
SIAM J. MATH. ANAL.
Vol. 19, No. 4, July 1988

1988 Society for Industrial and Applied Mathematics
016

A UNIFIED APPROACH TO MACDONALD’S ROOT-SYSTEM
CONJECTURES*

DORON ZEILBERGER"

Dedicated to Dennis Stanton and John Stembridge for reminding me that antisymmetry
is even more powerful than symmetry.

"Yes, of course. It works with herring, but will it work with ferrous metals ?"
Woody Allen [All).

Abstract. Using ideas of Stembridge and Stanton a method is presented that should settle the Macdonald
(and the more refined Macdonald-Morris) root-system conjectures for any specific root system, provided
there is sufficient computer time, memory space, and (for now) some luck. The method consists of an
algorithm that reduces Macdonald’s conjecture for a given root system to a finite, albeit long, algebraic
calculation, which is then performed using computer algebra. The method is illustrated by proving the so
far open G case of the Macdonald-Morris conjectures. The question that remains is: will it work with E8
(and F4, E6, ET)?
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Introduction. This paper is about Macdonald’s root-system conjectures. In order
to understand it, it is necessary to know a little bit about root systems and their Weyl
groups. While it seems obvious that before one can talk about root-system conjectures
one has to know about root systems, this is not the case for many of the papers on
this subject. By the classification theorem for root systems, it is possible to spell out
what the conjectures say for each of the four infinite families and the five exceptional
root systems, and then treat each case separately [Mo]. Although only one root-system
is treated at a time in this paper, its method is cast in the general root-system mold.

Historically root systems first came up in the deep and sophisticated theory of
Lie algebras. This noble birth gave them a fancy aura that scared away many a plebeian
mathematician. However, root systems are really very simple-minded, combinatorial-
geometrical structures and it is possible, perhaps even preferable, to study root systems
without knowing anything about Lie algebras.

A root system is a finite collection of vectors, called roots, in regular (Euclidean)
space such that if you place a mirror perpendicular to any of them, the image of the
visible part that is reflected in the mirror coincides exactly with the invisible part
behind the mirror. Furthermore, the vector difference between any root and its image
under any such mirror is an integer multiple of the root corresponding to the mirror
(i.e., the root that is perpendicular to the mirror). These two conditions are very strong
and it turns out (the classification theorem) that all irreducible root systems fall into
five infinite families and five exceptionals. If you add the condition that these vectors
can only be parallel to their negatives (reduced root systems) then one infinite family
(BCn) drops out.
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An excellent treatment of root systems and Weyl groups is given in Chapters 2
and 10 of Carter’s book [C]. These two chapters are completely independent of the
rest of the book and are entirely elementary. This paper can be understood by any
one who has read the first two sections of Chapter 2 and the first two sections of
Chapter 10 of [C]. A comprehensive and (surprisingly) quite readable account is given
in [Bo], but for the present paper [C] is more than enough.

Notation. The Macdonald conjectures are about certain multivariable Laurent
polynomials. A Laurent polynomial is a linear combination of monomials that may
have negative integer exponents as well as positive integer exponents. For example
x + 1 + x- is a Laurent polynomial in one variable and x +y+ x-ly2 is one in two
variables. Usually x denotes a vector of variables, x (xl,..., x) and a a vector of
integers, a (a,. , a). Also

X71.X X1

For example x(1’-2’) XlX-2x.
For the roots a of a root system, x", are often called "formal exponentials." But

since all root systems can be made to have all their roots with integer components,
these exponentials can be easily defrocked of their formality. The root lattice of a root
system consists of all integer linear combination of roots, and all our Laurent poly-
nomials will be linear combinations of monomials xv for 3’ in the root lattice. The
Weyl group W of a root system [C, Chap. 2] acts on the roots, and by linearity on
the root lattice. The elements w of the Weyl group W are made to act on monomials
by

w(x)=xW
and by linearity on all Laurent polynomials. For example, if W(OI, O2) (--O2, al) then

w(x-y + 3 + xSy-2) x-2y- + 3 + x2y5.

A Laurent polynomial G is symmetric with respect to the Weyl-group W if
w(G) G for every w in W. The sign of an element w of W, written sgn (w), may be
defined as [C, p. 18] (-1) n(w), where n(w) is the number of positive roots that w turns
into negative roots, i.e., the number of elements in the set w(R+) f3 R-. A Laurent
polynomial G is antisymmetric if for any w in the Weyl group W, w(G)=sgn (w)G.

C.T. stands for "the constant term of" (in x (x,..., Xl)), and IAI denotes the
number of elements of the finite set A. The letter usually denotes the rank of R, and
d,..., dl, are the "fundamental invariants" [C, p. 155] of R.

The ()a q-notation will be used extensively. (y; Q)a, the q-analogue of (1 _y)a
to base Q, is defined by

(y; Q)a=(1-y)(1-Qy)(1-Q2y) (1- Qa-ly),

and whenever the "base" Q happens to be q we will omit it: (y)a =(y; q). The
standard base of Euclidean space is denoted by {ei}, ei (0, 0,..., 0, 1, 0, 0,..., 0),
where all the components are zero except the component that is 1. Of course x ei xi.

1. Conjectures. In 1962, in his study of the statistical theory of complex systems,
Dyson [D1] conjectured

((D) constant term of H 1
Xi na

l<:ij<_n a !n

His conjecture was soon proved by Gunson [Gu] and Wilson [W] and Good [Goo]
gave a beautiful proof some years later.
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When Macdonald saw Dyson’s conjecture (D) he saw the root system An-1.
Indeed, since

A,,_l={ei-ej; l<-_ij<-n} and

(D) can be written as

xei-(

x

(na)!
constant term of I] (1-x)a-

A,_ a !n

He then wondered what happens if A,_I is replaced by other root systems.
The case a 1 of Dyson’s conjecture (D) is an almost immediate consequence of

the Vandermonde determinant identity and the constant term then is n!=
n(n-1)... (2). Now the Vandermonde determinant identity has a celebrated root-
system analogue" Weyl’s denominator identity (e.g., [C, p. 149]), and imitating the
argument that proved (D) for a 1 yields, for any root-system R with Weyl group W,

C.T. II (1-x )=lwl.

For R An-l, W Sn and since wl- ]s l- n !, this agrees with the a 1 case of (D).
So the a-- 1 case of (D) has a nice root-system analogue. What about general a ?

It is well known that wl factorizes nicely [C, 9.3.4(i), p. 133]:

wl- a,,
where dl,’", dl are the "fundamental invariants" of the Weyl group W (these
fundamental invariants are, among other things, the degrees of the generators of the
algebra of polynomials invariant under W). For An-1 these invariants are 2, 3,. ., n
(the degrees of the elementary symmetric functions!). Rewriting the right-hand side
of (D) as

Macdonald [Ma3] conjectured that

(M) constant term of I],R (1-x’)a=(dlaa)’"(dlaa)"
Macdonald was also able to prove the special case a 2, and by using Selberg’s integral
[Se] he proved the Bn, Cn, and Dn cases. Recently Habsieger [Habl] and Zeilberger
[Z2] proved the G2 case. For R F4, E6, E7, and E8, (M) is still open, as far as I know.

Next Macdonald went on to formulate a "q-analogue" of (M). Andrews ([Anl];
see also [An2]) already formulated a q-analogue of (D) in 1975. Actually Andrews
conjectured a q-analogue of a more general conjecture of Dyson, and his conjecture
specializes to the following q-analogue of (D):

(qD) C.T. I-I (x) (qxj [nk], ( 12kkI [ck])
The general Andrews conjecture was proved in [Z-B].

Motivated by this and (M) Macdonald [Ma3] conjectured

(qM)



990 DORON ZEILBERGER

Macdonald [Ma3] was able to prove (qM) for k 1, 2 and k . For k o (qM) is
a consequence of his own famous Macdonald Weyl identities [Ma2] (many special
cases of which were known to Dyson [D2], but Dyson "missed the opportunity" to
see the connection to root systems). For general k (qM) is only known to date for
R =A. [Z-B] and G2 ([Habl], [Z2]). Hanlon [Hanl] did the limiting case n= of
B,, C,, and D.

