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- The celebrated ri wme-Rabinson-Thrall (Canad. J. Math. 6 (1954} 316-324) hook-lengths
formula, counting the Young tableaux of a specified shape, is given a short bijective proof. This
proof was obtained by translating the elegant Greene—Nijenhuis-Wilf proof (Adv. in Math. 31
(1979) 104-109) into bijective language.

0. Getting hooked

A Young tableau of shape A =(Ay,...,A,), Ay=A=---=), >0, is an array
(a;: 1si=m, 1<j=<),) satisfying a;; <a&;.,; and a; <a,;,, (Whenever applicable)
such that every integer between 1 and n(=A,+---+A,,) appears exactly once
among its n entries. For example

1 2 4
3 6 10
5 7
8 9

is a Young tableau of shape (3, 3, 2, 2).
The set of cells {(;, j) : 1 <i<m, 1=<<j=<A,} constitutes the shape of the tableau,
S(A), and for every cell (i,j) in S(A) we define its hook H; by H;=
{(a,B)eS(A):a=i and p==j or =i and B =j}. The number of cells in Hj; is
denoted by h;;.
Frame, Thrall and Robinson [1] proved that the number of ‘Young tableaux of
shape A, f,, is given by

fk=n!/ I & 1)

i.NeSM)
For example, if A =(2, 2), then n=2+2=4 and
n= {(1’ 1)1 (19 2) (2, 1)}’ hll = 33

le = {(1’ 2)! (2’ 2)}" hlZ = 29
H21 = {(2’ 1), (2: 2)1'9 h21 = Za
H’22 = {(2, 2)}9 h22 = 1’
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and = 4'/("5 2 2 1) 24!12 =2 and indeed there- are 2 Young tableaux of
shape (2,2):33and 33,
An e xeellent expmmor of what was known about Y cung tableaux utml 197’2 is

pcssesses ail the virtues of the GNW probabxhstu -mdueﬁve prooi Tlns oonserva—
tion of el;eganoe is by no means a comcldence, as our proof is. agdxrect by

bn;ect;ves prod of the hi)ok-lengths‘ formula {7]. ipresent authof has extended
the bijectation method to inductive proofs and hopes' to prese*nt it elsewhere.

1. The theorem

Definition 1. A pointer tableau of shape A is an assignment of pointers to every

cell of S(A) such that every cell poinis at some member of lts hook. More
fonnally,xtlsanarray : - s

{P(l,]) l s:&m 1s]s).i, P(z,l)eH}

m 2. Let S’M) be the set of non-corner oells in S(n\) i.e., those G, 1) for
which ,;>1. o .

Demn~~ 3. A pointer tableau is strict if for every (i, ])G S’(/\) PG, ) #(t, 0, ie.,
only corner cells point at themselves.

'The set of pointer tableaux and strict pointer tableaux of shape A are denoted by
P(1) and 2,{A) respectively. The set of Young tableaux of shapz A is denoted by
J(A) and S, is the szt of permutations on {1,..., n}. ;

Theorem. The mapping
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defined in Section 2.1 is a bdijection and the mapping
‘ o) : TWxPA)x X P(p)— S, x X P (u)
BSA

(TR}

defined in Section 2.2 is its inverse.

The hook-lengths formula is an immediate corollary since the theorem implies
that

|s.x X 2.0 = |7rx20x X 200

and thus
8| X 20| =lgiiean| X 2.6
and so
S| X 2|
FO)|=—"= =t =n!
ol Bl "o fL

2ol | X gz(u)|

The proof of the theorem will consist in presenting the mappings 7(A) and o(A).
The proof that the algorithms describing w(A) and o(A) do what they claim to do
is immediate while the proof that (A) and o(A) are inverses of each other follows
from the fact that o(A)’s Step i (1=<i <6) undoes w(A)’s Step 7-i and vice versa,
and from the inductive hypothesis.

For (a, b)e S(A) let HY, = H,, \ (a, b). Let (a, B) be a corner cell in S(A) and let
(a,b) be any cell in S(A) for which a<a and b<p the bijection
fan: His UHYE, — HY, (establishing (h,g — 1)+ (‘i — 1) = 1, — 1) is defined by

ab . (a,y)—>(a,y) (e, y)—>(a,y)
fas: m“{(x, 8) - (x, b) H:"{(x, b)— (x, b)

The inverse of fa is easily seen to be given by

(a,y) € Hig r<a_n(X, B)e HE,

y>8

fB)™1: (a, y)/ L bl .
VBN (a, y) e HE, *TN(x, b)e HE,

The knowledge of f25 and its inverse is crucial for the execution of algorithms
w(A) and o()).

2. The bijection and its inverse

Wamihg. Falﬁiliarize vourself with the f25 cefined at the end of Section 1.



