ON ELEMENTARY METHODS IN POSITIVITY THEORY*

J. GILLIS,[†] B. REZNICK[‡] AND D. ZEILBERGER[§]

Abstract. We give a short proof of a result of Askey and Gasper [J. Analyse Math., 31 (1977), pp. 48–68] that $(1-x-y-z+4xyz)^{-\beta}$ has positive power series coefficients for $\beta \ge (\sqrt{17}-3)/2$. We also show how Ismail and Tamhankar's proof [SIAM J. Math. Anal., 10 (1979), pp. 478–485] that

$$(1-(1-\lambda)x-\lambda y-\lambda z-(1-\lambda)yz+zz)^{-\alpha} \quad (0 \le \lambda \le 1)$$

has positive power series coefficients for $\alpha = 1$ implies Koornwinder's result that it does so for $\alpha \ge 1$.

1. Introduction. Given a multivariate polynomial $P(x_1, \dots, x_n)$ and a real β , it is of interest to know whether $P^{-\beta}$ has only positive terms in its power series expansion. Szegö [6] proved that this was the case for $P = (1-x)(1-y) + (1-x)(1-z) + (1-y) \cdot (1-z)$ and $\beta \ge \frac{1}{2}$, and Askey and Gasper [2] established positivity for P = 1 - x - y - z + 4xyz and $\beta \ge (\sqrt{17} - 3)/2$. A fascinating account of the history of these problems up to 1975 is given in Askey's monograph [1].

Koornwinder [5] used deep methods to establish the positivity of the coefficients of $[1-(1-\lambda)x-\lambda y-\lambda xz-(1-\lambda)yz+xyz]^{-\beta}$ for $0 \le \lambda \le 1$, $\beta \ge 1$ and that of $[1-x-y-z-u+4(xyz+xyu+xzu+yzu)-16xyzu]^{-\beta}$. Later, Ismail and Tamhankar [4] (see also [3]) gave elementary proofs of Koornwinder's results in the special case $\beta = 1$. In §2 we are going to show how Ismail and Tamhankar's results for $\beta = 1$ imply Koornwinder's results for $\beta \ge 1$ and in §3 we give a short proof of Askey and Gasper's [2] result. Finally, in §4 we conjecture that for $n \ge 4$, $(1-(x_1+\cdots+x_n)+n!x_1\cdots x_n)^{-1}$ has positive coefficients.

2. Operations that preserve positivity of coefficients.

PROPOSITION 1. Suppose that $a(x_1, \dots, x_{n-1})$ and $b(x_1, \dots, x_{n-1})$ are polynomials. If (i) $(a-bx_n)^{-1}$ has positive coefficients and (ii) $a^{-\alpha}$ has positive coefficients for all $\alpha > 0$, then so does $(a-bx_n)^{-\beta}$ for all $\beta \ge 1$.

Proof. By hypothesis $(a-bx_n)^{-1} = \sum (b^r/a^{r+1})x_n^r$ has positive coefficients, implying that for every r, b^r/a^{r+1} has positive coefficients. Since $(\beta)_r/r! = \beta(\beta+1)\cdots(\beta+r-1)/r!$ is positive and $a^{1-\beta}$ has positive coefficients, we see that

$$(a-bx_n)^{-\beta} = a^{1-\beta} \sum_{r=0}^{\infty} \frac{(\beta)_r}{r!} \frac{b^r}{a^{r+1}}$$

has positive coefficients. \Box

By taking $a=1-(1-\lambda)x-\lambda y$, $b=\lambda x+(1-\lambda)y-xy$ $(0\leq\lambda\leq1)$ it follows that Ismail and Tamhankar's result that $[1-(1-\lambda)x-\lambda y-\lambda xz-(1-\lambda)yz+xyz]^{-\beta}$ $(0\leq\lambda\leq1)$ has positive coefficients for $\beta=1$ implies Koornwinder's result that it does so for $\beta\geq1$.

