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Abstract. A certain Markov chain which was encountered by T. L. Hill in the
study of the kinetics of a linear array of enzymes is studied. An explicit formula
for the steady state probabilities is given and some conjectures raised by T. L.
Hill are proved.
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1. Introduction and Results

Consider the following continuous time Markov chain. The set of states is {0, 1}¥,
namely all the 2%(0 — 1) vectors with M components. The transitions are Ox — 1o,
«l0f — 018, B1 — B0O. All the transition rates are equal; o and § are (possibly
empty) strings of 0’s and 1’s which make the above vectors have M components.
For example, if M =9, 010110101 may become one of the following: 110110101,
001110101, 010101101, 010110011, 010110100.

This Markov chain was considered by T. L. Hill 2], [3] (Ch. 7) as a model for
the kinetics of a linear array of enzymes where 0 means “oxidized” and 1 means
“reduced”. Hill ([2], p. 551) observed that this also represents a model for the
diffusion of a ligand across a membrane, from one bath to another, by jumping
from site to site along a row of M sites. In this model 0 means ‘empty’ and 1 means
‘occupied’. We refer the reader to [2] and 3] for a detailed discussion of the science
behind the model and will go on to treat the mathematical problem of finding the
steady state probabilities.

The 2™ steady state probabilities P(s) (se {0, 1}¥) satisfy the following system of
2M homogeneous equations

k)Ps) = Y P(s),  V¥se{0,1}M, 0

s'—s

Here k(s) is the outdegree of s, meaning the number of s” such that s — s”. Hill [2]
solved the system (1) for M = 1 through 7 and conjectured that

P (Ist component of s is 0) = (M + 2)/2Q2M + 1), 2)

which tends to 2 as M — oo. Hill also conjectured expressions for P(s, = 0) for every
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r. We are going to give complete proofs of Hill’s conjectures (Theorem 2) as well as
an explicit formula for the steady state probabilities (Theorem 1).

Theorem 1. The steady state probability of the state s = (s4, ..

ro-ae| (200 sG]
J—i+ 1/ i/ IM+2\ M+ 1

where k is the number of 0’sins(k = M — Y M | s)yand A;(i = 1,. .., k) is the number
of 1s to the left of the i-th zero.

()

is the binomial coefficient which equals zero if b <0 or b > a.

., 8y) is given by

3)

a!l
"~ bl(a — b)!

Examples. (See [2], p. 535.) (i) If s = (0,0,0,0,0), M = 5, 4 = (0,0,0,0,0): the
determinant is 1 and P(00000) = [2(*%)]~! = 1/132.
i) If 5 = (10100), then M = 5, 1 = (1,2,2) and
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Thus P(10100) = 9/132.
Theorem 2. ([2], (14) in p. 540.) Let

2k
C.= (k >/(k +1) (k integer).

Forr=1,..., M, the probability that the r-th component of s is zero is given by

P(s, =0) = Z CiCrs1-i/Crs1-

i=1

In particular P(s; = 0) = Cyy/Cpr11 = (M + 2)22M + 1).

The numbers
2k
C.= <k>/(k +1)

are called the Catalan numbers and occur in many areas of Mathematics and
Computer Science. We will see that the reason that the Catalan numbers come up in
the present context is strongly related to the fact that the Catalan numbers
enumerate ““ballot sequences’” (Mohanty [4], p. 2).
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2. Proofs

Lemma 3. For se {0, 1} e

k

Wi(s) = {z: (ti, ) e{0, 3%, Y 1, < Y s,

i=1 i=1

w(s) = |W(s)| (|4] denotes the number of elements of a set A). Then {w(s); se€ {0, 1}M}
satisfy (1), namely

k()w(s) = Y w(s’),  Vse{0,1}M. 4
Proof. Case I: s, =0, 5y = 1. Let R < {1,..., M} be the set of indices r such that
S,_1=0and s, =1, and for reR let

s = (Sla"'asr*Za laOaSr+17-"asM)'

It is casily seen that since s; = 0 and sy, = 1, the set {5';s — s} equals the set
{s";re R} and k(s) = |R| + 1. Thus we have to prove

(Rl + Dw(s) = ), w(s). )
reR
Let 1 = (44, ..., 4) be the partition (1; < 4, < -+ < J) corresponding to s as
in the statement of Theorem 1. Conversely, given 1; < -+ < 1, we associate to it
At Ay— Ay A= Ak -1
prm— e, —— e N

s=(0,1,1,1,...,1,0,1,...,1,0,...,1,1,1,..., 1,0, ).

