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We will prove the following theorem.
THEOREM Let m and n be integers and x, y and z commuting indeterminates; then

the constant term of the Laurent polynomial

F(x, y, z,: [(1-)(1-)(1 _)] m[(1--xY) (1--iz) (1- xY---z)]"

C(m,n)=
(3m + 3n)!(3n)!(2m)!(2n)!

(2m + 3n) !(m + 2n) !(m + n)!m!n!n!

This is the G2 case of Macdonald’s Root System-Dyson conjecture (see [6,
Conjecture 2.3, and (c), p. 994]; see also Morris [7]).

Macdonald [6] showed how Selberg’s integral [8] (see [1] for Aomoto’s recent
brilliant proof) implies his conjecture for all the so-called classical root systems. We
will follow the same route and show how the G2 case follows from a corollary of
Selberg’s integral that is due to Morris [7, p. 94].

After the first version of this paper was written, I was kindly informed by
Dominique Foata that Laurent Habsieger [9] has independently and simultaneously
obtained the results of this paper.

We only need the case n- 3 of Morris’ result that spells out to the following.
MORRIS’ THEOREM (n 3). Let a, b, c be integers. The constant term of the Laurent

polynomial

H(u, v, w; a, b, c)=[(1-u)(1-v)(1-w)] 1- 1- 1-

(a+b+2c)!(a+b+c)!(a+b)!(2c)!(3c)!
(a+2c)!(b+2c)!(a+c)!(b+c)!a!b!c!c!

We will need the following easy corollary.

* Received by the editors May 12, 1986; accepted for publication (in revised form) June 25, 1986. This
research was partly sponsored by the National Science Foundation

Department of Mathematics, Drexel University, Philadelphia, Pennsylvania 19104.
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COROLLARY The coefficient of uAvAwA in H(u, v, w; a, b, c) above is

(_1)A
(a/ b/ 2c)! (a + b/ c)!(a + b)!(2c)!(3c)!

(a-A+2c)!(b+A+2c)!(a-A+ c)!(b+ A+ c)!(a-A)!(b+A)!c!c!"

Proofi Since (1- t)a(1 t-1)b/tA=(--1)A(1-- t)a-A(1-- t-)b+A, we have

H(u, v, w; a, b, C)/uAvAwA=(--1)AH(u, V, W; a-A, b+A, c)

and taking constant terms, the corollary follows from Morris’ theorem.
Finally, we need the formula shown below.
DIXON’S FORMULA (e.g. [5, 1.2.6, Ex. 62, pp. 73. and 489]). Let M, N, K be

integers; then

(-1)A

A (M+A)!(M-A)!(N+A)!(N-A)!(K+A)!(K-A)!

(M+N+K)!
M!N!K!(M+ N)!(M + K)!(N+ K)!"

To prove the theorem we let u=x/y, v=y/z, and w=z/x. Then F(x,y,x)=
H(u, v, w; m, m, n). But uvw 1, so the constant term of F is the sum of all the diagonal
coefficients of H. Thus by the corollary the constant term of F is

E(-1)
(2m+ n)! (2m + n)!(2m)!(2n)!(3n)!

(m A+ 2n) !(m + A + 2n) !(m A+ n)!(m +A+ n)!(m -A)!(m + A)!(n)!(n)!

(2m+2n)!(2m+ n)!(2m)!(2n)!(3n)!
n!n!

(--1)A

A (m+2n-A)!(m+2n+A)!(m+ n-A)!(m+ n+A)!(m-A)!(m+A)!

Using Dixon’s formula with M m /2n, N m + n, K m, we get that this is
equal to

(2m + 2n) (2m + n)!(2m)!(2n)!(3n)!
n!n!

(3rn+3n)!
(rn+2n)!(m+ n)!rn!(2rn+3n)!(2rn+2n)!(2rn+ n)!

(3rn + 3n)!(3n)!(Zrn)!(2n)!
Q.E.D.

(2m+3n)!(m+2n)!(m+ n)!m!n!n!

Since F of the theorem is obviously with integer coefficients, our theorem implies
the not entirely obvious fact that C(m, n) is an integer, thus solving Askey’s problem
[2].

