UNIQUENESS THEOREMS FOR HARMONIC FUNCTIONS OF EXPONENTIAL GROWTH

DORON ZEILBERGER

ABSTRACT. Two uniqueness theorems for harmonic functions of exponential growth are proved. The first is a generalization to R^n of a theorem proved by Boas [1] for R^2 .

1. Introduction and statement of results. The purpose of this paper is to prove the following two theorems.

THEOREM A. Let u be a real-valued harmonic function in R^n satisfying $|u(x)| < Ce^{A|x|}$, where $A < \pi$, $|x| = \sum_{i=1}^n |x_i|$ and C is a constant. If u vanishes on the integer lattice points of the hyperplanes

$$x_n = 0$$
, and $x_n = a \ (|a| \le (1/(n-1))^{1/2})$,

then it vanishes identically.

THEOREM B. Let u be as above and suppose both u and $\partial u/\partial x_n$ vanish on the integer lattice points of $x_n = 0$; then u vanishes identically.

Theorem A is a generalization of a theorem of Boas [1], who proved it for n=2. Boas used the fact that in the two-dimensional case every real-valued entire harmonic function is the real part of an entire (analytic) function. Evidently, this method does not generalize to higher dimensions. Our strategy will be, instead, to view u as a "distribution" (i.e., a continuous linear functional) on the test space of bounded analytic functions on the polystrip $\times_{i=1}^{n}\{|\operatorname{Im} t_{i}| < A^{n}\} \subset \mathbb{C}^{n}$ for $A^{n} > A$. The referee has kindly informed us that Rao [2] has proved Theorem A by different methods.

2. Proof of the results. We shall proceed by a sequence of lemmas.

LEMMA 1. If u is harmonic in R^n and $|u(x)| < Ce^{A|x|}$, then any partial derivative of u enjoys the same properties.

PROOF. For any $x_0 \in R^n$ look at the Poisson representation formula for the ball $||y - x_0|| < 1$, differentiate under the integral sign and estimate.

Let \mathcal{C} be the class of analytic functions of n complex variables of the form

Received by the editors February 3, 1976.

AMS (MOS) subject classifications (1970). Primary 31B05; Secondary 31B10, 30A98.

Key words and phrases. Harmonic functions, Banach spaces of holomorphic functions, Green's formula.

$$\hat{v}(t) = (2\pi)^{n/2} \int v(x)e^{ixt} \qquad \Big(xt = \sum x_i t_i\Big),$$

where $v \in C_0^{\infty}(\mathbb{R}^n)$. All these functions are bounded in

$$K_{A''} = \underset{i=1}{\overset{n}{\times}} \{ |\operatorname{Im} t_i| < A'' \} \text{ for every } A''.$$

Define a linear functional on & by

(2.1)
$$T_{u}\left((2\pi)^{n/2}\int_{R^{n}}v(x)e^{ixt}\right) = \int_{R^{n}}u(x)v(x).$$

The next lemma will show that T_u can be extended continuously to $\mathcal{H}_{A''}$, the Banach space of bounded holomorphic functions on $K_{A''}$, provided A'' > A.

LEMMA 2. Let u be harmonic in R^n and satisfy $|u(x)| < Ce^{A|x|}$. Let A'' > A; then T_u defined on $\mathscr Q$ by (2.1) can be extended to be a continuous linear functional on the Banach space $\mathscr R_{A''}$, which consists of bounded analytic functions on $K_{A''}$ where the norm is given by $||f||_{A''} = \sup_{t \in K_n} |f(t)|$.

PROOF. Let A < A' < A'' and let $R_+ = [0, \infty), R_- = (-\infty, 0]$. Then

$$U_{\pm\pm\cdots\pm}(t) = (2\pi)^{-n/2} \int_{R_{\pm}\times R_{\pm}\times\cdots\times R_{\pm}} u(x)e^{-ixt} dx$$

belongs to $L^2(\times_{i=1}^n \{ \text{Im } t_i = \mp A' \})$, and for $\hat{v} \in \mathcal{C}$,

(2.2)
$$T_{u}(\hat{v}) = \sum_{\pm} \int_{R_{\pm} \times \cdots \times R_{\pm}} u(x)v(x)$$

$$= \sum_{\pm} \int_{X_{i=1}^{n} \{ \operatorname{Im} t_{i} = \mp A' \}} U_{\pm \cdots \pm}(t)\hat{v}(t) dt_{1} \cdots dt_{n}.$$