PROPOSITION 2. If $[a(x,y)-b(x,y)z]^{-\alpha}$ and $[c(x,y)-d(x,y)z]^{-\alpha}$ have positive coefficients $(\alpha > 0)$ so also does $[a(x,y)c(z,u)-b(x,y)d(z,u)]^{-\alpha}$.

^{*} Received by the editors June 15, 1981, and in final revised form January 26, 1982. This research was supported in part by the National Science Foundation.

[†] Department of Applied Mathematics, The Weizmann Institute of Science, Rehovot, Israel.

[‡] Department of Mathematics, University of Illinois, Urbana, Illinois 61801.

[§] Department of Theoretical Mathematics, The Weizmann Institute of Science, Rehovot, Israel.

Proof. $(a - bz)^{-\alpha} = a^{1-\alpha} \sum [(\alpha)_r / r!] (b^r / a^{r+1}) z^r$ and $(c - dz)^{-\alpha} = c^{1-\alpha} \sum [(\alpha)_r / r!] (d^r / c^{r+1}) z^r$ have positive coefficients. Thus for every r, both $a^{1-\alpha} b^r / a^{r+1}$ and $c^{1-\alpha} d^r / c^{r+1}$ do and, hence, does $(ac)^{1-\alpha} b^r d^r / a^{r+1}c^{r+1}$ and finally does

$$(ac)^{1-\alpha} \sum \frac{(\alpha)_r}{r!} \frac{b^r d^r}{a^{r+1} c^{r+1}} = (a(x,y)c(z,u) - b(x,y)d(z,u))^{-\alpha}$$

Take a(x,y)=1-x-y, b(x,y)=x+y-4xy, c(z,u)=1-z-ud, d(z,u)=z+u-4zu. The hypotheses of Proposition 2 are satisfied (for $\alpha \ge 1$) by virtue of the above discussion, (with $\lambda = \frac{1}{2}$, $x \leftarrow 2x$, $y \leftarrow 2y$). Thus, we have an elementary proof of Koornwinder's [5] result that $[1-x-y-z-u+4(xyu+xyz+xzu+yzu)-16xyzu]^{-\alpha}$ has positive coefficients for $\alpha \ge 1$.

3. A short proof of a result of Askey and Gasper. It follows from the above that $(1-x-y-z+4xyz)^{-\beta}$ has positive coefficients for $\beta \ge 1$. Askey and Gasper [2] extended this result to $\beta \ge (\sqrt{17}-3)/2$. This can be obtained quite simply by an extension of a method used in [3].

Suppose that $\beta > (\sqrt{17} - 3)/2$. Write R = 1 - x - y - z + 4xyz, it is readily seen that

$$\frac{\partial}{\partial x}R^{-\beta} = (1+2z) \left[x \frac{\partial}{\partial x} - y \frac{\partial}{\partial y} + z \frac{\partial}{\partial z} + \beta \right] R^{-\beta} + 2 \left(y \frac{\partial}{\partial y} - z \frac{\partial}{\partial z} \right) R^{-\beta}.$$

Substitute $R^{-\beta} = \sum D_{a+1,b,c} x^{a+1} y^b z^c$ above, compare coefficients of $x^a y^b z^c$, and set $a \leftarrow a - 1$ to get

$$aD_{a,b,c} = (a+b-c+\beta-1)D_{a-1,b,c} + 2(a-b+c-2+\beta)D_{a-1,b,c-1}$$

Now, by symmetry, it is enough to prove positivity for $a \ge b \ge c$. The coefficients of the above recurrence are positive if $a \ge b \ge c > 1$ and the result will follow by induction if $D_{a,a,1} \ge 0$ for all a. Now

$$D_{a,a,1} = \frac{\beta(\beta+1)\cdots(\beta+2a-2)}{(a-1)!^2} \left[\frac{(\beta+2a-1)(\beta+2a)}{a^2} - 4\right].$$

But $(\beta+2a-1)(\beta+2a)-4a^2=\beta^2-\beta+2a(2\beta-1)$ increases with a since $\beta \approx 0.56 > 0.5$ and $D_{1,1,1}=\beta(\beta^2+3\beta-2)>0$, so the result follows.