Note that w(s) = F(4) where F(4) is the cardinality of {(uy,...,u); ti < t2
<K 0w < A, i=1,...,k}. Since for every u in the above set we have
either y; = 0 or u; > 0, we derive the recurrence

Flay .oy o) = F(O0,dgy oy ) + FOy — 1, e — 1), (6)

Making the convention that Fa,,...,a) = 0 if we do not have a; < - - < a;, (5)
can be rewritten

k
(R + DF(Ay, ..., ) = F(L, 2, .., )+ Y Fla,.., 4+ L., ). (D
i=1
We are going to prove (7) by induction on A; + -+ + A;; when A= (0),
s = (0, 1), (7) says that 2F(0) = F(1), which is certainly true.
Unfortunately we have to divide the proof into subcases:

Case la: A; > 1. Here the |R] of (0,4,,...,%4) is |R|— 1, and the |R| of
Ay =1, 4, —1,..., 2 — 1)is [R|. We have
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(IR + DF(Ag, ..., A4)

(6)
= (|Ri + 1)[F(09/12,7Ak) +F(’{1 - 1""9'1k - 1)]
=F0,43, ..., 4) + {RIF(0, 43, ..., Ay)
+ (R + DF(y ~ 1,00 — 1, 2= 1)
inductive

k
= F(iz,...,ik)+F(1,/12,...,j.k)+ Z F(lz,.“,li‘l' 1,...,)»]()

hypothesis i=2

FFL A =LA — 1, de— 1)

k
+ Y FGy =LA =1, k= 1)

i=1

=[F()\.2,...,lk)+F(I{1,).2— 1,‘..,},](— 1)]

k
+ Y s i+ Loy )+ FOy = LA — 1,0 Aoy — D]

i=2
FF(L g )+ P A — LAy = 1, = 1)

(6) k
=F(2,1 + 1,/12,...,2*)‘*‘ Z F()Ll,lz,...,xi'jr' 1,...,);;()

i=2

+ F(1, 2, A+ F(LA — LA, —1,..., 4= 1)

k
=F(1,/11,...,lk)+ Z F(ll,/lz,...,li"" 1,...,},,()

i=1

+ (L 2, d) + F(LA - LAy — 1 A — 1) = F(LL Ay, .., 0]
In order to establish (7) we must show that
F(I,Az,...,lk) + F(l,ll - 1,...,},/‘ - 1) - F(l,/{l,...,lk) = 0. (*)

Now by (6), F(1,A;,...,4) =F(dy,..., 4) + F(Ay — 1,...,2, — 1), thus the
right-hand side of (x) is

LF(L, gy i) = FlAg, Agy e AT+ [F(LA — 1,00, 2 — 1)

—FGy =LA —1,..., = 1)]
(6)
=F(1,iz,...,/lk)—'F(j.l,iz,...,/’{,k)‘kF(il _2,/12 '-2,...,2.](—2)
= 0.

The last step follows from the fact that F(4,, A5,..., 4) — F(1, A,, ..., 4) enumer-
ates the (uy, ..., ) with 0 < py < -+ <y and 2 < y; < A; which is equivalent to
0 < p; — 2 < 2 — 2, the number of which is F(1; — 2,..., 4 — 2).

Case Ib: Ay=1, A;>1. Here the |R of both (A,...,4) and
Ah—Li—1,..., 4 —1)is |R| — 1. We have
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(|R| + I)F(iln 2'25 e ’lk)
(6)
=(Rl 4+ D[FAa .-y i) + FOoy — LA, — 1,..., 2 — 1]
=Fy, ..., ) + [RIFGg .. ) + FO =1, — 1)

