Pompeiu's problem on discrete space

(partial difference equations/Hilbert's Nullstellensatz/three squares theorem)

DORON ZEILBERGER

The Institute for Advanced Study, Princeton, New Jersey 08540

Communicated by Richard J. Duffin, April 24, 1978

ABSTRACT Let \mathscr{S} be a finite family of finite subsets of the *n*-dimensional lattice Z^n , and let \mathcal{T} denote the group of all translations of Z^n . We shall here consider the *Pompeiu problem* for the family \mathscr{S} —namely, to determine when the only function $f:Z^n \to C$ such that

 $\sum_{\substack{m \in \tau(S)}} f(m) = 0 \text{ for all } \tau \in \mathcal{T} \text{ and } S \in \mathcal{S}$ is the zero function.

1. Introduction and preliminaries

Let \mathcal{S} be a family of compact subsets of the Euclidean space \mathbb{R}^n and let \mathcal{T} denote the group of all translations of \mathbb{R}^n . The Pompeiu problem for the family \mathcal{S} asks when the only function f on \mathbb{R}^n such that

$$\int_{\tau(S)} \mathbf{f}(\mathbf{x}) d\mathbf{x} = 0 \text{ for all } \tau \in \mathcal{T} \text{ and } S \in \mathscr{S}$$

is the zero function (1, 2).

We would like to formulate the discrete analog of the Pompeiu problem. The discrete counterpart of \mathbb{R}^n is the *n*-dimensional lattice \mathbb{Z}^n , and a subset of \mathbb{Z}^n is compact iff it is finite. Because there is no notion of continuity in \mathbb{Z}^n , the discrete Pompeiu problem can be stated as follows: Let \mathscr{S} be a family of finite subsets of the *n*-dimensional lattice \mathbb{Z}^n and let \mathcal{T} denote the group of all translations on \mathbb{Z}^n . Give necessary and sufficient conditions on the family \mathscr{S} such that

$$\sum_{\substack{\in \tau(S)}} f(m) = 0 \text{ for all } \tau \in \mathcal{T}, S \in \mathscr{S} \to f \equiv 0.$$
 [1]

Note that the system 1 is a system of partial difference equations with constant coefficients. In fact, every finite set S in Z^n defines a partial difference operator $\mathcal{P}_S f(m) = \Sigma_{s \in S}$ f(m + s) and system 1 can be written $\mathcal{P}_S f \equiv 0$ for every $S \in S$.

In the next section we shall consider general systems of partial difference equations with constant coefficients.

2. Systems of partial difference equations with constant coefficients

Let $\mathcal{F}(\mathbb{Z}^n)$ be the set of complex valued functions on \mathbb{Z}^n ; a partial difference operator is a mapping $\mathcal{F}(\mathbb{Z}^n) \to \mathcal{F}(\mathbb{Z}^n)$ of the form

$$\mathcal{P}f(m) = \sum_{|\alpha| \le N} C_{\alpha}f(m + \alpha), \qquad [2]$$

where N is an integer, C_{α} are some complex constants, $m = (m_1, \ldots, m_n)$, $\alpha = (\alpha_1, \ldots, \alpha_n)$ are elements of \mathbb{Z}^n , and $|\alpha| = \sum_{i=1}^n |\alpha_i|$. The most simple nontrivial partial difference operators are the shifts:

$$X_i f(m) = f(m + e_i), \quad i = 1, \ldots, n,$$

where $e_i = (0, \ldots, 1, 0, \ldots, 0)$ and the 1 is in the *i*th place. Writing $X^{\alpha} = X_1^{\alpha_1} \ldots X_n^{\alpha_n}$ we get $X^{\alpha}f(m) = f(m + \alpha), \alpha \in \mathbb{Z}^n$. Thus, [2] can be written

$$\mathcal{P}f(m) = \sum_{|\alpha| \leq N} C_{\alpha}(X^{\alpha}f)(m) = \left(\sum_{|\alpha| \leq N} C_{\alpha}X^{\alpha}\right)f(m).$$

Hence, $\mathcal{P} = P(X)$, where P is a polynomial in $z_1, z_1^{-1}, \ldots, z_n$, z_n^{-1} —i.e., an element of $\mathcal{A}_n = \mathbb{C}[z_1, z_1^{-1}, \ldots, z_n, z_n^{-1}]$, the space, of trigonometric polynomials. Conversely, given a polynomial P, P(X) is a partial difference operator. We shall now define an isomorphism between $\mathcal{F}(\mathbb{Z}^n)$ and \mathcal{A}_n^* , the dual of \mathcal{A}_n .