One of the greatest delights of mathematics is the interplay between the abstract
and the concrete, the general and the special. Whenever one has a general result or
conjecture, it is very instructive to see what it says in special cases, and studying these
special cases often sheds new light on the general case. Morris [Mo] took Macdonald’s
conjectures and made them explicit for all the root systems. Then by studying the
case and playing with MACSYMA he was able to come up with a more general
G2-Macdonald conjecture, involving two parameters a and b instead of the single
parameter k:

C.T. H (1 -xS) H (1 -xS)b

short G2 long G

(3a + 3b)!(3b)!(2a)!(2b)!
(2a+3b)!(a+2b)!(a+ b)!a!b!b!"

This was encouraging because it always helps to have more parameters (recall Polya’s
dictum: "the more general the easier"). Indeed Good’s ([Goo]; see also [An2], [As3])
elegant proof of Dyson’s conjecture (D) proceeds by proving the more general formula
(also conjectured by Dyson [D1])"

(D’) C.T. H (1-x) a’ -(a+" "+a")!
l-<_ij<- a! a.!

and the extra elbow room provided by the n parameters a,..., a, is crucial.
Morris sent his G2 conjecture to Macdonald and, once again, Macdonald saw the

right root-system generalization ([Ma3], [Mo]). Now there is a parameter associated
with each root length. (Since Al, Dl, E6, ET, E8 have only one root length the
generalization is void for them. For BI, CI, G2, F4 we have two parameters and BC
has three parameters.)

Macdonald soon found a q-analogue [Ma3, 3.1]: if k are nonnegative integers
such that ks k if a and/3 have the same length, then

(qM-M1) C.T. H (XS)k(qx-)k =a certain explicit product.
sR

I already mentioned that the case k of (qM) is a consequence of Macdonald’s
Weyl identitities [Mall. These identities are the analogue of the Weyl denominator
formula for affine root systems. (Incidentally these were "the tip of the iceberg" that
motivated the representation theory of Kac-Moody algebras [Kac, p. xiii], but that’s
another story.) It turned out that the Macdonald-Morris conjectures (qM-M1) can be
viewed as the "truncated form" of Macdonald’s identities for the so-called S(R) affine
root systems ([Ma3, p. 999]; see [Mal and [Mo] for definitions of affine root systems).
The classification theory of affine root systems [Mal] says that the irreducible ones
are either of the form S(R) or S(R). It was thus natural for Macdonald to formulate
his conjectures as the truncated form of his identities and that led to the ultimate
generalization ([Ma3, Conjecture 3.3], [Mo, pp. 25, 26])" Let ks be as before and let
u be certain constant integers (depending on the affine root system) that satisfy us u
whenever a and /3 have the same length (see [Mall or [Mo] for their values, for
example for S(G2) , Ushort 1 and Ulong 3). Let R be the underlying finite root system;
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then,

(qM-M2) C.T. I-I (x; qu)k(qUx-; qu)k =a certain explicit product.
cR

The Macdonald conjectures, like most interesting mathematics, lie on the cross-
roads of several subjects, and so appeal to a wide spectrum of mathematicians. Lie
algebraists suspect that, like the Macdonald identities, they are the tip of a deep
algebraic iceberg [Hanl]-[Han3], [Stanll], [Stanl2]. Analysts [Mo], [Asl]-[As3] see
many interesting examples of multivariate hypergeometric series identities, "a topic
about which little is currently known" [Mo, p. 4]. Geometers wonder whether there
are things about root systems that they do not know, and combinatorialists [Z-B],
[Brl], [Br2], [C-HI, [B-G] are challenged to develop a combinatorial theory of Weyl
groups that will emulate the rich theory of the symmetric group.

But regardless of our parochial interests and prejudices, we are all awed by the
simplicity of these conjectures. The statement of the Macdonald conjectures, for any
specific root system, can be explained to a high school student, but the proofs elude us.

2. Aplroaehes. I will now give a very brief survey of the various approaches that
have been used to tackle the Macdonald conjectures.

Selberg’s integral This fascinating generalization of Euler’s beta integral was
discovered by Selberg [Se] in 1944 but lay dormant for about 35 years, partially because
it was ahead of its time, partially because it was written in Norwegian and partially
because Selberg wrote it before he got really famous. This sleeping beauty awoke from
its deep slumber when Enrico Bombieri consulted Selberg about a certain conjectured
definite integral of Mehta [Me], [As3], [Ma3] and Selberg dug his old paper out of
his files. It turned out that Mehta’s conjecture (that has been open for about 15 years)
is an easy consequence, via a limiting process, of Selberg’s integral.

Mehta’s conjecture [Me], which can be thought of as an integral analogue of
Dyson’s conjecture (D), also received root-system analogues by Macdonald [Ma3,

5]. Beckner and Regev (see [Ma3, 5]) showed how Selberg’s integral can be used
to get these root-system-Mehta conjectures for the classical root systems.

Macdonald [Ma3] showed, by a clever change of variable, that Selberg’s integral
is equivalent to the BCn, q 1, case of (qM-M), which implies (M) for Bn, Cn, and
Dn. Using a corollary of Selberg’s integral, due to Morris [Mo, p. 94], Zeilberger [Z2],
and Habsieger [Habl] proved the G2 case of (M). Aomoto [Ao] has recently found
a very ingenious proof of Selberg’s integral by using integration by parts, recurrences,
and symmetry; see [As3] for a nice account.

By employing Jackson’s q-analogue of integration, Askey [Asl] formulated an
elegant q-analogue of Selberg’s integral that has recently been proved by Kadell [Kadl
and by Habsieger [Hab2]. Kadell q-analogized Aomoto’s proof and Habsieger used
Selberg’s original method coupled with some brilliant ideas of his own. Kadell and
Habsieger also showed that their Askey- q-Selberg identity implies the q-analogue of
Morris’ identity mentioned above. This q-analogue, conjecture by Morris himself [Mo],
enabled Habsieger [Habl] and Zeilberger [Z2] to prove the G2 case of (qM-M1).
Incidentally, Kadell and Habsieger’s q-Morris identity contains, as a special case, the
An case of (qM-M) (first proved in [Z-B]).

Counting tournaments. I already mentioned that the case a 1 of (D) follows
from the Vandermonde determinant identity. The case n 3 is also classical, being
equivalent to Dixon’s identity [Anl]. Both these classical identities received beautiful
combinatorial proofs. Gessel [Ge] (see also [An2, 4.4]) gave an elegant graph-theo-
retical proof of Vandermonde’s determinant identity by counting tournaments, and
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Foata IF], [C-F] gave a gorgeous proof of Dixon’s identity by using multitournaments
on three players.

Combining these two pretty proofs, Zeilberger [Z1] managed to give a purely
combinatorial proof of Dyson’s conjecture (D’) (and thus of (D)). In that paper
Zeilberger wrote: "We believe that our proof has a good chance of being generalized,
because most combinatorial proofs involving binomial coefficients have q-analogues.
However, another idea is still needed since the obvious q-generalization fails." The
"obvious generalization" was to q-count words by using either the number of inversions
or the major index as the "statistics" because both yield the q-multinomial coefficients.
But neither ofthese worked. The new idea that was needed was to introduce a brand-new
statistic, the z-index, and to prove that it, too, yields the q-multinomial coefficients.
This was done in [Z-B], which contains a proof of Andrews’ conjecture (and hence
of the An-1 case of (qM)).

Motivated by the success of the combinatorial method, there were attempts to
extend it to general root systems [Brl], [Br2], [C-H]. Although these papers contain
some very promising ideas, they failed, so far, even to prove the G2 case. I should
also mention [B-G], that, using the methods of [Z-B], contains interesting extensions
of Andrews’ conjecture, and [Gr], that gives an elegant MacMahon-style combinatorial
proof for the above-mentioned fact that the z-statistics yield the q-multinomial
coefficients.

Lie algebra cohomology. Hanlon [Han2], [Han3] found an interesting formulation
and refinement of Macdonald’s conjectures in the context of the cyclic homology of
the exterior product of a Lie algebra with C[t, t-l]. Besides the considerable intrinsic
merit of this approach, it also serves to make the conjectures accessible and appetitizing
to all those sophisticates who are unwilling or unable to think in terms of the simple
formulation of the original conjectures.

Hypergeometric SU(N). Milne [Mi] found an elegant elementary proof of the
AI1 case of Macdonald’s identities. It is very possible that Milne’s deep generalized
hypergeometric theory will, one day, contain the Macdonald conjectures as a very
special case.

Schur functions. Stanley [Stanll], [Stanl2] found an interesting connection
between the An cases and Schur functions. This connection was further explored by
Stembridge [Stel], [Ste2] and Goulden [Gou]. While these works do not try to prove
the Macdonald conjecture per se, they Schur do give lots of insight. Indeed, it was
exactly this study that led Stembridge [Ste3] to his elegant proof discussed below. It
is not unlikely that a similar study of characters of general simple Lie algebras will
lead us in the right direction.