FRIFG — 1, — 1)

inductive
hypothesis

k
= Flge )+ Y Fln i+ 1,2 + FQL Ay )

and 41 =1 i=2

k
F P = L= D)+ S Fy = L — 1, A de — 1)

i=2
+FO =1, =1
(6) and

k
= Flli+ Lis. ., )+ Y Flp oo i+ Lo ) + F(1L Ay, Ay

Ar=1 i=2

M=

Fg, .., 4+ 1, A+ FL A, .., 4). O

i=1

Case Ic: Ay = A, =1. Here the |R| of (,,...,7,) is |[R| while the |R| of
(A1 —1,..., 4 — D) is |R| — 1. The proof is similar to the previous cases.
Case II: s; = 0 and s, = 0. Write s = (o, 0) Where o = (54, ..., 8 —,); in this case
also k(s) = |R|. We have to show that

(IRl + Dw(s) = 3 w(s). ®)

But from Case I for (s, 1) = (2,0, 1) we have, since k(«,0,1) = |R| + 2,

(R +2w(e0, )= Y wis)= Y w(,1)+ wo1,0) — w(a, 1).

s - (@,0,1) s = {a,0)
But since w(s, 1) = w(s) and w(a, 0, 1) = w(a, 1,0) — w(a, 1), (8) is established.

Case 11I: s, = 1, s, = 1. This case is similar to Case II where we use instead
w(0, 5) = w(s) and w(0, 1, ) = w(l, 0,0) — w(0, ).

Case IV: s; = 1, sy = 0. Here k(s) = [R|. This case follows from Case III in the
same way that Case II followed from Case I.

Lemma 4. Let

r 2N
UN={(al,...,aZN)e{O,l}ZN, Ya<r2r=1..2N-1Y al-zN},

i=1 i=1
se{0,1}M
r M

r M
{(t,s)e{O,l}ZM; Yu< Y spr=1L...,M—-1, Y 1= Zs,}.

i=1 i=1 i=1 i=1
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The mapping o: Ay — Uy 1y defined by

6(t,) = 0,1, 1 — 51,65, 1 — 59,0t 1 — 8o, L — 530, 1)
is a bijection.
Proof.

2r+1
2

0+tl+(1_sl)+”'+tr+(1_sr)<

and
O+t +(—s)+  +4<r—1+1=r=2/2
Corollary 5.

Z w(s) = Cyyy = <2M+ 2)/(M+2)-

se{0,1}M M+ 1
Proof.
X owe=| U WE|=14ul.
se{0,1}M se{0,1}M

By Lemma 4, |4y = |Up +,1]- But Uy (N integer) is the set of (0, 1) sequences with N
s and N 1’s such that at every component the number of 1’s to the left never
exceeds the number of 0’s, namely the famed “ballot sequences” whose number is

well known to be
2N
Cy = N (N+1)

(see e.g. Mohanty [4], p. 2, Bertrand [1] or Shapiro [6]).

Lemma 6. Let r be the number of O's ins = (sq,...,5y) andlet 1, (i=1,...,r) be the
number of 1’s to the left of the i-th zero. Then

/F{i + 1
w(s) = |W(s)| = det[(}, s l)lx;‘

Proof. This is a known result due to Narayana [5] which can be found in Mohanty
(41, p. 32.

Proof of Theorem |. Combine Lemma 3, Corollary 5 and Lemma 6 with the
observation that Y ;o 1y» P(s) = 1.

Proof of Theorem 2. By Lemma 4, { ), _, W(s)isin one-one correspondence with the
set (ay,...,dopm+2)€ Uprq With ay, oy = 1. Uy can be identified with the set of
“legal bracketings™ obtained by replacing 0 by “(”” and 1 by “)”’ (see Mohanty [4],
p. 4). Then the set Usr=0 W(s) 1s in one-one correspondence with the legal
bracketings which have a right parenthesis in the (2r + 1)-st place. This right
parenthesis has a left parenthesis companion which may be in one of the places
{2r —2i+ 2} (i=1,2,...,r). The portion between the places 2r — 2i + 2 and
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2r + 1 (inclusive)is also a legal bracketing of length 2/, and there are C; possibilities.
What is left by deleting the part between the places 2r — 2i + 2 and 2r + 1is a legal
bracketing of length 2(M + 1 — i), which has C,; ., _; possibilitics. Thus

= Z CCprrq-i-

i=1

U W

5=0

The rest follows from Corollary 5.
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