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ON ELEMENTARY METHODS IN POSITIVITY THEORY*

J. GILLIS," B. REZNICK¥ AND D. ZEILBERGERS

Abstract. We give a short proof of a result of Askey and Gasper [J. Analyse Math., 31 (1977), pp. 48-68]
that (1—x—y—z+4xyz) " # has positive power series coefficients for =(/17 —3) /2. We also show how
Ismail and Tamhankar’s proof [SIAM J. Math. Anal., 10 (1979), pp. 478—485] that

(1—(=Nx=Ay=Axz—(1-A)yz+xpz) *  (0=A=I)

has positive power series coefficients for a= 1 implies Koornwinder’s result that it does so for a=1.

1. Introduction. Given a multivariate polynomial P(x,,---,x,) and a real 8, it is
of interest to know whether P™# has only positive terms in its power series expansion.
Szegd [6] proved that this was the case for P=(1—x)(1—y)+(1—x)(1—2z)+(1—y)
-(1—z) and B=%, and Askey and Gasper [2] established positivity for P=1—x—y—z
+4xyz and B=(V17 —3) /2. A fascinating account of the history of these problems up
to 1975 is given in Askey’s monograph [1].

Koornwinder [5] used deep methods to establish the positivity of the coefficients of
[1—A=Mx—Ay—Axz—(1—N)yz+xyz] P for 0O<A<1, =1 and that of [1 —x—y —
z—u+4(xyz+xyu+ xzu+yzu)— 16xyzu]~P. Later, Ismail and Tamhankar [4] (see also
[3]) gave elementary proofs of Koornwinder’s results in the special case 8=1. In §2 we
are going to show how Ismail and Tamhankar’s results for §=1 imply Koornwinder’s
results for =1 and in §3 we give a short proof of Askey and Gasper’s [2] result.
Finally, in §4 we conjecture that for n=4, (1—(x,+ --- +x,)+nlx,---x,)"! has
positive coefficients.

2. Operations that preserve positivity of coefficients.

PROPOSITION 1. Suppose that a(x,,- - -,x,_,) and b(x,,*+,x,_,) are polynomials.
If (i) (a—bx,)”" has positive coefficients and (ii) a=* has positive coefficients for all
a>0, then so does (a—bx, ) # for all B=1.

Proof. By hypothesis (a—bx,)”'=3(b"/a"* ")x], has positive coefficients, imply-
ing that for every r, b"/a"*' has positive coefficients. Since (B),/r!=B(B+1)---
(B+r—1)/r! is positive and a' ~# has positive coefficients, we see that

(a—bx,) "=a'"F § (B), &
r=0

r! ar+1

has positive coefficients. O

By taking a=1—(1—A)x—Ay, b=Ax+(1—A)y—xy (0=A=<]1) it follows that
Ismail and Tamhankar’s result that [1 —(1—A)x—Ay—Axz—(1—=A)yz+xpz] # (0=<A
=1) has positive coefficients for §=1 implies Koornwinder’s result that it does so for
B=1.

ProprosITION 2. If [a(x,y)—b(x,y)z]™* and [c(x,y)—d(x,y)z]™* have positive
coefficients (a>0) so also does [a(x,y)c(z,u)—b(x,y)d(z,u)]”“.
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Proof. (a— bz)"*=a'"*Z[(a),/r'I(b"/a"*"z" and (c—dz) *=
' *Z[(a),/r')(d"/c"*")z" have positive coefficients. Thus for every r, both a' 0" /a"+!
and ¢'7%d"/c""! do and, hence, does (ac)' ~*b’d” /a" ¢! and finally does

(ae)' 5 10 T (a ) e)=b(x02)d ()

Take a(x,y)=1—x—y, b(x,y)=x+y—4xy, c(z,u)=1—z—ud, d(z,u)=z+u—
4zu. The hypotheses of Proposition 2 are satisfied (for a=1) by virtue of the above
discussion, (with A=3, x < 2x, y<2y). Thus, we have an elementary proof of Koorn-
winder’s [5] result that [1—x—y—z—u+4(xyu+xyz+xzu+yzu)— 16xyzu]~* has
positive coefficients for a=1.

3. A short proof of a result of Askey and Gasper. It follows from the above that
(1—x—y—z+4xyz) P has positive coefficients for B=1. Askey and Gasper [2] ex-
tended this result to 8=(v17 — 3) /2. This can be obtained quite simply by an extension
of a method used in [3].

Suppose that 8> (y17 —3) /2. Write R=1—x—y—z+4xyz, it is readily seen that
0

d d d d a
— R B= ey — - -B L, B,
axR (1+22) X yay+z az+'B]R +2( % zaz)R

Substitute R"#=3D,,,, x**'ybz¢ above, compare coefficients of x“y’z¢, and set
a—a—1toget

ab, , . =(a+b—c+B— DD,y , . +2(a—b+c—2+B)D,_ ;.-

Now, by symmetry, it is enough to prove positivity for a=b=c. The coefficients of the
above recurrence are positive if a=b=c>1 and the result will follow by induction if
D, ,.=0 for all a. Now

D _B(B+1)---(B+2a—-2) (B+2a——1)(B+2a)

wal (a—1)1? a?

But (8+2a—1)(B+2a)—4a*=B2—B+2a(2B— 1) increases with a since $=0.56>0.5
and D, ;= B(B*+3B—2)>0, so the result follows.

4. Does (1—(x;+ --- -l—x,,)+n!.vc1~~-x,,)_l have positive power series coeffi-
cients? We have already mentioned Askey and Gasper’s result that [1 —(x+y+2z)+
4xyz]~! has positive power series coefficients. We are interested in 4, the largest 4 for
which (1—(x,+ -+ +x,)+A4x,---x,)” " has nonnegative coefficients. Since the coef-
ficients of x,- - - x, in the above expansion is n! —4,, we must certainly have 4,<n!.
We conjecture that for n=4, 4,=n!. It may be seen that 4,=(n—1)!, ie., that
[1—(x,+ -+ +x,)+(n—1x,---x,]"! has positive coefficients. The reason is that
the coefficient of x{---x2» in the above expansion has combinatorial significance,
namely, it is the number of words with &, 1’s,- - -,a, n’s such that no substring of n
letters which ends with the letter “a” can be a permutation (e.g., with n=4, the six
words 1234, 1324, 2134, 2314, 3124, 3214 are not allowed as subwords) (see Zeilberger
[7] for details).

Let us state:

PROPOSITION 3. Let (1—(x;+ + - +x,)+nlx; - x,) ' =34, .., x{-xy If
A, ...,=0forallr,then A, ..., =0 forall (a;, -, a,)EN"
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The proof is rather long and we omit it here. Note that

A = éo(— 1)’ (’”—gf:jl))!i‘j?!!(n 1y ’

and it would therefore suffice to show that this binomial sum is positive. This has been
verified by computer for n=4 and 1=<r=<220. In this range A" . - Increases monotoni-
cally and appears to have exponential growth. This supports our conjecture.

Acknowledgment. Many thanks are due to Gilad Bandel for his programming.
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