I should also mention the interesting character sums analogues of Evans [E] and
the fascinating connection between Mehta type integrals, PI rings and the representation
of the symmetric group found by Regev JR1], [R2], and further explored by Cohen
and Regev [C-R].

In April 1986, Dennis Stanton told me that John Stembridge had a short and
elementary proof of the An_l case of (qM) (or equivalently, the equal parameter case
of Andrews’ q-Dyson conjecture). At first I was only mildly.interested, since Kadell
and Habsieger hadjust then completed, independently, the proof ofAskey’s conjectured
q-Selberg integral ([Hab2], [Kadl], mentioned above) and also showed that it implies
the q-Morris conjecture, that in turn implies the An_ case of (qM). In fact, I saw [Z3]
how to use the Aomoto-Kadell method to get the q-Morris directly, without q-Selberg.

I wrote to John Stembridge anyway, requesting an account of the proof, and
received from him a barely legible xerox copy of a three-page handwritten sketch that
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Dennis Stanton had prepared. When I finally understood the proof I got excited. At
long last a proof that has a "root-systemy" flavor! Although the proof was only of the
An-1 case, it had some universal root-system elements in it, and it used properties of
the symmetric group that pass verbatim to any Weyl group, that I was sure that it
should extend to the general case.

This was, of course, also realized by John Stembridge himself as he pointed out
later when he finally got around to writing the paper [Ste3]. However, his proof took
advantage of a certain "miracle" that seemed to occur only for An-1. Surely what was
needed was to get rid of the dependence on the miracle, possibly by sacrificing elegance.
I thought about that all through the summer (while taking care ofmy newborn daughter
Tamar) and the result is this paper. (The fall was spent programming the algorithm
and debugging the programs. If nothing else, this project made me a fairly competent
C programmer.)

As John Stembridge told me himself, his proof, as well as parts of his impressive
thesis [Stel], were largely motivated and inspired by Dennis Stanton’s ingenious proof
of Macdonald’s Weyl denominator identity for the classical root-systems [Stantl],
[Stant2].

Using these beautiful ideas of Stembridge and Stanton, I will present a method
that systematically handles the Macdonald conjectures for any given, fixed, root system,
provided there are sufficient computer resources, and, for the time being, some luck.
What I do know for sure is that it works for the (already known) A2 and G2 cases
and for the (so far open) G case ( 9). Besides, I am almost sure that the element of
luck can be disposed of and that the method can be proved to constitute an effective
algorithm for settling the Macdonald and the Macdonald-Morris conjectures for any
given root system. Of course, that by itself would not constitute a proof, or even an
effective algorithm for the general conjecture, because there are an infinite number of
root systems.

On the other hand, it is very possible that the A-D cases of the Macdonald and
Macdonald-Morris conjectures will soon be settled by either using the Askey q-Selberg
integral [Kadl], [Hab2] directly, or by using similar methods of proof. In that case
we will only be left with the seven exceptional cases (G: and its dual, F4 and its dual,
and E6, ET, and Es, but since the first two are already known this leaves us with five
cases). These should succumb to the method of this paper (at least in principle, and
barring very bad luck). But even if that would turn out to be the case, it would certainly
not be the proof from the book. The ultimate proof should be "classification-free" and
take care of all root systems at once.

To give a very apt analogy, the Weyl denominator formula [C, p. 149] can be
proved case by case. An_l is just the Vandermonde determinant identity, which is an
elementary exercise in determinants. The cases .Bn, C, and D also specialize to simple
algebraic identities that can be easily proved by induction. The remaining exceptional
cases, G2-Es, give rise to finite polynomial identities that can be checked by computer
(although I have to admit that, for E8, even the CRAY will take "a while" to handle
the 2 terms). However, there is a beautiful "classification-free" proof of Weyl’s
identity that can be found in Carter’s book ([C, 10.1]).

I believe that besides the instant gratification that the present method brings, it
is also an important step toward the ultimate proof. Unlike any previous approach, it
makes use of the general root-system-Weyl group framework, and thus may pave the
way to the final proof. In addition, it also provides a "laboratory" for computing other
coefficients, besides the constant term, for any specific root system (see below). This
may lead us to formulate a yet more general conjecture, and this more general conjecture
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may very well turn out to be much easier to prove.

3. Antisymmetry.

No two fermions can exist in identical quantum states.
Wolfgang Pauli)

Let R be a root system and let us define

(3.1) F’k(X) H (x)k(qx-’)k, H,=C.T. F’k(X).
aR

Macdonald’s conjecture (qM) asserts that H, has a nice explicit form (namely,
the right-hand side of (qM)). In any case, whether (qM) is true or false, our goal will
be to compute H,. It turns out (and this observation is due to Macdonald, although
Stembridge was the one to realize its full significance) that one can consider instead

(3.2) Fk(X)= I-[ (X’)k(qX-’)k-1
aR

and

Hk C.T. Fk(X).

This is so because of the fact, soon to proved, that Hk and H, are related by a simple
formula

(3.3) [ 1, qkdiHk Hk I,= \ l q k ]"

The reason why it is better to consider the constant term of Fk rather than that of F,
is that Fk is a much nicer Laurent polynomial: it is almost antisymmetric.

Indeed, by peeling off the first layer out of the (X’)k in (3.1) we get (since
(y)k=(1--y)(qY)k-1)

Fk(X)= H (1-x) ]-I (qX)k-l(qX-’)k-1
aR aR

(3.4) H x’/2(x-’/2-x’/2) 1-I (qx)k-1
aR otR

=x II (x-/-x/-) IJ (qx)-,
aR aR

(3 is one half the sum of all the positive roots). Let

(3.5) Gk(X)= x-Fk(X).

Then, because of (3.4)

(3.6) Gk(X) H (X-/2-X/2) H (qXa)k-1
R R

We claim that Gk(X) is antisymmetric. Indeed, the second product is symmetric
because any element w W sends R to itself [C, p. 13, line 4] and the first product is
antisymmetric for the same reason, only now we get a minus sign whenever a positive
root a is sent to a negative root (i.e., whenever w(a) R-). Thus the effect of applying
we W on the first product of (3.6) is to multiply it by (-1)"w) where n(w)=
]w(R+) fq R-I and this is equal to the sign of w [C, p. 18]. It thus follows that Gk(X)
itself is antisymmetric.
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From now on, we will forget all about Fk (and certainly about F,) and work
solely with Gk, noting that the quantity of interest, Hk, is given in terms of Gk by

(3.7) Hk C.T. (XGk)Cx-Gk.
Our goal, to be pursued in the next two sections, is to find Hk. But we must show
now, following Stembridge [Ste3], that Hk is indeed related to H as promised by (3.3).

Indeed, since (y)k=(Y)k_l(1--qky), we have (by (3.1) and (3.2))

(3.8)
H C.T.

R
/H (1--qkx-)Fk=C.T.[.R/ (1--qkx-’)] xGk

=C.T. H [(1--qkx-e)xe/2]Gk =C’T" I-I (Xe/2--qkx-e/2)Gk
eR eeR

When the product on the extreme right is expanded we get 2IR+I terms, since each term
in the product corresponds to a pair of opposite roots, and each term in the resulting
huge sum corresponds to choosing, for every a in R/, whether to take it or its negative.
This prompts us to define a choice set f, as a subset of R such that for each a R/

either a f or -a 12.
We can now write the right-hand side of (3.8) as (set qk),

(3.9) C.T. E (--t)lanR-I(xSUm)/2Gk).
1 choice set

Here sum (f) denotes the (vector) sum of all the elements in f.
Now let us call a choice set a bad guy, if sum () lies on a reflecting hyperplane,

i.e., there exists a root fl such that (sum (f),/3) 0. Otherwise let us call it a good guy.
The sum in (3.9) can, of course, be written as

(3.10) C.T. (-t)]ffqR-I(xsum(a)/2Gk)+f.T. (--t)lflfqR-I(xsUm(O)/2Gk).
fgood guy bad guy

The proof of (3.3) will continue right after this.
CRUCIAL LEMMA. Let G(x) be antisymmetric with respect to the Weyl group W

and let y be any vector of integers.
(i) C.T. (xWV)G)=sgn (w) C.T. (xVG), for each element w in the Weyl group W.
(ii) Ify lies on a reflecting hyperplane, i.e., there exists an a R such that y, a) O,

then C.T. (xVG) O.
Proof of the Crucial Lemma.
Proof of (i).

