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One-Line Proofs of the Unimodality of 

Doron Zeilberger 

A polynomial of degree A: ao+alq+ ...+ aAqA is symmetric and uni- 
modal if a; = aA; and a. 5 a l  <_ . . - I a [ ~ / 2 ] ' 1 L  ' . .  > UA. 

If a, = 0 we will say that  the polynomial is "viewed as a polynomial of 
degree A". (For example q2 is not unimodal when viewed as a polynomial 
of degree 2 but is unimodal when viewed as a polynomial of degree 4). 

The Gaussian polynomials [z] are defined by 

and are of degree m(n-m) .  It  is a consequence of a deep theorem of Syl- 
vester [3] that  they are unimodal, for every n and m ,  but no elementary 
proof is known. For m = 3,4 elementary proofs do exist and are due t o  
Riess [2] (m  = 3 and 4), Lindstrom [I] (m  = 3) and West [4] (m = 4). 
Neither proof is really short, although, in fairness, they prove something 
stronger. 

Based on an elementary remark and easily verified identities, we can 
give one-line proofs of the unimodality of the Gaussian polynomials (1) for 
m = 2,3,4. 

Remark. If the polynomial P (q )  is symmetric and unimodal when viewed 
as a polynomial of degree A then for any integer B, q B ~ ( q )  is unimodal 
when viewed as a polynomial of degree A + 2B. 

Lemma. The following recursive identities hold 
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where 

Proof. By summing all geometric series and substituting the definition ( 1 )  ; 
it is readily seen that  all quantities are polynomials in x = qn with coeffi- : 
cients that are rational functions of q .  Specifically equation ( m )  involves 
polynomials of degree nz (m = 2,3,4). Since two polynomials of degree r j 
coincide if and only if they coincide for r + 1 values it is enough to check 
( m )  for the m + 1 values n = m , .  . . , 2m.  

i 
I 

1 
Theorem. [k] i s  symmetr i c  and uninzodal for m = 2,3,4. i 
Proof. For m = 2,3,4 this follows by induction on n ,  form the Remark, 
and the identity (m); for m = 4 we obtain first tha t  S ( n )  is symmetric 
and unimodal and then we apply the Remark and induction once again to 
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