BINARY OPERATIONS IN THE SET OF SOLUTIONS OF A PARTIAL DIFFERENCE EQUATION

DORON ZEILBERGER

ABSTRACT. Let \mathscr{G} be a partial difference operator with constant coefficients in n independent (discrete) variables, and let $\mathcal{S}_{\varphi} = \{f : \mathbb{Z}^n \to \mathbb{C}; \mathscr{G}f = 0\}$. We introduce a certain class of binary operations $\mathcal{S}_{\varphi} \times \mathcal{S}_{\varphi} \to \mathcal{S}_{\varphi}$ generalizing a binary operation introduced by Duffin and Rohrer.

1. Introduction. Let Z^n be the *n*-dimensional lattice and consider a partial difference operator on Z^n

$$\mathcal{G}f(m) = \sum_{|k| \le N} C_k f(m+k),$$

where $m, k \in \mathbb{Z}^n$, $|k| = \sum_{i=1}^N |k_i|$, $k = (k_1, \dots, k_n)$ and N is an integer. In this note we shall characterize all products * of the form

(1.1)
$$(f * g)(m) = \sum_{r \in \mathbb{Z}^n, k \in \mathbb{Z}^n} d_{kr}^m f(r) g(k)$$

(only a finite number of terms on the right-hand side being nonzero) with the property that if $\Re f \equiv 0$ and $\Re g \equiv 0$ then $\Re (f * g) \equiv 0$. The product of Duffin and Rohrer [1] falls in this category. The basic idea is to associate with every discrete function $f: \mathbb{Z}^n \to \mathbb{C}$ a linear functional T_f on the algebra \mathcal{C}_n generated by the indeterminates $\{z_1, z_1^{-1}, \ldots, z_n, z_n^{-1}\}$, given by

(1.2)
$$T_f(z_1^{k_1}, \dots, z_n^{k_n}) = f(k_1, \dots, k_n)$$

for every $(k_1, \ldots, k_n) \in \mathbb{Z}^n$ and extended by linearity. Conversely, (1.2) associates a discrete function $f: \mathbb{Z}^n \to \mathbb{C}$ to every such linear functional.

2. Binary operations on the set of solutions of $\Im u \equiv 0$.

DEFINITION 2.1. Any operation $(f,g) \to f * g$ which maps pairs of functions on \mathbb{Z}^n to another function on \mathbb{Z}^n and is of the form (1.1) will be termed a Duffin product.

LEMMA 2.2. Any Duffin product induces a linear mapping $\mathfrak{F}: \mathfrak{A}_n \to \mathfrak{A}_{2n}$ such that if $z = (z_1, \ldots, z_n)$, $t = (t_1, \ldots, t_n)$,

Received by the editors June 24, 1976.

AMS (MOS) subject classifications (1970). Primary 39A10.

© American Mathematical Society 1977

$$(2.1) T_{f*g}(u(z)) = T_f T_g(\mathfrak{F}u(z,t))$$

where $T_f T_g$ is the linear functional on \mathfrak{A}_{2n} defined by

$$(2.2) T_f T_g(z^k t^r) = T_f(z^k) T_g(t^r)$$

and extended by linearity.

PROOF. By (1.1)

$$T_{f*g}(z^m) = (f*g)(m) = \sum_{i} d_{kr}^m T_f(z^k) T_g(t^r) = T_f T_g(\sum_{i} d_{kr}^m z^k t^r).$$

Define $\mathfrak{F}(z^m) = \sum d_{kr}^m z^k t^r$ and extend by linearity. Obviously (2.1) defines a Duffin product for each such mapping.

LEMMA 2.3. Let \mathfrak{P} be a partial difference operator with constant coefficients $\mathfrak{P}f(m) = \sum C_k f(m+k)$, and let $P(z) \in \mathfrak{C}_n$ be its symbol, $P(z) = \sum C_k z^k$. Then $\mathfrak{P}f \equiv 0$ iff T_f annihilates the principal ideal $P(z)\mathfrak{C}_n = \{P(z)u(z); u(z) \in \mathfrak{C}_n\}$.

PROOF. The statement is self-evident from the identity

$$T_f(P(z)z^m) = T_f(\sum C_k z^{m+k}) = \sum C_k f(m+k).$$

Now we are in a position to prove our central result.

