with the property that no open connected subset of \(Y \) contains a cut point. Let \(A \) be a subset of \(X \) consisting of isolated points. Assume that the map \(f: X \to Y \) is continuous, and that \(f \uparrow X - A \) is an open map.

Then \(f \) is an open map.

Proof. It will suffice to show that \(f \) is open at \(x \) for each \(x \in A \). Assume that there is an \(x_0 \in A \) such that \(f \) is not open at \(x_0 \). Then there are open sets \(N \) and \(V \), with \(\overline{N} \) compact, such that \(x_0 \in N \subset \overline{N} \subset V \), and \(f(x_0) \not\in f(V)^0 \). Since the points in \(A \) are isolated, we may assume that \(V \cap A = \{ x_0 \} \). Then since \(f \uparrow X - A \) is an open map, \(f(V - \{ x_0 \}) \) is an open subset of \(f(V) \), so \(f(x_0) \not\in f(V - \{ x_0 \}) \).

Since \(\overline{N} - \{ x_0 \} \subset V - \{ x_0 \} \), \(f(x_0) \not\in f(\overline{N} - \{ x_0 \}) \), and \(f(N - \{ x_0 \}) \) is open. Since \(f \uparrow N \) is continuous and \(\{ x_0 \} \) is not an open subset of \(N \), \(f(x_0) \not\in f(N - \{ x_0 \}) \). On the other hand, \(f(\overline{N}) \) is closed, so
\[
\overline{f(N - \{ x_0 \})} \subset f(N - \{ x_0 \}) \cup f(\overline{N} - N) \cup \{ f(x_0) \},
\]
and since \(f(\overline{N} - N) \) is closed and does not contain \(f(x_0) \), it follows that \(f(x_0) \) is an isolated point in the boundary of the open set \(f(N - \{ x_0 \}) \). We have \(f(x_0) \not\in f(N - \{ x_0 \})^0 \), because \(f(N - \{ x_0 \}) \subset \overline{f(N)} \subset f(V) \), and \(f(x_0) \not\in f(V)^0 \). Therefore, (ii) in Lemma 1 is false for \(Y \), so (i) must also be false, contradicting our hypothesis. This concludes the proof of Theorem 1.

REFERENCES

On a Conjecture of R. J. Simpson About Exact Covering Congruences

DORON ZEILBERGER\(^1\)

Department of Mathematics, Drexel University, Philadelphia, PA 19104

The following is a counterexample\(^2\) to Simpson's conjecture [2]: \(D = \{6, 15, 35, 14, 210\) (140 times)\}. It was concocted using the elegant and powerful approach of [1].

REFERENCES

\(^1\) Supported in part by NSF grant DMS 8800663.
\(^2\) Another counterexample was found later, and independently, by John Beebee.