The sums in (2.2) each contain 2^n terms, corresponding to all possible choices of sign. Let us consider the term in the sum on the right-hand side of (2.2) involving $U_{-}\dots_{-}(t)$, and let us write, for the moment, $\Omega=R_{-}\times R_{-}\times \cdots \times R_{-}$. Then, by Green's formula,

$$(2\pi)^{n/2}U_{-\dots-}(t) = \int_{\Omega} u(x)e^{-ixt} dx = \int_{\Omega} u(x)\Delta\left(\frac{-e^{-ixt}}{t_1^2 + \dots + t_n^2}\right)$$

$$= -\int_{\Omega} u(x)\frac{e^{-ixt}}{t_1^2 + \dots + t_n^2} + \int_{\partial\Omega} u(x)\frac{\partial}{\partial n}\left[\frac{-e^{-ixt}}{t_1^2 + \dots + t_n^2}\right]d\sigma$$

$$-\int_{\partial\Omega} \frac{\partial u}{\partial n}\frac{-e^{-ixt}}{t_1^2 + \dots + t_n^2}d\sigma.$$

The first term on the right-hand side of (2.3) vanishes since u is harmonic. Now $\partial \Omega$ consists of n pieces: $\partial \Omega = \bigcup_{i=1}^{n} \{x_i = 0\} \cap \Omega$.

Let us consider the contribution from the face $x_1 = 0$. Here $\partial/\partial n = \partial/\partial x_1$ and

(2.4)
$$\int_{\{x_1=0\}\cap\Omega} u(x) \frac{\partial}{\partial n} \left(\frac{-e^{-ixt}}{t_1^2 + \dots + t_n^2} \right) dx_2 \dots dx_n$$
$$= \int_{\{x_1=0\}\cap\Omega} u(0, x_2, \dots, x_n) \frac{it_1 e^{-ixt} d\sigma}{t_1^2 + \dots + t_n^2}$$

and

$$\int_{\{x_1=0\}\cap\Omega} \frac{\partial u}{\partial n} (x) \frac{e^{-ixt} d\sigma}{t_1^2 + \dots + t_n^2}$$

$$= \int_{\{x_1=0\}\cap\Omega} \frac{\partial u}{\partial x_1} (0, x_2, \dots, x_n)$$

$$- \frac{it_1 \exp(-ix_2 t_2 - \dots - ix_n t_n)}{t_1^2 + \dots + t_n^2} dx_2 \cdot \dots dx_n.$$

Now look at (2.2), the contribution from (2.4) is

$$\int_{\{\text{Im } t_{i}=A'\}\times X_{2}^{n}\{\text{Im } t_{i}=A'\}} \hat{v}(t) dt_{1} \cdot \cdot \cdot dt_{n}$$

$$\times \int_{\{x_{i}=0\}\cap \Omega} u(0, x_{2}, \dots, x_{n}) \frac{it_{1} \exp(-ix_{2}t_{2} - \cdot \cdot \cdot - ix_{n}t_{n})}{t_{1}^{2} + \cdot \cdot \cdot + t_{n}^{2}} dx_{2} \cdot \cdot \cdot dx_{n}.$$

But there is a similar contribution, with an opposite sign, from integration on $\{\operatorname{Im} t_1 = -A'\} \times \times_2^n \{\operatorname{Im} t_i = A'\}$. Let $\Gamma_{A'}$ be the rectangular contour in the t_1 -plane with sides $\pm iA' \pm R$; then, as $R \to \infty$, the sum of these contributions is

where

$$\phi(t_2, ..., t_n) = \int_{\{x_1 = 0\} \cap \Omega} u(0, x_2, ..., x_n)$$

$$\times \exp(-ix_2t_2 - ... - ix_nt_n) dx_2 \cdot ... dx_n.$$

For fixed t_2, \ldots, t_n ,

$$\int_{\Gamma_{A'}} \frac{\hat{v}(t_1, \dots, t_n)it_1}{t_1^2 + \dots + t_n^2} dt_1
= \begin{cases} \pi i \{ \hat{v}(\tau_1, t_2, \dots, t_n) + \hat{v}(-\tau_1, t_2, \dots, t_n) \} & \text{if } |\text{Im } \tau_1| < A', \\ 0 & \text{if } |\text{Im } \tau_1| > A', \end{cases}$$

where $\tau_1 = \tau_1(t_2, \ldots, t_n)$ is given by

$$\tau_1^2 + t_2^2 + \cdots + t_n^2 = 0$$

i.e.,
$$\tau_1 = i(t_2^2 + \cdots + t_n^2)^{1/2}$$
. Now $M_{A'} = \{(t_2, \dots, t_n) \in \mathbb{C}^{n-1}, \text{ Im } t_2 = A', \dots, \text{ Im } t_n = A', |\text{Im } \tau_1| < A'\}$

is seen to be a compact subset of $\times_{i=2}^{n} \{ \text{Im } t_i = +A' \}$, and we get that the contribution from the pair of boundary terms (obtained in (2.3)) considered is