THEOREM. A Duffin product induced by the mapping $\mathfrak{F}: \mathfrak{C}_n \to \mathfrak{C}_{2n}$, given in Lemma 2.2, maps pairs of solutions of $\mathfrak{P}u \equiv 0$ into another solution if $\mathfrak{F}(P(z)\mathfrak{C}_n)$ is contained in the ideal generated by $\{P(z), P(t)\}$, i.e., if for every $u(z) \in \mathfrak{C}_m$ we can find a(z,t), $b(z,t) \in \mathfrak{C}_{2n}$ such that

$$\mathfrak{F}(P(z)u(z)) = a(z,t)P(z) + b(z,t)P(t).$$

PROOF.
$$\mathcal{P}(f * g) \equiv 0 \text{ if } T_{f*g}(P(z)\mathcal{R}_n) = 0. \text{ Now}$$

$$T_{f*g}(P(z)u(z)) = T_f T_g(\mathfrak{F}P(z)u(z)) = T_f T_g(a(z,t)P(z) + b(z,t)P(t)) = 0.$$

- 3. Applications. The theorem makes very easy the verification that a given Duffin product preserves the property of being a solution of a given partial difference equation with constant coefficients. This will be illustrated by the following two examples.
- (a) Duffin and Duris [2] introduced three kinds of 'convolution products' for solutions of the discrete Cauchy-Riemann equation.

$$(3.1) f(m,n) + if(m+1,n) - f(m+1,n+1) - if(m,n+1) \equiv 0.$$

They denoted them by f * g, f *' g and f *'' g. An easy calculation, which is not reproduced here in order to save space, shows that the corresponding mappings $\mathfrak{F}, \mathfrak{F}', \mathfrak{F}'' : \mathscr{C}_2 \to \mathscr{C}_4$ are (make the notational transformation $z = (z_1, z_2) = (z, w), t = (t_1, t_2) = (t, s)$)

$$\mathfrak{F}: \ u(z,w) \to (1+t)(1+z) \frac{u(z,w) - u(t,w)}{z-t} \\
+ i(1+s)(1+w) \frac{u(t,w) - u(t,s)}{w-s}, \\
\mathfrak{F}': \ u(z,w) \to (1+z)(1-t) \frac{u(z,w) - u(t,w)}{z-t} \\
+ i(1-s)(1+w) \frac{u(t,w) - u(t,s)}{w-s}, \\
\mathfrak{F}'': \ u(z,w) \to (1-z)(1-t) \frac{u(z,w) - u(t,w)}{z-t} \\
+ i(1-s)(1-w) \frac{u(t,w) - u(t,s)}{w-s}.$$

From these formulas we deduce easily that the corresponding convolution products indeed preserve discrete-analyticity (i.e., the property of being a solution of (3.1)). They can also be used to advantage in giving short proofs of the commutativity and associativity of these products.

(b) For a general partial difference equation with constant coefficients $\mathfrak{P}u \equiv 0$, in \mathbb{Z}^2 , Duffin and Rohrer [1] introduced a 'product' which can be shown, by a straightforward but a little lengthy calculation, to be induced by

$$\mathcal{F}(u(z,w)) = ts \left\{ \frac{u(t,s) - u(t,w)}{s - w} \left[\frac{P(z,w) - P(t,w)}{z - t} \right] - \frac{u(z,w) - u(t,w)}{z - t} \left[\frac{P(t,s) - P(t,w)}{s - w} \right] \right\}$$

$$= \frac{ts}{(s - w)(z - t)} [u(t,s)[P(z,w) - P(t,w)] - u(t,w)[P(z,w) - P(t,s)] - u(z,w)[P(t,s) - P(t,w)]],$$

where P(z, w) is the symbol of \mathcal{P} . \mathcal{F} is seen to satisfy the hypothesis of the Theorem, thus furnishing a short proof to the fact that if $\mathcal{P}f = 0$ and $\mathcal{P}g = 0$, then $\mathcal{P}(f * g) \equiv 0$ (see Duffin and Rohrer [1, pp. 691–693] for the original proof).

ACKNOWLEDGEMENT. The author wishes to thank Professor Harry Dym for helpful comments and discussions.

REFERENCES

- 1. R. J. Duffin and Joan Rohrer Hundhausen, A convolution product for the solutions of partial difference equations, Duke Math. J. 35 (1968), 683-698. MR 39 #1831.
- 2. R. J. Duffin and C. S. Duris, A convolution product for discrete function theory, Duke Math. J. 31 (1964), 199-220. MR 29 #429.

DEPARTMENT OF MATHEMATICS, WEIZMANN INSTITUTE OF SCIENCE, REHOVOT, ISRAEL