C.T. (xWVG)=C.T. w(xVw-(G))
C.T. x*w-l(G) C.T. x sgn (w-)G
sgn (w) C.T. xVG.

In this chain of equalities we have used, in that order: (a) the definition of the action
of w on a Laurent polynomial; (b) the fact that applying w on a Laurent polynomial
never changes the consant term (because w is, among other things, a linear transforma-
tion, so w(0) =0 and w(x) xw)= x); (c) the antisymmetry of G; (d) sgn (w-l)
sgn (w), and you can always take a constant out of C.T.

Proof of (ii). Let We be the Weyl reflection corresponding to the root a [C,
p. 12]; then we(y)= 2’ (since y lies on the mirror that is perpendicular to a) and since
sgn (we)=-1, we have, by part (i),

C.T. (xVG)= C.T. (xWV)G)= (sgn (we)) C.T. (xVG)=-C.T. (xrG).

Thus C.T. (xVG) is equal to its negative and must be zero.
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We now return to the proof of (3.3).
Because of part (ii) of the Crucial Lemma and the definition of a bad guy, the

second sum in (3.10) vanishes. Now from Lemma 10.1.6. and its proof of [C, p. 147],
or from Lemma 2.13 of [Ma2], it follows that if 1 is a good guy then there exists a w
in the Weyl group W such that sum (1))/2 w() and w(R+). So a good choice
set 1) uniquely determines w W and vice versa. It is thus possible to write (3.9) as
(note that [w(R+) f’l R- n(w))

H’k 2 (--1) "(w)t"(w) C.T. (xW()Gk).
wW

But because of part (i) of the Crucial Lemma,

C.T. (xW(Gk)=sgn (w) C.T. (xGk)

and since sgn (w)= (-1) n(w), we have that H, is equal to

H,=(ww thaw)) Hk’

and (3.3) follows because of the following beautiful identity due to Bott, Solomon,
and Macdonald [Ma2] (see [C, p. 135 it, p. 155])

l_td,
(3.11) Y’. n(w) ]-[

wW i=-5 1-t

We should remark, though, that if one is only interested in one root system at a
time (as we are in the present method), then we really do not need (3.11), since the
left-hand side is just a specific polynomial that can be explicitly computed and, if
desired, factorized.

4. Induction. This section constitutes my own twist on the Stembridge approach.
Stembridge’s [Ste3] inductive scheme, for An, was to creep along the coefficients of
Gk (keeping k fixed) until one gets to a high enough coefficient whose value is equal
to the Hg for An-1. So his induction was with respect to n, and his k stayed fixed. Our
induction is with respect to k and the root system stays fixed.

Using (y)k+l=(1--qky)(y)k, (qy)k=(1--qky)(qy)k_l, (3.2) and (3.5), we have

(4.1) Hk+l-" C.T. (x’Gk+l)=C.T. (X’aeR (1--qkx)Gk).
Now put q k and expand the product

(4.2) x 1-I (1-tx") 2 ao’(t)x’
aR p’S’

where S’ is a certain finite set of vectors in the lattice generated by the roots and a,(t)
are polynomials in t. Now, each p’ S’ is either on a reflecting hyperplane (a bad guy)
or [C, Prop. 2..4, p. 22] there is a w W and p in the fundamental chamber such
that p’= w(p). Thus defining S to be the set of all the W images of S’ that lie in the
fundamental chamber, the right-hand side of (4.2) can be written as

(4.3) E ap,(t)xO’+ E E a,,w(t)xw)
p’bad pS W

where a,w(t) are certain (easily computable) polynomials in (some of which may
be zero).
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Substituting this into the right-hand side of (4.1) we get that the contribution from
the first sum in (4.3) is zero (Crucial Lemma (ii)), and it follows from part (i) of the
Crucial Lemma that

(4.4) Hk+l= ao,w(t) C.T. (xW(p)Gk)= , ( ao,w(t) sgn (w)) C.T. (XGk).
pS W pS W

Now for each p 6 S, let

(4.5) A,(t) ao,w(t) sgn (w).
wW

A(t) is a certain explicitly computable polynomial in t. Going back to (4.4) we have

(4.6) Hk+l A,(t) C.T. (XGk).
pS

One of the summands here is p=6, so we have expressed Hk+l in terms of
C.T. (xGk)= Hk and a certain finite number of "neighboring coefficients." We have
thus encountered the notorious "problem of uninvited guests" that crops up so often
when trying to prove something by induction. One way out of this, the polite way, is
to put up with these undesirable terms and conjecture that they too, have a certain
explicit form, and then redo (4.6) to account for these as well (and cross our fingers
that they will not bring in more undesirable terms). I do not see how to do it (at least
not yet). The other way is the rude way. Get rid of these undesirable terms by expressing
all of them in terms of the only term that we really care about: the one and only Hk.

5. Equations. This section will describe Stembridge’s variation on an old trick in
q-series, adapted to our needs. This trick converts a q-product in one variable f(x)
into a sum by computing f(qx)/f(x). If this turns out to be a rational function, then
cross-multiplying yields a functional equation relating f(x) and f(qx). By expanding
f(x) in a power series, this translates into a linear recurrence in the coefficients, that
sometimes can be solved explicitly. However, attempting to use this method for
multivariate products always produces a mess, unless we have antisymmetry on our
side, and even then one has to be very careful.

So let us go to business. Using the definitions (3.2) and (3.5), we have

(5.1) Gk(X) x- I-I (X)k(qX-’)k-,.
cR

Recall that x (Xl, Xl) ol (o1, , at) and x x11 x Define

L(x)=(x)(qx-)_,;

then if al O.f. (x qxl) =f (x). and in general (we assume, without loss of generality
(see Introduction) that a has integer coordinates)

L(X1 <’- qx,) (qalXa)k(ql-a’X-a)k_
f(x) (X’)k(qX-)k_,

Now by making all the )k explicit and using telescoping, we easily obtain

(5.3)
fa(Xl (--" qXl) po,(X)

L(X1) qo,(x)

where, if a > O,

(5.4a)
po,(X)=(1--qkx’) (1--qk+,-lx),

q,=(qk-l--x).. .(qk-’--q’,-lx’),
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and if a < O,

(5.4b)
p,(x) (qk-_ q-lx,) (qk-_ q,x),
q(x)=(1--qk-lx’) (1--qk+,X’).

Since for all root-systems [C, pp. 47-49] -2<_-a _<-2, p, q, are at worst quadratic in
Xa"

It follows from (5.3) and the definition (5.1) that

(5.5)
Gk(X, qx,) _, po,(x) P(x, qk, q)

Gk(X,)
=q H k,o, q,(X) O(x, q q)’

say, where P and Q are certain, explicitly computable, polynomials in x (x, , xt),
q and q.

Now, by cross-multiplying (5.5), we get the functional equation

(5.6) Q(x)Gk(X qxl)= e(x)Gk(X).

Out of this functional equation we can get many linear equations relating various
coefficients of Gk. For any vector/3 in the lattice generated by R, we will get a linear
equation Eta, involving coefficients C.T. (XVGk) for 3’ in a certain set of vector exponents
Ex(fl), that is contained in the fundamental chamber.

The way to do this is to first multiply both sides of (5.6) by x and then apply
the functional C.T.

(5.7) C.T. [xt3Q(X)ak(Xl qxl)] "-C.T. [xt3P(X)Gk(X)].
We now plug into (5.7) the expanded form of P and Q (remember that P and Q are
certain explicit polynomials that we have to compute in order to perform the algorithm).
Then we use the linearity of C.T. and get on the right-hand side a linear combination
of creatures of the form C.T. [XVGk]. On the left-hand side we get a linear combination
of entities of the form C.T. [XVGk(X - qx)]. These should be converted to the previous
form using the obvious relation

(5.8) C.T. [XVGk(X - qxl)] q-V, C.T. [XVGk].

We now use the Crucial Lemma, discarding all the "bad" y, i.e., those that are
orthogonal to a root, and for any good 3" that is not in the fundamental chamber we
find the unique w W and y in the fundamental chamber such that 3,’= w(y) and
rewrite C.T. [xV’Gk] as sgn (w) C.T. [xVGk(x)]. Then we collect all the terms and bring
them to the left-hand side and get a certain linear equation

(5.9) E3: _, a(qk, q) C.T. (XVGk)=0

where the sum is over a finite set Ex(fl) of exponents y that lie in the fundamental
chamber.