For every $f:\mathbb{Z}^n \to \mathbb{C}$ define $\hat{f}:\mathcal{A}_n \to \mathbb{C}$ by

$$\hat{f}\left(\sum_{k\in\mathbb{Z}^n}a_kz^k\right)=\sum a_kf(k).$$

In particular $\hat{f}(z^m) = f(m)$. Conversely, given a linear functional T on \mathcal{A}_n , then $f(m) = T(z^m)$ is a function on Z^n and $T = \hat{f}$. Thus, $f \to \hat{f}$ is a linear isomorphism between $\mathcal{F}(Z^n)$ and \mathcal{A}_n^* . We shall see that this simple correspondence is very useful. Let $P(z) = \sum_{|\alpha| \le N} C_{\alpha} z^{\alpha}$ and suppose that $P(X)f \equiv 0$, then for every $m \in Z^n$

$$0 = P(X)f(m) = \sum_{|\alpha| \le N} C_{\alpha}f(m + \alpha) = \sum_{|\alpha| \le N} C_{\alpha}\hat{f}(z^{m+\alpha})$$
$$= \hat{f}\left(\sum_{|\alpha| \le N} C_{\alpha}z^{m+\alpha}\right) = \hat{f}(z^{m}P(z)).$$

Because $\{z^m\}$ form a basis of \mathcal{A}_n , we get $\hat{f}(P(z)u(z)) = 0$ for every $u \in \mathcal{A}_n$ iff $P(X)f \equiv 0$ —that is, $P(X)f \equiv 0$ iff \hat{f} annihilates the ideal $P(z)\mathcal{A}_n$. At this stage we can prove our main result.

THEOREM 1. Let P_1, \ldots, P_N be polynomials in \mathcal{A}_n . Then

$$P_1(X)f \equiv 0, \ldots, P_N(X)f \equiv 0 \Longrightarrow f \equiv 0$$

iff the polynomials $\{P_1(z), \ldots, P_N(z)\}$ have no common zeros in $\bar{C}^n \setminus 0$.

Proof: The assumption about f implies that \hat{f} annihilates $P_1(z)\mathcal{A}_n + \ldots + P_N(z)\mathcal{A}_n$ —i.e., \hat{f} annihilates the ideal generated by $\{P_1(z), \ldots, P_N(z)\}$. Because the variety of common zeros of I is empty, it follows from Hilbert's Nullstellensatz (ref. 3, p. 157) that the radical of I is \mathcal{A}_n . But this implies $I = \mathcal{A}_n$ —i.e., \hat{f} is identically zero and consequently $f \equiv 0$.

Conversely, suppose that $\{P_1(z), \ldots, P_N(z)\}$ do have a common zero in $\mathbb{C}^n \setminus 0$ —i.e., there exists a $z_0 \in \mathbb{C}^n \setminus 0$ such that $P_i(z_0) = 0, i = 1, \ldots, N$. But then $f(m) = z_0^m$ is a nontrivial solution, because $P_i(X)z_0^m = P_i(z_0)z_0^m = 0, i = 1, \ldots, N$.

3. Solution of Pompeiu's problem

Theorem 1 immediately implies the solution of Pompeiu's problem.

THEOREM 2. For S a finite subset of \mathbb{Z}^n let $\mathbb{P}_S(z) = \Sigma_{s \in S} z^s$. Then $\Sigma_{m \in T(S)} f(m) = 0$ for every $S \in \mathscr{S}$, $\tau \in T$ iff the polynomials $\{\mathbb{P}_S; S \in \mathscr{S}\}$ have no common zeros in \mathbb{C}^n .

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "*advertisement*" in accordance with 18 U. S. C. §1734 solely to indicate this fact.

^{*} Current address: Georgia Institute of Technology, Atlanta, GA 30332.

The following is a discrete analog of Theorem 1 in ref. 1. COROLLARY. In Z^2 let \mathscr{S} be the family consisting of three squares of sides M, N, and K. Then $f \equiv 0$ is the only solution of system 1 iff M + 1, N + 1, K + 1 are pairwise relatively prime.

Proof: Let S_M , S_N , and S_K be the squares of sides M, N, and K, respectively. Then

$$P_{S_M} = \sum_{m_1=0}^{M} \sum_{m_2=0}^{M} z_1^{m_1} z_2^{m_2} = (z_1^{M+1} - 1)(z_2^{M+1} - 1)/(z_1 - 1)(z_2 - 1)$$

Similarly, $P_{S_K}(z_1, z_2) = (z_1^{K+1} - 1)(z_2^{K+1} - 1)/(z_1 - 1)(z_2 - 1)$, $P_{S_N}(z_1, z_2) = (z_1^{N+1} - 1)(z_2^{N+1} - 1)/(z_1 - 1)(z_2 - 1)$. Because $(z^r - 1)/(z - 1)$, $(z^l - 1)/(z - 1)$ have no common zeros iff r and l are relatively prime, the statement follows from Theorem 1.

This work was supported by Grant MCS77-18723 from the National Science Foundation.

- 1. Berenstein, C. A. & Taylor, B. A. (1977) "The 'Three Squares' Theorem for Continuous Functions," Arch. Ration. Mech. Anal. 63, 253-259.
- 2. Zalcman, L. (1972) "Analyticity and the Pompeiu Problem," Arch. Ration. Mech. Anal. 47, 237-254.
- 3. Van der Waerden, B. L. (1970) Algebra (Frederick Ungar Publishing Co., New York), Vol. 2.