Let o be the permutation obtained from ¢’ by
inserting n right after the (¢,, + 1)-st infinity.

Ezxample. — The construction of B is illustrated as follows :
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t=123 45 6
w= [ X L[]
t=0101320
00
zy=[(; t1=0; oo 1 oo
zo=[; ta =1; o© 1 oo 2 o0
zr3 = ); t3 =0; © 3 1 oo 2
zg=[; ta =1; 0 3 1 oo 4 0 2
zs =1[]; ts = 3; © 3 1 co 4 0 2 5 o
reg=); ts =0; 6 3 1 o0 4 002 5

Hence 0 = 6, 3,1, 00,4, 00, 2,5, 00. Furthermore, u € Us 4,2, 0 € Gg,4,3 and
indu=(1+2+3+4)+1+1+ 3 = 15, that agrees with den o calculated
above.

THEOREM 6. — The map B : u — o is a bijection of Uy qp onto
Gnp—a+1,6 having the following property

(8.3) ind v = mako.

COROLLARY. — The map B sends each set U, 4 o of weighted complete
bracketings onto the set Gp o = Gn,1,a 0f the permutations of order n
having a descents in such a way that (8.3) holds.

Proof. — 1t is easy to prove that this bijection is well defined, and that
it is indeed a bijection, by writing down explicitly the inverse bijection
B~! and proving that it is also well defined. We do not give the details.
However we should like to make some comments about the mak-statistic.

In the construction of B we see that z, is a descent bottom value
whenever z,, = [( or ) (cases I and IV) and remains so for the further
insertions. On the other hand, x, has exactly ¢, infinity symbols to its
left, if and only if z,, has exactly t,, pairs (oo, trough-letters) to its left. All
those trough-letters are less than x,, and if for the further insertions some
oo’s are replaced by integers (case II), the pairs (oo, trough-letters) will be
replaced by, say, (o(pk;),o(tr;)) that satisfy o(pk;) > xm > o(tr;). Thus
(8.1) holds. N

Theorem 6 translates, via the bijection B, to the following theorem

THEOREM 7. — The pair of permutation statistics (des, mak), on
reqular permutations, is Euler-Mahonian.
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Tables

In the first table we give the list of the polynomials D(n,a,b) up to
n = 6.

The second table illustrates, for n = 4, the construction of the first
bijection m +— wu (of section 7). We found it convenient to list the
weighted paths instead of the weighted bracketings. Recall that we have
the correspondence : NE < [, blue < [], red <+ ), SE <> ).

The second bijection (section 8) u + 7' is described in the fourth
and fifth columns. The rightmost column simply contains the major index
majn’ of 7.
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Table of D(n,a,b) for 0<b<a<n=6

n=3
n=2 b= 0 1 2
n=1 | b= 0 |1| la=0 1
b= 0| |a=0 1 1 (3¢2+3q+1)q 2(g+1)q
a=0|1| 1/(2¢+1)q| q 2|(3¢°+5¢°+39+1)¢® | (3¢°+59+2)¢® |¢*
llq 2|(¢+1)¢?| 3 3| (+q+1)(g+1)q8 | (g+2)(g+1)q® |¢°
n=4
b= 0 1 2 3
a=0 1
1 (44469 +4q+1)q (3¢°+59+3)q
2| (6q°+14¢*+15¢3+10g2+4q+1)q3 (6¢*+16¢°+19¢%+11q+3)q> (3¢%+5q+3)q>
3|(49°+11¢5+164* +15¢° 49 +49+1)¢°%| (4¢°+15¢* +25¢°+ 224> +119+3)¢°® | (44° +99°+99+3)4° | ¢°
4] (*+¢*+g+1)(¢°+g+1)(g+1)g"° (*+2¢+3)(®*+g+1)(g+1)g"°  |(¢*+3¢+3)(g+1)¢'°|¢"°
n=>5
b= 0 1
a=0|1
1|(5¢* +10¢® + 10¢2 + 5q + 1)q (4¢® + 9¢% + 99 + 4)q
2|(10q" +30q° +45¢° +44¢* +30¢° +15¢° + 5q+1)¢® | (10¢°® + 35¢° + 60¢* + 64¢° + 44¢ + 19q + 4)¢>
3|(10¢° + 35¢% + 6697 + 85¢° + 80¢° + 59¢* + 34¢> +|(10¢® + 45¢7 + 101¢% + 146¢° + 146¢* + 105¢° +
15¢2 + 5q + 1)g® 54q% + 19q + 4)q®
4](5¢*° 4 19¢° 4 40¢® 4 61¢7 + 71¢% 4 66¢° + 49¢* + | (5¢° +24¢% +64q7 +115¢° +1464° +137¢* +964° +
29¢> + 14¢?% + 5q + 1)¢'° 50¢2 + 19q + 4)q'°
51(¢* + @+ + q+ 1)@ + ¢ + a4+ 1)(¢* + ¢ +|(®+2¢° +3q+4) (® +¢* +q+1)(¢® +q+1)(g+1)g"®
1)(qg+ 1)g*®

