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UNIQUENESS THEOREMS FOR HARMONIC FUNCTIONS
OF EXPONENTIAL GROWTH

DORON ZEILBERGER

ABSTRACT. Two uniqueness theorems for harmonic functions of exponential
growth are proved. The first is a generalization to R" of a theorem proved
by Boas [1] for R2.

1. Introduction and statement of results. The purpose of this paper is to
prove the following two theorems.

THEOREM A. Let u be a real-valued harmonic function in R" satisfying
lu(x)| < Ce?™, where A < m, |x| = Z7_,|x;| and C is a constant. If u vanishes
on the integer lattice points of the hyperplanes

x,=0, and x,=a (|a| <(1/(n- 1))1/2),
then it vanishes identically.

THEOREM B. Let u be as above and suppose both u and du / dx, vanish on the
integer lattice points of x, = 0; then u vanishes identically.

Theorem A is a generalization of a theorem of Boas [1], who proved it for
n = 2. Boas used the fact that in the two-dimensional case every real-valued
entire harmonic function is the real part of an entire (analytic) function.
Evidently, this method does not generalize to higher dimensions. Our strategy
will be, instead, to view u as a “distribution” (i.e., a continuous linear
functional) on the test space of bounded analytic functions on the polystrip
X"_{lIm | < A"} c C" for A” > A. The referee has kindly informed us
that Rao [2] has proved Theorem A by different methods.

2. Proof of the results. We shall proceed by a sequence of lemmas.

LemMa 1. If u is harmonic in R" and |u(x)| < Ce*™, then any partial
derivative of u enjoys the same properties.

Prookr. For any x, € R” look at the Poisson representation formula for the
ball ||y — x|l < 1, differentiate under the integral sign and estimate.
Let @ be the class of analytic functions of n complex variables of the form
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8() = @m)" fo(x)e™  (xt = Sxp),

where v € C5°(R"). All these functions are bounded in
n
Ky = X {|Im¢|< A"} forevery A”.
i=1
Define a linear functional on @ by

@.1) Tu((277)"/2 fR no(x)e’*') = fR u(x)0(x).

The next lemma will show that T, can be extended continuousiy to IC,.,
the Banach space of bounded holomorphic functions on K., provided
A" > A.

LEMMA 2. Let u be harmonic in R" and satisfy |u(x)| < Ce™. Ler 47 > A;
then T, defined on @ by (2.1) can be extended to be a continuous linear
Jfunctional on the Banach space (., which consists of bounded analytic func-
tions on K. where the norm is given by || f|| ,» = sup, c ¢,.| F(O)].

PrOOF. Let 4 < 4’ < A” and let R, = [0, ), R_ = (— o0, 0]. Then

Ueool o (1) = (277)-"/2f u(x)e ™™ dx

R.XR.X -+ XR.

belongs to LA(X"_ {Im¢t, = £ A’}), and for 6 € @,

L@ =3[ u(x)o(x)
(2.2) B xR

=3 Us . . (0)6(t) dty- - - di,.
X (my=zay CF

The sums in (2.2) each contain 2" terms, corresponding to all possible
choices of sign. Let us consider the term in the sum on the right-hand side of
(2.2) involving U_ _ ... _(¢), and let us write, for the moment, @ = R_ X R_
X -+ + X R_. Then, by Green’s formula,

(277)"/2U__ e — ([) =£2u(x)e—ixt dx:j;zu(x)A( z—i_iL)

2

?+ + 7

—ixt _ p—ixt

@) = fau) s+ [ w2 | =
n+---+2 oo on | 24 + 2
— p—ixt
- du _2__3—3 do.
ag on H+- 8

The first term on the right-hand side of (2.3) vanishes since u is harmonic.
Now 9 consists of n pieces: 9Q = U7_,{x; =0} N Q.

Let us consider the contribution from the face x, = 0. Here 0/0n =9 /0x,
and
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—ixt

2 (-
u(x _— )dx, - - - dx
j;x|=0}nﬂ ( ) on ( [% + -+ t,% ) 2 n

24)
f © ) ite”™ do
= u0,xy ...,x,) 55—
(a=0)ng 24+ 412
and
ou e ™ do
ou € 4
f{x,=0}n9 an { )tf+ R
du
2.5 = — (0, x5 ..., X,
( ) j;xl=0}nﬂ axl ( 2 )
itlexp(—ixyt, — ¢+~ ix,t,
o p( 262 )dxz'--dx,,.
B+ + 1]
Now look at (2.2), the contribution from (2.4) is
f o(1)dty - - - d,
{Im;=4"} % X;{Imt,=A'}
it exp(—ixyt, — + - 0 — X, .
X u(0, x5 ..., X,) (€XP(~ )dx2~--dx,,.
(x;=0}N® B+ +1l

But there is a similar contribution, with an opposite sign, from integration on
{(Imez; = — A’} X X2{Im¢; = A'}. Let T, be the rectangular contour in
the ¢,-plane with sides +i4" + R; then, as R — o, the sum of these contribu-
tions is

B(ty, - ooy 1)ty

2.6 oty ..., L) dty - - - dt,
(2.6) fx;{lmti=A’} 2 ) dt, fr, RS dt,
where
Sty -5 1) =f u(0, Xg - - - > Xy)
{(x1=0}nQ
X exp(—ixyty — + ¢ 0 = ix,t,) dx, - - dx,.