By a judicious choice of/3 we would hopefully obtain equations that only involve
those t9 S that feature in (4.6). Hopefully there would be ISI-1 such independent
equations. (Of course it would also be all right if we could say the same thing about
some set that contains S.) By a proper choice of/3 it is always possible to get an
equation that involves C.T. (XGk)= Hk.

Solving this system of IS[- 1 homogeneous equations, at least one ofwhich involves
Hk, we should be able to express all the unknowns as Hk times some rational function
in qk and q. This is so since the coefficients in the system are polynomials in qk and
q. We have thus found explicit expressions for all the terms that feature in (4.6) in
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terms of Hk, and plugging them in we will get Hk+l/Hk, a certain rational function in
qk and q. Calling the conjectured value of Hk by the name of Rk (Rk is the right-hand
side of (qM) divided by (3.11)), we can then compare Hk/l/Hk with Rk+l/Rk. Since
obviously H1 R, the fate of (qM) will be determined by whether or not Hk/l/Hk is
equal to Rk/l/Rk.

6. Implementation. This can be, and has been, implemented on a computer. The
input is the root system R, and it is necessary to know the Weyl group W (this is given
in the planches of [Bo]). It is very easy to write a routine to check whether a given
vector is a bad guy Oust do-loop the inner product along R/). Then you need to write
a Weyl-sorting routine that given any good vector in the root-lattice finds its image in
the fundamental chamber and the sign of the element w in W that sends it there. Of
course you also need a polynomial multiplication routine (which you can easily jot
down yourself, no need for MACSYMA). This is enough to produce (4.6) and the
P(x) and Q(x) of (5.5).

Now comes the creative part, experimenting with various fl’s that will give an
equation E that involves the relevant coefficients that feature in (4.6). For those root
systems for which -l_-<a-<l (most of them) the choice fl=-8 will produce a
tautology: 0=0, because the only survivor, after applying part (ii) of the Crucial
Lemma, is C.T. [XGk] Hk. It is thus likely that for/3 near -8 we will get relatively
few terms.

Once you have [SI- 1 independent equations you solve them and plug the solutions
into (4.6). You will never have to see (or print out) the solutions of the system (5.9),
because it can all be done internally (in MACSYMA this amounts to finishing your
lines with dollar signs rather than with semicolons). You will not even have to see or
print out the resulting rational function Hk/I/Hk obtained by plugging in the solutions
of the system (5.9) into (4.6).

All you have to do is enter the rational function Rk+I/Rk (you can even write a
routine for that) and ask the computer to output the difference between these two
rational functions. If you get ZERO then you have proved (qM) for your particular
root system. If you get something else then you have disproved (qM). Either that or
(more likely), you have made an error somewhere.

7. A2. The new method will now be illustrated on the simplest nontrivial case,
the root system A.. Of course this case is already well known, even classical (it is
equivalent to Jackson’s q-Dixon identity [An1]), and the proof that we present here
is perhaps the longest and ugliest ever. But in order to learn how to use machine guns
to kill elephants one should first practise on flies. Another reason for doing the A2
case is that its results will be needed in 9, when we do G, and this will make the
paper self-contained. The present example is simple enough that it can be done by
hand, and the reader is encouraged to check all the steps and to supply all the details.

Equation (qM) says, in its equivalent formulation derived in 3, that if

q q q
k k k k-1 k-1 k-1

Hk C.T. Fk
and

(q)3k-1
Rk (q)2k_l(q)k( 1 q2k),

then Hk Rk.
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To get Rk from Rk=(q)3k/(q)3k we used (3.3) with the fundamental invariants
2, 3 of A2. A list of the fundamental invariants for all finite irreducible root systems
can be found for example in the excellent appendices of [Bo], as well as in [C, p. 155].

Now a routine calculation shows that (t--qk),

(7.1) Rk+ _(1 + t+ t2)(1--qt3)(1--q2t3)(1 + t)
Rk (1-qt)(1-q2t)

Now it is easily checked that R 1 and H 1, so all we have to do is verify that
Hk+x/Hk is equal to Rk+l/Rk. So let us compute Hk+l/Hk.

For A2 we have (e.g., [Bo, p. 250] or [C, p. 46])

A {(1,-1, 0); (1, 0,-1); (0, 1,-1)}., (1, 0,-1), and the Weyl group W is $3, the symmetric group on three elements
that acts by permuting the coordinates of (71, ’/2, "g3) for y in the root lattice. The bad
guys are those vectors that have two of their coordinates equal.

Now we do (4.2), namely we expand

( x 3)( X l)(x-! 1-t 1-t x2 1-t 1-t 1-t 1-t
X3

Discarding the bad guys, grouping the good guys into orbits under $3, as in (4.3),
plugging into (4.1) and using the Crucial Lemma yields, like in (4.4)-(4.6) (set
A(p) C.T. [X’Gk]),

Hk+I--(1 +2t+3t2+3ta+3t4+2t+ t6)A(1, 0,-1)
(7.2) (t + + 2t + 4 + t)A(2, 0, -2)

+ (t + + t4)A(2, 1, -3) + (t2 / + t’)A(3, -1, -2) taA(3, 0, -3).

Thus, S= ((1, 0,-1), (2, 0,-2), (2, 1,-3), (3, -1, -2), (3, 0,-3)}, and we need to find
four independent equations relating {A(p); p S}.

Now (5.3) becomes

fl-IO(qXl,X2,X3) fO_l(qX1, X2, X3)
1-- q tcX1

/1-10(21,22,23) qk- Xl /10--1(Xl’ X2’ X3)
qk-

Xl

and (5.5) becomes (1 1),

Gk(qX1,X2, X3)
Gk(X, X2, X3) qk-1 _X1 qk-1 _X_.[1

X3

and (5.6) becomes

q Gk(

and multiplying out yields

(q2k-1 qkXl kXl X---q --+q Gk(qXl, X2, X3)
X2 X3 X2X3]

(7.3)

=(1 qkxl kXl+q2k X___q Gk(X1, X2, X3)-
X2 X3 X2X3/
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Experimenting with various /3 yields that (0, 1,-1), (1,0,-1), (0,2,-2), and
(1, 1,-2) pro&ce the desired equations (of course there are many other choices of/3
that will do). For each of these/3, multiplying both sides of (7.3) by x, using (5.8)
and the Crucial Lemma yields the equations:

E(o,1,-1)" (1--q2k-l--qk-l+ qk)A(1, O,--1)+(q-l--qZk)A(2, O,--2)=0,

E(1.O,_l)" (1--qZk-Z)A(1, O,--1)+(qk-Z--qk)A(2, O,--2)+(q:Zk--q-Z)A(3,--1,--2)=0,

E(o,2,_2)" (1 q2k-’)A(2, O, --2) + (q-1 + qk-,_ qk qZk)A(2 1, --3) 0,

E1,1.-2)" (qk-:--qk)A(2, O,--2)+(qk-:Z--qk)A(2, 1,--3)+(q2k--q-2)A(3, O,--3)=0.

Solving this system we get (t qk) (recall that A(1, 0, -1) Hk),

A(2, 0, -2)
(t-q)(1- 2)

Hk,
(1-t)(1-qt)

(7.4) A(3, -1, -2) A(2, 1, -3)
(q- t)(q- t2)

H,,
(1-qt)(1-qt2)

-t(1 q2)(q t)( q)( 1 3)
A(3, 0,-3)=(l_qt)(l_qte)(l_q2t2)(l_ t) Hk.

This much was done by hand. Now using MACSYMA we can plug it all into
(7.2) and get Hk+I/Hk. Then we subtract it from Rk+/Rk given in (7.1). The answer
is indeed zero and we have just proved (qM) for A2.

Now that we know that Hk is indeed equal to what it is supposed to be, namely
to Rk, we can plug that expression into (7.4) and get as a lagnappe explicit expressions
for A(2,0,-2)=Ak(2,0,-2)=C.T.[xx2Gk]=C.T.[xlxIFk], etc. This_will be
needed in 9.