n=>5
b= 2 3 4
a=2 2(3¢* + 8¢% + 11¢® + 8¢ + 3)¢°®
3| (10¢° + 35¢° + 66¢* + 76¢° + 57¢* + 26q + 6)¢° (44 + 992 + 9q + 4)¢°
4|(5q7 + 24¢% + 59¢° + 89¢* 4 90¢3 + 61¢% + 26q + 6)q"°|(5q* + 14¢>® + 19¢> + 14q + 4)q'0|¢'°
5|  (¢"+3¢*+7¢> +8¢+6)(¢> + q+1)(g+1)¢"5 (® +4¢® + 6+ 4) (g + 1)g'® |¢*®
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n==~6

1

(6¢° 4 15¢* + 203 + 152 + 6 + 1)q

(5q* + 14¢® + 19¢> + 14q + 5)q

(15¢° + 55¢3 + 1057 + 134¢® + 125¢5 + 90g* +
50¢3 + 21¢2 + 6q + 1)g°

(15¢% + 64q7 + 139¢°% + 198¢° + 203¢* + 153¢> +
83q2% +29q + 5)¢3

(20¢'2 4-85¢'! + 196410 + 315¢° + 385¢® 4+ 379¢" +
308¢% + 209¢° + 119¢* + 56¢° + 21¢% + 6q + 1)¢°®

(20¢ +105¢10 + 286¢° + 526¢° 4 7217 + 770¢° +
653¢° + 442¢* + 237¢% + 98¢ + 29q + 5)q¢°

(15¢* +69¢"3 +175¢'2 +321¢" ! +4624'0 +547¢° +
545q% + 464q7 + 342¢° + 218¢° + 119¢* + 55¢3 +
21q% + 6q + 1)g'°

(15¢"3 +84¢"2 +259¢' +560¢'0 +922¢2 +1204¢% +
1279¢7 + 112245 + 819¢® + 497¢g* + 247¢3 + 98¢2 +
29¢ + 5)q'0

(6% 4-29¢1* +78¢13 + 154¢'2 4-245¢1 + 328410 +
377¢° + 377¢% + 330¢7 + 253¢° + 169¢° + 98¢* +
49¢® + 20q2 + 6q + 1)q'°

(6q* 4 35¢3 +113¢'2 4-267¢ +497¢'0 4 7504° +
938¢® + 985¢" + 874¢% + 656¢° + 414¢* + 21843 +
93¢® + 29¢ + 5)¢*®

(@®+a*+¢* +a* +a+1)(¢* +¢° +* +q+1)(¢* +
> +q+1)(¢* +g+1)(g+1)g*

(@*4+2¢° +3¢2+49+5)(¢* + P + 2 +q+1)(¢® +
?+qg+1)(g®>+q+1)(g+1)g*

n==~6

2

a=2

3

(10¢5 + 35¢5 + 66¢* + 80¢3 + 66¢% + 35¢ + 10)¢>

(20¢° + 90¢8 + 222¢7 + 372¢5 + 459¢° + 428¢* +
302¢° + 156¢2 + 55¢ + 10)¢°

(10¢5 + 35¢° + 66¢* + 80¢3 + 66¢2 + 35¢ + 10)¢°

(151 + 84¢1° + 254¢° + 524¢® + 806¢" + 963¢° +
909¢° + 679¢* + 397¢> + 176¢> + 55q + 10)q'°

(15¢® + 64q7 + 149¢° + 233¢° + 264¢* + 219¢> +
130¢2 + 50q + 10)q*°

(6q'2 + 35¢' 4+ 119¢'° + 287¢° + 526¢% + 758¢7 +
875¢%4+-813¢° +608¢* +362¢> +166¢2 +55¢+10)g"®

(6q° + 35¢% + 104¢7 + 203¢% + 287¢° + 303¢* +
239¢% + 135¢2 + 50q + 10)q'®

(¢° +3¢° + 7¢* +13¢° + 164> + 15¢ + 10)(¢® + ¢% +
g+1)(¢*> +g+1)(g+1)g*"

(¢° + 4¢® + 11¢* + 19¢® + 25¢% + 20q + 10)(¢2 +
g+1)(g+1)g*"

n==~6

4

a=4 (5¢* 4 14¢® + 19¢2

+ 149 + 5)¢*°

(@2

(6¢° + 20g* + 34¢> + 34¢% + 20q + 5)q'°

15

LS

(¢* + 5¢® + 10¢% + 10q + 5)(q + 1)g*!

21

LS
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The bijections for n = 4
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