(2.6')
$$\pi i \int_{M_{A'}} \phi(t_2, \ldots, t_n) \left[\hat{v} \left(\tau_1, t_2, \ldots, t_n \right) + \hat{v} \left(-\tau_1, t_2, \ldots, t_n \right) \right] dt_2 \cdot \cdot \cdot dt_n,$$

and its absolute value is \leq constant $\|\hat{v}\|_{A''}$.

Similarly, if

$$\phi'(t_2, \ldots, t_n) = -\int_{\{x_1 = 0\} \cap R_- \times \cdots \times R_-} \frac{\partial u}{\partial x_1} (0, x_2, \ldots, x_n)$$
$$\times \exp(-ix_2 t_2 - \cdots - ix_n t_n) dx_2 \cdots dx_n,$$

the net contribution from the two terms in (2.2) involving $\phi'(t_2, \ldots, t_n)$ is

$$\int_{\{\operatorname{Im} t_2 = A'\} \times \cdots \times \{\operatorname{Im} t_n = A'\}} \Phi'(t_2, \ldots, t_n) \int_{\Gamma_{A'}} \frac{\hat{v}(t_1, \ldots, t_n)}{t_1^2 + \cdots + t_n^2} dt_1$$

which is equal to

(2.7')
$$\pi \int_{M_{A'}} \phi'(t_2, \ldots, t_n)$$

$$\cdot \frac{1}{\tau_1} \left[\hat{v}(\tau_1, t_2, \ldots, t_n) - \hat{v}(-\tau_1, t_2, \ldots, t_n) \right] dt_2 \cdot \cdot \cdot dt_n$$

which, in absolute value, is \leq constant $||v||_{A''}$.

In a similar way we can consider all other terms of (2.2) and write it as a sum of $n2^{n-1}$ terms of the form (2.6') and $n2^{n-1}$ terms of the form (2.7'). The resulting formula defines $T_u(f)$ for every $f \in \mathcal{K}_{A''}$ and T_u is a bounded linear functional on $\mathcal{K}_{A''}$.

LEMMA. 3. For every
$$x \in R^n$$
, $T_u(e^{ixt}) = (2\pi)^{-n/2}u(x)$.

PROOF. Let K_{ϵ} be a C^{∞} compact support approximate identity; then $\int K_{\epsilon}(y-x)e^{iyt} dt \to e^{ixt}$ in the topology of $\mathcal{H}_{A''}$ and

$$T_{u}(e^{ixt}) = \lim_{\epsilon \to 0} T_{u} \left(\int K_{\epsilon}(y - x)e^{iyt} \, dy \right)$$
$$= \lim_{\epsilon \to 0} (2\pi)^{-n/2} \int K_{\epsilon}(y - x)u(y) = (2\pi)^{-n/2}u(x).$$

LEMMA 4. There exist measures $d\mu_1$, $d\mu_2$ on $\{t_n = 0\} = \mathbb{C}^{n-1}$ supported in the compact set

$$L_{A''} = \left\{ (t_1, \dots, t_{n-1}); |\text{Im } t_1| < A'', \dots, |\text{Im } t_{n-1}| < A'', \dots, |\text{Re}(t_1^2 + \dots + t_{n-1}^2)^{1/2}| < A'' \right\}$$

such that for every $f \in \mathcal{K}_{A''}$,

(2.8)
$$T_{u}(f) = \int f(t_{1}, \dots, t_{n-1}, i(t_{1}^{2} + \dots + t_{n-1}^{2})^{1/2}) d\mu_{1} + \int f(t_{1}, \dots, t_{n-1}, -i(t_{1}^{2} + \dots + t_{n-1}^{2})^{1/2}) d\mu_{2}.$$