8. Modifications. Our method can be easily adapted to the more refined Mac-
donald-Morris conjectures (qM-M1) and (qM-M2). In fact, because of the added
parameter it is even computationally faster. We will only treat (qM-M2), since (qM-M1)
is just a special case of (qM-M2) ((qM-M1) corresponds to the S(R) cases for which
it is well known [Mall, [Mo] that us= 1). It is also well known (for example from
the classification theorem for finite root systems [Bo], [C] that all the irreducible
reduced finite root systems have either just one root length (An, Dn, E6, ET, and Es)
or two root lengths (Bn, Cn, G2, and F4). The only nonreduced irreducible finite root
systems, BCn, have three different root lengths. Since (qM-M2) reduces to (qM) for
all the single-length root systems, we will assume that the root systems have two root
lengths, short and long, and leave it to the reader to do the appropriate obvious
modifications for BCn.

So let us rewrite (qM-M2) for two-lengths root systems. Denoting kshor by a, klong
by b, b/shor by us, and Ulong by Ul, we have

(qM-M2’)

a certain explicit product.
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The right-hand side can be looked up in [Ma3] or [Mo, pp. 25-26]. Its exact form
is irrelevant for the purposes of the present method whose modest aim is to prove
(qM-M2) for one root-system at a time, and as such does not care to look at the general
pattern. Besides, the method should be able to compute the constant term in question
from scratch and it is dishonest to "peek at the answer." In any case, for any specific
root-system, it is possible to look up the explicit conjectured right-hand side from [Mo].

So let us call the polynomial inside the braces of (qM-M2’) F’,b(X). We are
interested in evaluating

(8.1) H,b C.T. F’,(x).

In analogy with 3, we will consider instead

F,,,b(X) (X; q’)(q’"X-’; qU)a-1 1- (Xa; q"’)b(q"X-’; qu’)b-1,
short R long

H,.b=C.T.F,,b(x).

Since the Weyl group W acts separately on the long roots and the short roots (as
is obvious from the fact that the elements of W are isometries), the calculation of (3.3)
can be carried verbatim to show that

(8.2) G,,,(x) =: x-Fa,(x)
is antisymmetric.

For w in the Weyl group Wlet ns(w) W(Rs+hort)fq R- and nl(w) W(Rl+ong)fq R-
(so n(w)= ns(w)+ nl(w)). Define

(8.3) W(t, s)= _, tnW)s "’w),
wW

which for a fixed root system (and therefore a fixed Weyl group) is a specific polynomial.
Macdonald [Ma2] has a wonderful formula for W(t, s) as a product that is indexed
over the positive roots (for s it reduces to (3.11)), but it is not really needed for
our present narrow-minded purposes.

A completely analogous argument to that of 3 (only now we keep track of the
short and long roots separately, with their respective parameters and s) yields

(8.4) H’,,b= Ha,bW(q’"% qbu’).

We now want to evaluate

H,,b=C.T.[xG,,b].

The difference now is that we have two parameters a and b rather than the single
parameter k. The induction step is similar to that described in 4 only now we induct
with respect to either a or b (I prefer a). Unlike the previous case where the base case
was trivial, now a 1 is no longer trivial but is essentially the (qM) conjecture for the
subroot system consisting of the long roots

Hl,b C.T. Fl,b (X)

where

F,,b(X)= R1 (1--X’) (X’; qUl)b(qUtx-; q")b-,.
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Expanding

(1 -xS),

we can express HI,b as a certain linear combination of various coefficients of

Fb(X):= (xS; q")b(q"x-S; q")b-.
R’long

Thus before we can embark on (qM-M2) for R we must do first (qM) for the
subroot system Rlong and find not only the constant term of Fb(x) but also some
neighboring coefficients. It can be easily shown that these coefficients are among those
"lagnappes" that we got anyway in system (5.9). For example, the long roots of G2
constitute the root system A_, and when we do G in the next section we will use the
A2 information obtained in 7. Similarly, before we can do F4 we must do D4, etc.

Having established the base case a 1, 4 passes almost verbatim: (4.1) becomes

(8.6) Ha+l,b =C.T. [xGa+l,b(x)]=C.T. [x H (1--qaU’xS)Ga,b]
eshor

and (4.6) becomes (t q a,,)

(8.7) Ha+l,b Z Ao(t) C.T. [xG,,b].

Now comes the analogue of 5. We have to be a little careful because
Ga,b(Xl qx)/G,,b(X) may not be a rational function. Instead we look for vectors of
integers z (z, , z,) such that

(8.8)
ak(qZlx’’ qZ"x")

ak(xl, ,xn)

is a rational function. This can be achieved if Us divides (a, z) for every short root a,
and u divides (a, z) for every long a. Of course we will try to choose z in such a way
that the rational function (8.8) is as simple as possible (in the next section z (2, 1, 0)).

In analogy with 5 we define

f(x) (xS; q",),,,(q’,,x-S; q’),,,_a

where ks a, us Us if a is short and ks b and us Ul if a is long.
In analogy with (5.2) we have

fs(qhxl, qZ,x,,)
L(x, ,x.)

So if we replace

qq"% a(z,a)/us, k-ks

then (5.3) and (5.4) are still true. Equation (5.5) now becomes

(8.9)
Ga,b(qz’xl, qZ"x,,)_ q-(,z [l

ps(X)
G,,b(X,, ", x,) s;k qs(X)

(q(Z,S)x; q",,),,(q",-z,s)x-S; qU’)k_
(xS; q’o,),(q’o,x-’; q’),,_

P

where P and Q are explicitly computable polynomials in x, q, t, and s where qaU.,
s qbUi.
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Equations (5.6) and (5.7) are still true but with Gk(Xl-qXl) replaced by
Gk(qZ’xl, qZ"x,) and instead of (5.8) we need

(8.10) C.T. [XVGa,b(qhxl, q"x,,)] q-") C.T. [xVG,.b].
This follows from

C.T. [xrG,(qhxl, qZ"x,)]

q-(r,z) C.T. [(qzlXl)Yl’’" (qZ"x,)r G,,,b(qZ’xl, q"x,)]

and the fact that C.T. is unaffected by scaling.
Everything is as before; the only difference is that in (5.9) the coefficients av

depend on (t, s, q) where qO" and s q b,,, i.e.,

(8.11) Et3" E av(t, s, q) C.T. [xVG,b] =0.

Everything else translates smoothly. Solving the system we will express all the
coefficients that feature in (8.7) as certain rational functions in (q,t,s) times
C.T. [xG,b] H,b. Substituting the solutions thus obtained into (8.7) will give us the
rational function H+l,b/H,b. Since we already have a formula for Hl,b this easily
yields a formula for H,b. Alternatively, if we believe that the conjectured value for
H,,b, let us call it R,,b, has a good chance of being correct then all we have to do is
look up R’,,b (the conjectured right-hand side of (qM-M2)) in [Mo] and then compute
Ra,b by dividing Ra,b by W(q", qbu,) of (8.3). We then compute Ra+l,b/Ra,b (a rational
function in (q, t, s)). Assuming that we have already checked that H1,b Rl,b, the status
of the conjecture (qM-M2) for the particular root-system in question is determined by
whether or not Ha+l,b/H,b--Ra+l,b/Ra,b is zero or not.

9. G’.
THEOREM (G case of (qM-M2)). The constant term of

Fa,b(X, y, z):= ;q ;q ;q ;q ;q .; q3
a\Xy b b b

Y; q q Y; q q; q q3XY_., q3 q3 ," q3 q3qx z b XZ b yz’ q3
b

is equal to

(q; q)3a+3b(q; q)3b(q; q)(q3; q3)a+3b(q3; q3)2b(q3; q3)a
Ra’b :=

(q; q)2a+3b(q; q)a+ab(q; q)2a(q3., q3)a+b(q3; qg)a+b(q3., q3)"

In this explict form the conjecture appears in Morris’ thesis [Mo, p. 139]. It is
alluded to in [As3, 5, fifth sentence] and is mentioned explicitly in [As4].

From [Bo, pp. 274-275] or [No] or [C], a2= {(1,-1, 0), (0,-1,1), (-1, 0,1),
(-1,-1, 2), (1,-2, 1), (-2, 1, 1)}; 6 (-1,-2, 3), and the Weyl group is the dihedral
group of order 12, that is the direct product of $3 with {I,-I}, where I denotes the
identity mapping and -I(a, , y) (-a, -, -y). (It is a very instructive exericise for
you to obtain the Weyl group yourself.) The bad guys are the vectors of integers
(al, a, a3) in which two coordinates are equal (those that are orthogonal to one of
the short roots) and those vectors of integers in which one component is zero (those
orthogonal to one of the long roots; recall that for all vectors in the root-lattice the
sum of the components is zero).