4. Does $(1-(x_1+\cdots+x_n)+n!x_1\cdots x_n)^{-1}$ have positive power series coefficients? We have already mentioned Askey and Gasper's result that $[1-(x+y+z)+4xyz]^{-1}$ has positive power series coefficients. We are interested in A_n , the largest A for which $(1-(x_1+\cdots+x_n)+Ax_1\cdots x_n)^{-1}$ has nonnegative coefficients. Since the coefficients of $x_1\cdots x_n$ in the above expansion is $n!-A_n$, we must certainly have $A_n \le n!$. We conjecture that for $n \ge 4$, $A_n = n!$. It may be seen that $A_n \ge (n-1)!$, i.e., that $[1-(x_1+\cdots+x_n)+(n-1)!x_1\cdots x_n]^{-1}$ has positive coefficients. The reason is that the coefficient of $x_1^{\alpha_1}\cdots x_n^{\alpha_n}$ in the above expansion has combinatorial significance, namely, it is the number of words with α_1 1's, \cdots, α_n n's such that no substring of n letters which ends with the letter "n" can be a permutation (e.g., with n=4, the six words 1234, 1324, 2134, 2314, 3124, 3214 are not allowed as subwords) (see Zeilberger [7] for details).

Let us state:

PROPOSITION 3. Let $(1-(x_1+\cdots+x_n)+n!x_1\cdots x_n)^{-1}=\sum A_{\alpha_1,\cdots,\alpha_n}x_1^{\alpha_1}\cdots x_n^{\alpha_n}$. If $A_{r,\ldots,r}\geq 0$ for all r, then $A_{\alpha_1\cdots\alpha_n}\geq 0$ for all $(\alpha_1,\cdots,\alpha_n)\in N^n$.

The proof is rather long and we omit it here. Note that

$$A_{r,\cdots,r}^{(n)} = \sum_{j=0}^{r} (-1)^{j} \frac{(rn - (n-1)j)!(n!)^{j}}{(r-j)!^{n}j!},$$

and it would therefore suffice to show that this binomial sum is positive. This has been verified by computer for n=4 and $1 \le r \le 220$. In this range $A_{r,\ldots,r}^{(4)}$ increases monotonically and appears to have exponential growth. This supports our conjecture.

Acknowledgment. Many thanks are due to Gilad Bandel for his programming.

REFERENCES

- [1] R. ASKEY, Orthogonal Polynomials and Special Functions, CBMS Regional Conference Series in Applied Mathematics 21, Society for Industrial and Applied Mathematics, Philadelphia, 1975.
- [2] R. ASKEY AND G. GASPER, Convolution structures of Laguerre polynomials, J. Analyse Math., 31 (1977), pp. 48-68.
- [3] J. GILLIS AND J. KLEEMAN, A combinatorial proof of a positivity result, Math. Proc. Camb. Phil. Soc., 86 (1979), pp. 13–19.
- [4] M. E. H. ISMAIL AND M. V. TAMHANKAR, A combinatorial approach to some positivity problems, SIAM J. Math. Anal., 10 (1979), pp. 478–485.
- [5] T. KOORNWINDER, Positivity proofs for linearization and connection coefficients of orthogonal polynomials satisfying an addition theorem, J. London Math. Soc., 2 (1978), pp. 101–114.
- [6] G. SZEGO, Über gewisse Potenzeihen mit lauter positiven Koeffizienten, Math. Z., 37 (1933), pp. 674-688.
- [7] D. ZEILBERGER, Enumeration of words by their number of mistakes, Discrete Math., 34 (1981), pp. 89-91.