Nm (1) The reduced form ‘of - e permotauon (a,, RORE (b,, gy b,t),
where {b;, bs, ..., b}= {1,2,. ., k} and @;<g; 11 b <4 e, g the reduced form
of (5,7, 8, 2)is (2, 3, 4, 1); rf.d(S 1, 2, 8)=(4,1, ? 3\

2 The, (i, /) entry of an a'ray A is denoted by A’ j). -

2 1 ; Algonthmivr(}‘)

lqnt. (P,,)“;’,; and x,. (ml, . m,.\ P are smct pomter \‘ableaux of shape i,
for every pcA; x, is a permntatlon of {1 . n}

anm. (Q)ucr K, and 'Ii Q isa stnct pomter table au of slhape ™ for every
i & A; K, is a pointer tableau of shape \ and T, is a Young tableau of shape A.

Step 1. [Locate beginning of trip using m,] Let (.a, b) be the mlth cell of S(A)
obtained by scanning it as in reading ':.nghsh ie., mi=A;+-++A,_,+b. Let
x,_; be the reduced form of (m,, ..., m,).

Step 2. [Find end of trip] Q'm:-rg at (a, b) follow the pointers of P, gettmg a
path (4, b)=(ay, b)) —>(as, ) >+ > (a..u bm) =(a, 8), where (a, B) is a corner
cell. (i.e., (a, b) = Px(ay. .1, b;-1), i=2,. ,m, thus either a; = a;.., and b, >b;_, or
&>ai_yand b=b_,) .

Step 3. [Apply recursion] Let A be the shape A wrth the cell (a, B) deleted.
A;pply 1r().) to (P“),,;; and Kot to get smct pomter tableaux (Q,).qx a pointer

S 4. [Get (Q,,),,c,‘, mmallze KA and QA i Keep (Q ),‘;A whxch you got in
S»ep 3;for Apc) set Q, <—-P Sut KA(x,y‘—-Kx(x, y) for (x,y)# (e, B) and
K, B)=(a,B).

_ Step S. [UpdatjeQ,‘ and K, For i=1,.. ,m—-ldo _

(a) [Find cell] If a;,,= - a; then cell —(a, b,) if b;,;=b, then cell « (a, B).

(b) [Update Q. (2, b), Q;.Oeell), K.(cell)]

Qi (@, b;) «-fog: (QL(‘WH))
Ky (cell) if (cell)=# cell,
O | ! o
- (cell) « (o, B).
Step 6. [Get T,] Let T, be the Youxig tableau obtained from T; by adjoining
the cell (a, B) filled with ‘n’.

2.2. Algorithm o))

Imput. (Q,)..,, K, and T,; Q Q, is a sirict pointer tableau of shape i, f for every
peA K, isa pl)mtcr tableau of shape A and T,‘ isa chung tab k-au of shape A

Output. (! ,)“9 and x,; I, isa stnct pomter tableau of shaxpe s for every p. c A
% ={Mmy, ...m,) is a permutation of {1,...,n}." oy
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Step 1. [Locate corner cell (o, 8) and get T;] Let Tj, of shape A, be the Young
tableau obtained from T, by deleting ‘n’. Let (o, B) be the corner cell which have
been thus removed (i.e., (o, B)=A\A).

Step 2. [Update Q, and K, ]

(a) [Locate cells in the ‘antihcok’ of (e, 8) which point at (a, B) in K,] Let
( dy),...,(a,d)=(a, B), and (=4, B),...,(c, B)=(a, B) be the cells (x,y) for
which K, (x, y) = (a, B).

(b) [Initialize i and j]i<1, j<1.

(c) [Find cell] L&t cell be such that

(fa) Qe d))e Hon (e, cell=(c, B) or (o, d)).
(d) [Update K, (cell), Q,(cell)]

Qi (cell) if Q,(cell) # (e, B),

cell if Q,(cell)=(a, B).

Qu (cell) « (f58) " (Qu(c;, &)

(e) [Update Q,\(c;, d;), update (i, j}] If cell=(c;, B) then Q\(c;, d;) < (¢i11, d;)
and i < i+1. If cell=(a, 4) then Q\(c;, d)) < (¢ djsy) and j—j+1.

(f) [done?] If (¢, d;) # (a, B) (i.e. i<s or j<r) go to Step 2(c).

Step 3. [Get P,, u¢A, Kx] For <A and p¢ X set P, < Q,; set Ki(x, y) «
K\(x,y), (x, y)e SQX).

Step 4. [Apply recursion] Apply o(A) with (Q,).<x Tx and K to get (P, cx
and x,_;.

Step 5. [Find beginning of trip] Retrieve (cy, d,) from Step 2(a), call it (a, b),
that is (a, b) « (c,, dy).

Step 6. [Find m, using beginning of trip] Let m, be such that (a, b) is the m,th
cell encountered when ‘reading S(A) in English’ (i.e., my=A;+---+A,_,+b).
Let x, be the permutation (m,, m,, ..., m,) where (m,, ..., m,) is such that its
reduced form is x,_;.