For fixed ¢,, . . . , ¢

n’

f B(t ..., )ik J
Iy

2 2 1
Pk I S

T{O(T) by v s ty) T O(—Tp byt )} if [Imr < A,
0 if Imr|> A,

where 7, = 7,(,, . . ., ,)) is given by
2+ 2+ +12=0
ie,r, =i(3+ -+ +1)/% Now

My = {(t - L) ECT Imy =4, ..., Im¢t, =4, [Im7|< A'}
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is seen to be a compact subset of X7_,{Im ¢, = + A4’}, and we get that the
contribution from the pair of boundary terms (obtained in (2.3)) considered is

7i[ @ty )[BTty 1)
2.6 My
+O(—T 8. .. ,t")] dt,- - - dt,

n

and its absolute value is < constant |||| 4.
Similarly, if

ou
(tyy ooy ty) = — — (0, xp, ..., X,
ol ) 'f;xn=0}nR_x-..><R_ axl( 2 )
X eXp(— ixyly — - -+ — ix,t,) dx,+ + + dx,,

the net contribution from the two terms in (2.2) involving ¢'(¢,, . . ., t,) is

f &ty s 1) Ol t) dt
(Im =4} X - - - x {Im t,=4") O -
which is equal to
wa & (ty s 1)
Q.7 “
. Til [6(Tipty ooy t) =O(— Ty by ooy 1) ] dty - - dl,

which, in absolute value, is < constant ||v|| .

In a similar way we can consider all other terms of (2.2) and write it as a
sum of n2"~! terms of the form (2.6) and n2"~! terms of the form (2.7’). The
resulting formula defines 7, (f) for every f € 3(,. and T, is a bounded linear
functional on JC,..

LEMMA. 3. For every x € R", T,(e™) = 7)™ "/ %u(x).
PrOOF. Let K, be a C*® compact support approximate identity; then
JK.(y — x)e” dt — e™ in the topology of J(,. and
T,(e™) = lim Tu(fKe(y — x)e¥ dy)
e—0

= lim (2m) ™"/ [ K, (y = x)u(y) = @m)~"2u(x).

LEMMA 4. There exist measures dy,, dy, on {t, = 0} = C"~! supported in the
compact set
L, = {(tl, v tyoy); [Imgy|< A7 L | Img, | < A7,
1/2
Re(2 + - -+ + 2.)’|< a7}

such that for every f € ¥ .,
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T,(f) =ff(t1, ety i (2 22) )

(2.8)
+ff(t1, B A | (A R zj_,)'/z) du,.
In particular,
u(x) =fexp(ix,t1 + 4 ix, gt exp(=(F+ - + t,f_])l/zx,,) du,
@9 +fexp(ix1tl + e 4 ix, gt pexp((B+ -+ 13_1)1/2)(”) du,.
PrOOF. Let V,, = {(t;,...,1) € Kg; 2+ 13+ - -+ + t2 = 0}. Then by

the proof of Lemma 2, by adding all the terms like (2.6") and (2.7"), we get
that there exists a measure d», supported in ¥, such that for every f € J(,.,
T,f)= [fav.

Let dv = dv, + dv,, where dv, is supported in

{(tl, by ... i(tf 4o+ t’%_l)l/z)}

and dv, is supported in

. 1/2
{(zl, by ooy tyy —i(t+ - +12) )}

Let dp,, dp, be the projections of dv,, dv,, respectively, on ¢, = 0. Then the

lemma follows since d,, du, are supported in the projection of V., on¢, =0
which is L.

Now we are in a position to prove the theorems.

ProoF OF THEOREM A. Since 4 < 7 we can choose 4 < A” < 7. It is
easily seen that L, is contained in X7_!{|Im £]| < 4"} X {|Re t]| < 4"},
and since A” < m, the span of {e*; x € Z"~!}, where Z"~! are the integer
lattice points of R"~! is dense in the space of bounded holomorphic
functions on L,.. By (2.9), du, + du, = 0 and

exp(—a(f+ - + tf_l)l/z) du, + exp(a(f + -+ + tf_l)l/z) du, = 0.

Since a < (1/(n — 1))"/? it follows that du, du, are supported in {7
+ - -+ + t2_, =0} and by (2.9), u(x) is identically zero. []
Proor oF THEOREM B. Applying 9/9x, to (2.9) we get
du
W (xl, cees Xy 0)

= _fexp(ixltl +o g o) ’n—1)1/2 dpy

+fexp(ix,t1 4o ix, (B A+ + t,%_l)'/2 dp,.
As in the proof of the Theorem A we get that
. 1/2 —
duy + dp, =0,  (F+ - +17_,)"" (du — dp,) =0.

Thus du, = — dy, is supported at the set {¢7 + - - - + £7_, = 0}, and by

n—1
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using (2.9) it once again follows that u vanishes identically.
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