A direct calculation shows that W(t, s) of (8.3) is given by

(9.1) W(t, s)= 1 + t+s+2ts+ iS2+ 12S+212S2+/3s2+ t2s3+ t3s 3.
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(For example -231 sends (1,-1, 0) to (1, 0,-1), a negative root; (0,-1, 1) goes to
(1,-1, 0), a positive root; (-1, 0, 1) goes to (0,-1, 1) a positive root; so ns(-231)
1(-231)(R+) R-I I((1, 0, -1)1 1. Similarly, n!(-231)= 1 and so -231 gives a contri-
bution of ts to the sum of (8.3).)

W(t, s) factorizes nicely, namely

(9.2) W(t, s)=(l+ t)(l+s)(l+ ts+ t2s2)

(compare [Ma2, p. 168]).
So with the notation of 8 it follows from (8.4) that (us 1, u 3, qa, s q3b)

and the theorem will be proved if we can show that Ha,b Ra,b where Ra,b

R,b/W(qa, q3b ).
A simple calculation gives that

(q; q)a,,+ab(q; q)ab(q; q)2-l(q3; qa)+ab-l(q3; qa)2b-l(q3; q3)a
(9.3) R,b (q; q)2+ab(q; q)+ab-l(q; q)a(q; q)-I

(q3; qa)a+:b(q3 qa)+b(q3 qa)b(q3. qa)b_

A routine calculation gives (t q, s qab)

(1--qt3s)(1--q2tas)(1 t)(1--qt)(1 tasa)(1--q3t3)
(9.4) g+l,b/g,,b (l_qtZs)(l_q2t2s)(l_ts)(l_qt)(l_t)(l_qatas2).

) ) ) ) ) )F,,b(X) q q q ;q3 ;q3 ;q3
a\Xy b b b

(9.5) qx q q q qz; q

Z’-’" b-1 XZ
q3 q3; q3

b- yz b-

H,b C.T.

We must show that Ha,b Ra,b. This will be done by induction on a. First we must
prove the base case H.b Rl,b.

Proof of the base case a 1. Substituting a 1 in R,b given in (9.3) and setting
Q q3 gives

(Q)ab (1-Qb)(1-Q)
(9.6) R,b (Q) (1 QEb)(1 Q2b+l).

We will need the A2 results proved in 7. For our present purposes it is convenient
to rewrite it in the "fundamental roots" form (sometimes used by Morris [Mo]) obtained
by setting u xl/x_ and u x/x3. Also let us replace q by Q (so everything is to
base Q: (U)b (Ul; Q)b, etc).

Let Fb be defined by

(9.7) /3b (U)b(U)b(UU2)b(Q/U)b-(Q/U)b-(Q/UlU2)b-1.

Ha,b
H,,b (1 + qa)( 1 + qab)(1 + q,+ab + q+6b)

So let
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Then the results from 7 that we need here are

(9.8a) C.T./3b

and from (7.4) (A(2, 0,-2))

(Q)3b-,
Q)b_I( Q)b(1- Q2b)

(9.8b) C.T.(UlU2b) =(Qb-Q)(I+Qb)
(1_ oeb+,) (C’T-/3b)

Now we want HI,b C.T. Fl,b, where (plug in a 1 in (9.5)),

F,,b (1 x/y)(1 z/y)(1 z/x)

xy b Y’ q kX q ; q ; q3 q3; q3
b b b XZ b YZ b

Now let u xz/y2, u2=yz/x2. Then

y y x

and then if we take Q q3,

Fl,b (1 U l/3U/3)(1 U/3U/3)(1 U l/3U/3)b.
SO

1/3 2/3 4/3 2/3Hl,b=C.T. [1-ul/aul/a-ul , +Ul +UU2 -l Fb=C.T. [(I +UlU)Fb]

(u corresponds to the vector (1,-1, 0)+ =(1, -1, 0)+(1, 0,-1) =(2, -1, -1), a bad
guy (for A), and all other terms are even worse" they are fractional. Their contribution
is of course zero since b does not have any terms with fractional exponents, being a
Laurent polynomial.)

Using (9.8a) and (9.8b) we get

which after a routine calculation turns out to be equal to R. in (9.6) (end of proof
of the base case a 1).

Proof of the inductive step. Now that we know that H. Ra,b for a 1 we go
next to the inductive step.

For the root system G, , one-half the sum of the positive roots, is equal to
(-1,-2, 3), and (8.6) becomes (recall q)

Ha+l,b C.T, [X-l-2z3aa+l,b]
(9.0 c.. [x--3( x/( /( z/x

(-/x( /(-x/,,].

We now expand

x-’y-z3(- x/y(-/(- z/xl(- y/xl(-/(- x/zl,

discard all the bad guys and collect all the good guys into orbits under We then
substitute everything back into (9.10) and use the Crucial Lemma, and then finally we
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collect terms. (I highly recommend that the reader check this either by hand or by
machine, there are only 26-- 64 terms in the expansion.)

We get for (8.7)

na+,b =(1 + t+ t2+ t4+ ts+ 6) C.T. [x-y-2g3Ga,b]

(9.11) -(t + + 5) C.T. [x-ly-3zaGa,b]
+(t2+ t3+/4) C.T. [x-2y-3ZSGa.b] C.T. [x-ly-4ZSGa,b].

In preparation for the MACSYMA input file given below let us put

x0--C.T. [x-ly-2Z3Oa,b]/na,b 1 (by definition),

xl =C.T. [x-ly-3Z4Ga,b]/na,b,

x2 C.T. x-2y-3z Ga,b ]/Ha,b,

x3 =C.T. [x-ly-4ZSGa,b]/ na,b

With p0, p l, p2, p3 as defined in the input file below, (9.11) becomes

(9.12) Ha+l.b/H,b =pO*xO+pl*xl +p2*x2+p3*x3

and we will call this "sum" in the input file below.
Finally we need linear equations relating x0, xl, x2, and x3. The simplest vector

z (zl, z2, z3) that makes (8.8) a rational function is (2, 1, 0). Now (8.9) becomes

Ga,b(qZx, qy, Z) P
G.b(x,y,z) Q

where P and Q are computed using (5.3) and (5.4) as modified in 8 before (8.9).
Proceeding as described in 6 (I used a computer but it is possible to do it by hand)
we get the following results. (a00,..., a23 are given in the MACSYMA input file
below.) The choice/3 (2, 2, -4) yields

E(2,2,_4): aOO*xO+ a01*xl =0;

/3 (0, 3, -3) yields

Eo,3,-3): al0*x0+ all*xl + a12*x2 =0;

and/3 (4, 0,-4) yields

E4,o,-4): a20*xO+a21*xl+a22*x2+a23*x3=O.

(A copy of the C program that implements the algorithm of 5, modified as in
8, by which I obtained the above equations, is available upon request (either a

printout by U.S. mail or by electronic mail; sorry, no disks). However it is highly
recommended that the readers write their own programs. It is much easier to write
your own code than to try to understand somebody else’s computer scratch.)

MACSYMA INPUT FILE

aO0: t^3*s^2*q t/q+ t’s- t^3*s + t^2*s^2 t^4*s*q t^2+ s/q
+ t^2*s*q t^2*s/q + 1 t^4*s^25
aO0: 0- aO0$
aOl: t^4*s^2*q q^ 15
alO: -t^4*s^2*q+ q^2+ t^2*s^2*q+ t^2*s^2 t^4*s*q
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t^2*q^3 t^2*q^2 + s’q^2 + s t^2 t^4*s*q^3 + t^2*s^2*q^3
+ t’s^2 + t^2*s*q t^3*s*q- t^3*s t^3*q^3_ t^2*s*q^2
+ t*s*q^3 + t*s*q^2 + 2*t*s t^3*q t^3 -2*t^3*s*q^3
+ t*s^2*q^3 + t*s^2*q^2$

all: t^2*s*q+ t^2*s t^2*s*q^3 t^2*s*q^2-s+ t^2*q + t^2
+ ^4*s-q^3 t^2*s^2*q^3 t^2*s^2*q^2 + t- t^3*s^2*q^35

a12: t- t^3*s^2*q^3 + 1 t^4*s^2*q^35
a12:(-1)*a125
a20: t*s^2*q t^2*s^2 t^3*q^-3 + t^2*q^-2 t^2*s*q+ t^3*s + t^2*s*q^-3

t*s*q^-2 t’s+ t^3*s*q^-2$
a21: -t^2*s^2*q+ t^3*s^2*q+ t^3*s^2+ t^2*q^-3- t’q^-2 t*q^-3