K, (cell) « {

3. Example

Due to the enormous size of the input and output and to the recursive nature of
the aigorithm, it is impossible to present a complete worked out example of a
non-trivial size. We will thus confine ourselves t> an example of 7w(A) where we
arbitrarily prescribe the outcome of the recursive Step 3.

Let A =(5,5,5,5,3)=(5% 3); then n=23 and we want to apply mw(A) to

* (1,4) = (3.4 (2.5
* * * * *

P(s"3)= % * * (3, 5) (4’5)
r 4,9 * 45 @45
* * *



mhled (Q ).,‘;; and o

“§f@$“

*
w

*

* b .
* L * £ 0w o ko x
Ki=Kgran= * 3 = < (3,5) and Ti= ® * & & *x,
(4.3) = (4, 4) IR I
* * * %

where again, the content of the w:ls ﬂlled w:th ' 1s unmatemﬂ and unfchanged
throughout the algontlﬂn : _
Step 4. We get uur (Q,L), S (5" 4 3) and set Q(sa 2y !’(541, etc and :nmalalze
Qises, = Prss '
Step s. 1—1 (1 2) »(1 4). az—al S0 oe]lc—(ql 2),

Qe D) < (4, 4) - ua,
Qs D@3,
K(Si 3)(4 2) - (4 5‘

h@u»»aaw¢mwhﬂﬂ.”
T Qe B £33, =0, 8,

Qs+.3(1, 5) «-(2,3),
Ks3(1,5) < (4, 5).

i=i 4> G,5), cell ~ (49),

: iQU“-m(a A< FiYa, 5= (3 Sy, . o
- 0(5‘3](4 4)4"'(4 5) (Smce K(S‘ 3)(4 4) (4 4} a Self POln tel-)
Kse(4, 4)<—-(4 5

=4 (5,5) 5 (&, Sy e,y

0(5‘3}(3 5) "'f 35'{ Q(-s* 3)(3 5)) .
055‘31(3 5) — (4, 5) I“‘{ﬂ: ﬁﬂ Smce»

K.53(3,5)=(3,5) aself pnmter i
K, N 4, 5:]
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Thus

* (L4 *» 2,9 (2,5
* * * * *

Q(S‘.3)= * * * (3’ 5) (45 5),
* (4,3) = (4,5 @4,5)
* * *
xox @,5)
* * * * *

Kgen= % * * = (4,5
* 4,5 * 4.5 @5
* * *

Step 6.

€ 0k ok * %
* 0k Kk k¥

Tsazy= * * * * =*x,
* % x *x 23
* %

We urge the reader to apply o(5%, 3) to the above output and verify that one
gets the above input back.

4. The purist’s objection and our rebuttal

The purist would object that our proof of n!=f, [] h; was not purely bijective
and that what we really proved was the fact n! A, = f, [1h;A,, for some number
A,. To get n!=f, [ h; we had to go through the algebraic (and hence manipula-
tive) act of cancelling A, out.

To this we retort that the hook-lengths formula states that f, =n!/[] h; and to
get this from n!= f, [ h; also requires an algebraic manipulation. However, even
if the original statement of the hook-lengths formula would have been n!=
fi 1 hy, there is nothing wrong in proving S, XX\ P () & FA) X PA) X
X, cx P,(n) rather than S, < F(A) x P(A), as long as the former is more elegant
and gives more insight into the structure of Young tableaux and the properties of
hooks.

Indeed, it may happen that two sets A and B have the same cardinality without
any apparent bijective reason. Then it often happens that theie exists another set
C such that A X C and B X C have a very natural bijection. The introduction of
the ‘catalizator’ C not only facilitates a bijective proof that |A|=|B| but often
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gives msngh.t into the structure of both A and B. This point is best illustrated:-by
the following exarmple.

The green couples 1, 2‘. 3 play hoclkey thh t‘he red couples 1, 2, 3. The
positions are as follows:

Left defense: Mrs, 1 O08lie: Mr ! Right defense: Mr. 2

Left wing: Mrs. 2 Center:’Mr.3 - Right wing: M. 3
Left defense: Mr. 2' " Right defense: Mrs. 3'
Left wing: Mr.3'  Center: Mr. I’  Right wing:  Mrs. 1'

If you were requested to give a bijective proof that the number of green couples
equals the number of red couples, you would find no natural bijection
{1,2,3} «{1',2',3}. The natural bijection is

w:{Mr., Mrs.}x {1, 2, 3} — {Mr., Mrs. .} x{1', 2/, 3'}

given by 7r(a) = the person in the red team having the same position as «. Thus
w(Mr. 1j=Mirs. 2'; o{Mrs. 1)=Mr. 2'; etc.
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