In particular,

$$u(x) = \int \exp(ix_1t_1 + \cdots + ix_{n-1}t_{n-1})\exp(-(t_1^2 + \cdots + t_{n-1}^2)^{1/2}x_n) d\mu_1$$

$$(2.9) + \int \exp(ix_1t_1 + \cdots + ix_{n-1}t_{n-1})\exp((t_1^2 + \cdots + t_{n-1}^2)^{1/2}x_n) d\mu_2.$$

PROOF. Let $V_{A''} = \{(t_1, \ldots, t_n) \in K_{A''}; t_1^2 + t_2^2 + \cdots + t_n^2 = 0\}$. Then by the proof of Lemma 2, by adding all the terms like (2.6') and (2.7'), we get that there exists a measure $d\nu$, supported in $V_{A''}$ such that for every $f \in \mathcal{K}_{A''}$, $T_{\nu}(f) = \int f d\nu$.

Let $dv = dv_1 + dv_2$, where dv_1 is supported in

$$\left\{\left(t_1, t_2, \ldots, i\left(t_1^2 + \cdots + t_{n-1}^2\right)^{1/2}\right)\right\}$$

and dv_2 is supported in

$$\left\{\left(t_1, t_2, \ldots, t_{n-1}, -i\left(t_1^2 + \cdots + t_{n-1}^2\right)^{1/2}\right)\right\}.$$

Let $d\mu_1$, $d\mu_2$ be the projections of $d\nu_1$, $d\nu_2$, respectively, on $t_n = 0$. Then the lemma follows since $d\mu_1$, $d\mu_2$ are supported in the projection of $V_{A''}$ on $t_n = 0$ which is $L_{A''}$.

Now we are in a position to prove the theorems.

PROOF OF THEOREM A. Since $A < \pi$ we can choose $A < A'' < \pi$. It is easily seen that $L_{A''}$ is contained in $\times_{i=1}^{n-1}\{|\operatorname{Im} t_i| < A''\} \times \{|\operatorname{Re} t_i| < A''\}$, and since $A'' < \pi$, the span of $\{e^{ixt}; x \in Z^{n-1}\}$, where Z^{n-1} are the integer lattice points of R^{n-1} , is dense in the space of bounded holomorphic functions on $L_{A''}$. By (2.9), $d\mu_1 + d\mu_2 \equiv 0$ and

$$\exp\left(-a\left(t_1^2+\cdots+t_{n-1}^2\right)^{1/2}\right)d\mu_1+\exp\left(a\left(t_1^2+\cdots+t_{n-1}^2\right)^{1/2}\right)d\mu_2\equiv 0.$$

Since $a \le (1/(n-1))^{1/2}$ it follows that $d\mu_1$, $d\mu_2$ are supported in $\{t_1^2 + \cdots + t_{n-1}^2 = 0\}$ and by (2.9), u(x) is identically zero. \square

PROOF OF THEOREM B. Applying $\partial/\partial x_n$ to (2.9) we get

$$\frac{\partial u}{\partial x_n}(x_1, \dots, x_{n-1}, 0)
= -\int \exp(ix_1t_1 + \dots + ix_{n-1}t_{n-1})(t_1^2 + \dots + t_{n-1})^{1/2} d\mu_1
+ \int \exp(ix_1t_1 + \dots + ix_{n-1}t_{n-1})(t_1^2 + \dots + t_{n-1}^2)^{1/2} d\mu_2.$$

As in the proof of the Theorem A we get that

$$d\mu_1 + d\mu_2 \equiv 0, \qquad (t_1^2 + \cdots + t_{n-1}^2)^{1/2} (d\mu_1 - d\mu_2) \equiv 0.$$

Thus $d\mu_1 = -d\mu_2$ is supported at the set $\{t_1^2 + \cdots + t_{n-1}^2 = 0\}$, and by

using (2.9) it once again follows that u vanishes identically.

ACKNOWLEDGEMENT. The author wishes to thank Professor Harry Dym, Dr. Amy Novick, and Dr. Akiva Gabor for helpful comments and discussions.

REFERENCES

- 1. R. P. Boas, Jr., A uniqueness theorem for harmonic functions, J. Approximation Theory 5 (1972), 425-427. MR 49 #610.
 - 2. N. V. Rao, Carlson theorem for harmonic functions in Rⁿ (to appear).

DEPARTMENT OF MATHEMATICS, WEIZMANN INSTITUTE OF SCIENCE, REHOVOT, ISRAEL