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BINARY OPERATIONS IN THE SET OF
SOLUTIONS OF
A PARTIAL DIFFERENCE EQUATION

DORON ZEILBERGER

ABSTRACT. Let 9 be a partial difference operator with constant coefficients
in n independent (discrete) variables, and let S5 = {f: Z" - C;%f = 0}.
We introduce a certain class of binary operations §g X §¢ —> §4 generalizing
a binary operation introduced by Duffin and Rohrer.

1. Introduction. Let Z" be the n-dimensional lattice and consider a partial
difference operator on Z”

Pf(m) = 3 Cf(m+ k),
lk|<N

where m, k € Z", |k| = DR |k;l, K = (k;,...,k,) and N is an integer. In

i=1
this note we shall characterize all products * of the form

— m
(1) Ur)m= _ % drf0)s)
(only a finite number of terms on the right-hand side being nonzero) with the
property that if f = 0 and Pg = 0 then $(f * g) = 0. The product of Duffin
and Robhrer [1] falls in this category. The basic idea is to associate with every
discrete function f: Z" — C a linear functional T;on the algebra @, generated
by the indeterminates {z,, z; LA 3252, 1, given by

(1.2) T, . ...z = fky, ....k,)

for every (k,...,k,) € Z" and extended by linearity. Conversely, (1.2)
associates a discrete function f: Z” — C to every such linear functional.

2. Binary operations on the set of solutions of $u = 0.

DEFINITION 2.1. Any operation (f,g) — f * g which maps pairs of functions
on Z" to another function on Z" and is of the form (1.1) will be termed a
Duffin product.

LEMMA 2.2. Any Duffin product induces a linear mapping : @, — @,, such
thatifz = (z,...,2,), t = (8,...,t,),
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@1 Tup (u2) = TT(Su(z, 1))
where LT is the linear functional on @,, defined by
(22) L") = L)

and extended by linearity.
Proor. By (1.1)

T G™) = (f* 8)(m) = S dR ML) = TS dl 1),

Define $(z") = 3 d,:','zk t" and extend by linearity. Obviously (2.1) defines a
Duffin product for each such mapping.

LEMMA 2.3. Let 9 be a partial difference operator with constant coefficients
Pf(m) = X C,f(m + k), and let P(z) € @, be its symbol, P(z) = 3 Ckzk.
Then ¥f = 0 iff T; annihilates the principal ideal P(z)@, = {P(2)u(z); u(z)
€ @,)

ProoF. The statement is self-evident from the identity

T(PR)") = TS C2™*) = 3 Cf(m + k).
Now we are in a position to prove our central result.

THEOREM. A Duffin product induced by the mapping %: @, — @,,, given in
Lemma 2.2, maps pairs of solutions of u = 0 into another solution if (P(z)&,)
is contained in the ideal generated by {P(z), P(1)}, i.e., if for every u(z) € @,, we
can find a(z,1), b(z,t) € @,, such that

F(P(2)u(z)) = alz, 1) P(z) + b(z, 1) P(F).
PrROOF. (f*g) = 0if T, (P(2)€,) = 0. Now
g (POUE) = TTEP(u()) = T (alz)PE) + b ) P() = 0.

3. Applications. The theorem makes very easy the verification that a given
Duffin product preserves the property of being a solution of a given partial
difference equation with constant coefficients. This will be illustrated by the
following two examples.

(a) Duffin and Duris [2] introduced three kinds of ‘convolution products’
for solutions of the discrete Cauchy-Riemann equation.

3B.1)  f(mm)+ifm+ 1L,n)—f(m+ Ln+1)—if(mn+1) =0.

They denoted them by f * g, f *' g and f +” g. An easy calculation, which is
not reproduced here in order to save space, shows that the corresponding
mappings ¥, §', ¥: @, > @, are (make the notational transformation z
= (21’22) = (z,w),t = (11’12) = (t’s))
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u(z,w) — u(t,w)

{’}':u(z,w)—)(l"‘t)(l"‘z) Z—1

i1+ (1 +w) oW ML),
u(z, w) u(t,w)
—

u(t w) — u(t, s)

w-—3Ss

F: u(z,w) > (1 +2)(1 -9

+i(l1—5(01 +w)

5 e, w) > (1 = (1 - e ZLY)

u(t,w) — u(t,s)

+i(l —s)(1 —w)

From these formulas we deduce easily that the corresponding convolution
products indeed preserve discrete-analyticity (i.e., the property of being a
solution of (3.1)). They can also be used to advantage in giving short proofs
of the commutativity and associativity of these products.

(b) For a general partial difference equation with constant coefficients
Pu = 0, in Z?, Duffin and Rohrer [1] introduced a ¢ product’ which can be
shown, by a straightforward but a little lengthy calculaticn, to be induced by

F(u(z, w)) = ts{u(t,s) — u(t,w) [P(z, w) — P(s, w)]

S—w z—1

z—1 S —w

_u(z,w) — u(t,w) [P(t,s) - P4, w)] }

W(‘—)[u(t ,8)[P(z,w) — P(1,w)]
—u(t, w)[P(z,w) — P(4,5)]

— u(z,w)[P(t,s) — P(t,w)]],
where P(z,w) is the symbol of ®. ¥ is seen to satisfy the hypothesis of the
Theorem, thus furnishing a short proof to the fact that if #f = 0 and $g = 0,
then ?(f* g) = 0 (see Duffin and Rohrer [1, pp. 691-693] for the original
proof).
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