+ t^3*s*q t*s*q -35
a22: t^3*s^2*q t*q -35
a23: -t^4*s^2*q+ q^-35
pO: 1 + + t^2 + t^4 + t^5 + t^65
pl: -t-t^3-t^5$
p2:" t^2 + t^3 + t^45
p3:-t^35
xO: 15
xl: O- aOO*xO$
xl: xl/aOl$
x2: alO*xO+ all*xl$
x2:0 x2/a 125
x3: a20*xO+ a21*xl + a22*x25
x3: O- x3/a235
sum: pO*xO+pl*xl +p2*x2+p3*x35
rhs: (1-q*t^3*s)*(1-q^2*t^3*s)*(1- t^2)*(1- q*t^2)$
rhs: rhs*(1 t^3*s^3)*(1 q^3*t^3)$
rhs: rhs/((1-q*t^2*s)*(1-q^Z*t^Z*s)*(1 t’s)*(1- q’t)*(1 t)*

(1 -q^3*t^3*s^2))$
sum: sum rhs$
ratsimp(sum );
quit( );

In the input file we solve for x l, x2, x3 successively. Then we ask MACSYMA to
compute "sum"= Ha+l.b/Ha,b. We enter Ra/,b/R.b given in (9.4) and call it "rhs."
So far every line has been terminated with a dollar sign so that the partial steps are
not going to be printed out. The second line from the bottom is

sum: sum rhs$

that defines the new "sum" to be the difference between the conjectured right-hand
side and the real right-hand side. This should be zero if the conjecture is true. The
last line asks MACSYMA to simplify this difference: ratsimp(surn); and now, finally,
there is a semicolon, because now we do want to see the answer.

On December 22, 1986, 3:30 p.m., after two previous unsuccessful attempts (due
to typing errors that were presently detected), I typed on my terminal:

macsyma < inputfile

After a few minutes came the output: 27 blank double lines (due to the dollar
signs) and
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(c28)
(a28)
YEA!!!

10. Prospects. The next in line is F4. But before we can do F4, we must do D4,
the short part of F4. A preliminary calculation done by Dave Robbins shows that for
D4, (4.6) involves more than one hundred terms. So we will have to find and solve a
system of more than one hundred linear equations with rather complicated coefficients.
While this is still within the reach of current computers, it is hard to justify that kind
of expense before all other means have been exhausted.

As I have already mentioned, the reason why the Macdonald-Morris conjectures
(qM-M2) are easier than the original Macdonald conjectures (qM), is that the two
parameters let us break the problem into two subproblems. In a way we are first doing
the long roots and only then the short roots. But nowhere in 8 have we ever used
the "physical appearance" of the short and long roots, that is the fact that the roots
of Rlong are "longer" than those of Rshort. All we used was the fact that the partition
R Rshort(_J Rlong partitions the root-system R into two subsets both of which are
invariant under the action of the Weyl group W.

Is it possible to find such a partition for those root systems that have only one
root length (An, Dn, E6, ET, Es)? The answer is: not quite, but almost. Instead of the
Weyl group W itself, we have to settle for invariance under a certain subgroup of W.
It turns out that it is possible to find such a partition of R which is invariant under a
very large subgroup of W, so we only have to sacrifice a little bit of symmetry. Still,
we have to put up with some vectors that were previously denounced as bad guys. In
return, however, the corresponding polynomial that appears in (4.1) is much smaller
and the trade-off is well in our favor, since the resulting set S in (4.6) turns out to be
much smaller.

For example, An-1 can be partitioned into

An-l-- {+/-(el ei); 2<= <= n} t.J {+(ei- e); 2<= <j <= n}.
The second set is the subroot system An-2 in the last n- 1 coordinates and its Weyl
group Sn_l (that acts by permuting the last n-1 coordinates) is the subgroup that
leaves both subsets invariant.

In fact, the first subset above can be further partitoned into its positive and negative
roots and so An_ can be partitioned into three subsets, each of which is invariant
under the above-mentioned Sn-1. Indeed, we have

An-1 {e- e,; 2 =< _<- n} t_J {-el + e,; 2 <= <= n} t_J {+/-(ei- e; 2 =< <j -< n)}.
We should thus expect a three parameter "pseudo"-Macdonald-Morris conjecture

(10.1) C.T. I-[ (Xl/Xi)a H (qx,/x,)b 1-I (x,/xj)c(qx/xi)c_,=something explicit.
i=2 i=2 2<-i<j<=n

Such an identity indeed exists and was conjectured by Morris [Mo] (Morris proved
the q 1 case). It was recently proved by Kadell [Kadl] and Habsieger [Hab2], who
deduced it from their Askey q-Selberg integral. However it is possible to get a
Stembridge-style proof by using the method of 8 [Z4]. The a 0 case is easily seen
to be equivalent to the a b 0 case. Then one inducts on a and gets a recurrence in
a. The analogue of (4.6) contains only n terms and it is easy to find n- 1 independent
equations satisfied by them. The base case a b 0 is just the An_ case while the
a b c is the An case. This provides the necessary induction.
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For Dn the situation is not quite as rosy, but it is still very promising. While it is
not possible to partition Dn into three subsets invariant under a large subgroup of W,
it is possible to do it with two subsets.

Indeed,

(10.2) D, {+/-el + ei; 2<= i<- n}U {+e+ ej; 2<-_ <j<- n}.
The second set is just the root-system D_I on the last n-1 coordinates. The Weyl
group of this D_ consists of all signed permutations with an even number of signs
that act on the last n- 1 coordinates [Bo, p. 257, (X)]. It leaves both subsets of (10.2)
invariant. I conjecture that if

(10.3) H,=: C.T. I (Xl/Xi)a(qXi/Xl)a-l(XlXi)a(q/XlXi)a-1
i=2

H (Xi/Xj)b(qXj/Xi)b-l(XiXj)b(q/xiXj)b-1,
2i<jn

then Ha,b has an explicit and perhaps nice expression. In any case the method described
in 8 should produce Ha,b+l/Ha,b, a certain rational function, and whether it is nice
or not it should give us a formula for Ha,b that we know should be nice when a- b.
In any case the analogue of (4.6) is much simpler now, and the number of equations
needed is considerably reduced. The base case a 1 is essentially D_I, and once we
obtain the recurrence in a, and thus the expression for Ha,b, then Hb,b will give the
D case of (qM). Once we will have Dn, the remaining classical families Bn and C
should be relatively easy. D is the "hard core" of both B and C, and it hopefully
would be relatively easy to add the rest. Similarly, it should be possible to find more
refined conjectures for F4 and the E’s that will enable us to break the proof into
manageable pas.

Another possibility is to find the "trivializing generalization": a much more general
statement than the Macdonald conjectures that would be trivial (or at least easy, or
in any case possible) to prove. Except for some coecients in the A, case [Ste3],
the general coecients of Gk and G,b do not seem to have nice expressions. So we
have to abandon the hope of finding a nice expression for the general coecient of
Gk. But perhaps it is possible to find ceain linear combinations of these messy
coecients that are good-looking. Remember that in our method the desired coecient,
Hk+, was obtained, via (4.6) as a ceain linear combination of more or less ugly
coecients of the k case. Maybe it is possible to find a family of polynomials, a, say,
parametrized by paitions h such that

(10.4) C.T. [R+ (X)k(qX-)k_aA ]
has a nice expression in k and A. Now that we have a laboratory for producing not
only the constant term, but also other coefficients of Fk(Fo.b), there is a vast hunting
ground for formulating and testing such more general conjectures (see [Kad2] for a
similar idea in the context of the Selberg integral).

A related idea, inspired by Aomoto’s [Ao] proofof Selberg’s integral, was suggested
by Askey [As3]: Break the ascent from k to k + 1 in (qM) by raising the subscripts on
the roots one, or few, at a time. The present method also offers a convenient workbench
for Askey’s approach. In paicular it is possible to verify his G2 conjectures made at
the end of 4 of [As3].
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Note added in proof. Kevin Kadell has meanwhile proved the BC,, cases of
(qM-M1), and thus also the Bn, Cn, D, cases. Frank Garvan (preprint) has used the
method of this paper to prove the q 1 case of F4. He also succeeded in proving the
F4, I3 cases of the Macdonald-Mehta conjectures. Frank Garvan and Dennis Stanton
have proved that the system (5.9) is always upper triangular, in the q 1 case.
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