The q-Analogue. We will show how Kadell’s [4] recent q-analogue of Morris’
theorem implies the q-analogue of the G2 Macdonald-Dyson conjecture [6]. Since the
ordinary case is just the special case q 1 of the q-analogue, we could have started
with the q-analogue right away, giving the ordinary reader the option to plug in q 1
throughout. However we feel that this would have been very poor pedagogy. Indeed,
the way mathematics is created is by slowly increasing steps of generality. Unfortu-
nately, all too often results are presented in their overpowering full generality right
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from the start, thus making them very hard to read and understand, let alone use as
motivation

Let

and

(Y) (1 y)(1 qy) (1 qa-ly)

[a]!= (q)--------- =l(l+q)(l+q+q2)’’’(l+q+’’’+qa-1).
(l-q)

We will prove the following theorem.
q-THEOREM. Let m and n be integers and x, y and z commuting indeterminates;

then the constant term of the Laurent polynomial

F(x,y,z)=() () () (Z_y) (x_) (Y-2)
(q) (q) (q) (qXy) (q).

[3m+3n]![3n]![2m]![2n]!
[2m + 3n]![m + 2n]![m +

We need the following theorem [4].
KADELL’S q-MORRIS THEOREM (n 3). Let a, b, c be integers. The constant term

of the Laurent polynomial

() (-) () (-) () (-) (q) ( -) ( )H(u, v, w; a, b, C)--’(U)a())a(W)a
U q q

q q
b b b

[a+b+2c]![a+b+c]![a+b]![2c]![3c]!
[a+2c]![b+2c]![a+c]![b+c]![a]![b]![c]![c]!

We will need the following easy corollary.
q-COROLLARY. The coefficient of uADAwA in H(u, v, w; a, b, c) above is

(_l)AqaA(A-1)/2

[a+b+2c]![a+b+c]![a+b]![2c]![3c]!
[a-A+2c]![b+A+2c]![a-A+c]![b+A+c]![a-A]![b+A]![c]![c]!"

Proof. We are really looking for the constant term of H(u, v, w; a, b, C)/uAvAwA.
But since

(t)a(q(1/t))b
A

it follows that

H(u, v, w; a, b, c)
uADAwA

and the corollary follows from Kadell’s q-Morris Theorem.

"--(--1)Aq3A(A-1)/2H(qAu, qAv, qAw; a-A, b+A, c)



G2 CASE 883

Finally, we need the following formula.
THE q-DIXON FORMULA ([3], [5, p. 489]).

(__l)AqA(3A-1)/2
’[M+A]V[MA -A]V[N+A][N. -A][K+A][K. -A].

[M+N+K]!
[M]![N]![K]![M+ N]![M+ K]![N+ K]!

To prove the q-Theorem we let u-q(y/z), and v-z/x and w=x/y. Then
F(x, y, z) H(u, v, w; m, m, n). But uvw q so the constant term of F is the weighted
sum of all the diagonal coefficients of H, where the coefficient of uAI)AwA gets multiplied
by qA.

Thus by the corollary the constant term of F is, qA(--1)AqaAA-1)/2
A

[2m+2n]![2m+n]![2m]![2n]![3n]!
[m-A+2n]![m+A+2n]![m-A+ n]![m+A+ n]![m-A]![m+A]![n]![n]!

[2m+2n]![2m+n]![2m]![2n]![3n]!
[n]![n]!

(_l)Aqa(3a-1)/2
a [m+2n-A]![m+2n+A]![m+ n-A]![m+ n+A]![m-A]![m+A]!"

Using the q-Dixon formula with M m + 2n, N m + n, K m, we get that this
is equal to

[2m+2n]![2m+n]![2m]![2n]![3n]!
[n]![n]!

[3m+3n]!
[m+2n]![m+ n]!m![2m+3n]![2m+2n]![2m+ n]!

[3m+3n]![3n]![2m]![2n]!
[2m+3n]![m+2n]![m+n]![m]![n]![n]!" Q.E.D.

Acknowledgment. I heartily thank Richard Askey for rekindling my interest in the
Macdonald conjecture.
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