A NOTE FOR DORON: THE GENERATING FUNCTION FOR TOTAL DISPLACEMENT (SPEARMAN'S FOOTRULE) AND INVERSION NUMBER

T. KYLE PETERSEN

Let S_{n} denote the symmetric group of permutations of $\{1,2, \ldots, n\}$. Diaconis and Graham [1] studied what they called Spearman's disarray for permutations in S_{n}. The disarray statistic, which Knuth calls total displacement [4, Problem 5.1.1.28], is defined for a permutation w as

$$
\sum_{i=1}^{n}|w(i)-i|=2 \sum_{w(i)>i}(w(i)-i)
$$

In work of Petersen and Tenner [5], half of the total displacement is shown to be equal to the depth of a permutation, which is a measure of certain minimal factorizations of a permutation into transpositions. That is, define

$$
\begin{equation*}
\operatorname{dep}(w)=\min \left\{\sum_{s=1}^{k}\left(j_{s}-i_{s}\right): w=\left(i_{1} j_{1}\right) \cdots\left(i_{k} j_{k}\right)\right\} . \tag{0.1}
\end{equation*}
$$

Then [5, Theorem 1.1] shows that

$$
\begin{equation*}
\operatorname{dep}(w)=\sum_{w(i)>i}(w(i)-i) \tag{0.2}
\end{equation*}
$$

In Guay-Paquet and Petersen [3], the authors developed the generating function for depth, via a map from permutations to Motzkin paths that takes depth to area. Zeilberger has asked [6] whether this approach can be adapted to study other statistics, like Spearman's ρ, or the joint distribution of disarray with inversion number. I don't know about $\rho=\sum_{i=1}^{n}(w(i)-i)^{2}$, but keeping track of inversions seems to be a very natural q-analogue.

The map from [3] is $\phi: S_{n} \rightarrow \operatorname{Motz}_{n}$ by $\phi(w)=p_{1} \cdots p_{n}$, where

$$
p_{i}= \begin{cases}U & \text { if } w^{-1}(i)>i<w(i) \\ D & \text { if } w^{-1}(i)<i>w(i) \\ H & \text { otherwise }\end{cases}
$$

For example, if $w=3715246$, we have $\phi(w)=U U D U D H D$.
Here are two results from [3].
Proposition 0.1. Let $w \in S_{n}$ be a permutation and $\phi(w)=p_{1} \cdots p_{n}$ be the associated Motzkin path. Then,

$$
\operatorname{dep}(w)=\sum_{p_{k}=D} k-\sum_{p_{i}=U} i .
$$

Proposition 0.2. For any $w \in S_{n}, \operatorname{dep}(w)=\operatorname{area}(\phi(w))$.

Given that the map $\phi: S_{n} \rightarrow \mathrm{Motz}_{n}$ encodes the depth of a permutation as the area of the associated Motzkin path, the next step in determining the distribution of the depth statistic is to compute the distribution of inversions on the preimage $\phi^{-1}(p)$ for each Motzkin path p.

This is demonstrated with the following example that suggests a conjecture. Might be nice for an interested student to explain and prove.

Example 0.3. Given the Motzkin path $p=U U H D D U D$, we start by writing the numbers $1, \ldots, 7$ on a line and drawing incoming and outgoing half-arcs for every U and D (without connecting the half-arcs to each other):

When drawing a permutation w such that $\phi(w)=p$, each excedance of w is drawn as a rightpointing arrow above the line of numbers, and these arrows can be grouped into strings of right-pointing arrows, which start at a position i with $p_{i}=U$ and end at a position k with $p_{k}=D$, possibly with intermediate steps at positions j with $p_{j}=H$. So, to form the permutations that correspond to this path, we will first ignore the positions j with $p_{j}=H$ and match up all the half-arcs above the line of numbers, outgoing with incoming, to indicate the starting and ending positions of each string of right-pointing arrows. In this example, we are forced to form the pair $6 \rightarrow 7$, but we have two choices for pairing the outgoing half-arcs $1 \rightarrow \cdot, 2 \rightarrow \cdot$ and the incoming half-arcs $\cdot \rightarrow 4, \cdot \rightarrow 5$; that is:

Independently, we also have two choices for matching up the half-arcs below the line of numbers into (for now, single-step) strings of left-pointing arrows in the permutation diagram for w. Finally, to complete the diagram, we only need to decide what to do with the position 3 , for which $p_{3}=H$: it can either be a fixed point of w, or join one of the two strings of right-pointing arrows above it, or join one of the two strings of left-pointing arrows below it, for a total of five choices. (Note that for all matchings here, there are two strings of right-pointing arrows above position 3 and two strings of left-pointing arrows below it.) All in all, we have $2 \cdot 2 \cdot 5=20$ possible diagrams (all valid) for a permutation w such that $\phi(w)=p=U U H D D U D$.

It turns out that the distribution of inversions for the 20 permutations formed in this way is:

$$
q^{7}(1+q)^{2}\left(2+2 q+q^{2}\right)=q^{7}[2]^{2}([2]+[3]),
$$

where $[n]$ is shorthand for the q-integer $1+q+\cdots+q^{n-1}$.
In general, we can count the number of permutations corresponding to a given Motzkin path by reconstructing the possible permutation diagrams as in Example 0.3; first we count the number of ways of matching up the outgoing and incoming half-arcs above the line of
numbers, then we count the number of ways of matching up the half-arcs below, and finally we count the number of ways of dealing with the positions corresponding to H steps. This is described in [3], but we now need to keep track of inversions too. Here is the proposed way to do this.

First, we will need to define the height of each step in a Motzkin path. We draw our paths starting at $(0,0)$ and define the height h_{i} of a step p_{i} to be the maximum height achieved on that part of the path. That is, $h_{i}=j$ if

- $p_{i}=U$ from $(i-1, j-1)$ to (i, j),
- $p_{i}=H$ from $(i-1, j)$ to (i, j), or
- $p_{i}=D$ from $(i-1, j)$ to $(i, j-1)$.

For example, the steps of $p=U U H D D U D$ have heights $\left(h_{1}, \ldots, h_{7}\right)=(1,2,2,2,1,1,1)$.
We define the weight of step p_{i} to be 1 if $h_{i}=0$, but if $h_{i}>0$ we have

$$
\omega_{i}= \begin{cases}{\left[h_{i}\right](q t)^{\left(2 h_{i}-1\right) / 2}} & \text { if } p_{i}=U \text { or } p_{i}=D \\ \left(\left[h_{i}\right]+\left[h_{i}+1\right]\right)(q t)^{h_{i}} & \text { if } p_{i}=H\end{cases}
$$

and the weight of a path $p=p_{1} \cdots p_{n}$ to be the product

$$
\omega(p)=\omega_{1} \cdots \omega_{n}
$$

Then, the weight of a Motzkin path p is the generating function for inversions and depth of permutations in its preimage $\phi^{-1}(p)$.

Conjecture 1. Let $p \in \mathrm{Motz}_{n}$. Then

$$
\omega(p)=\sum_{w \in \phi^{-1}(p)} q^{\operatorname{inv}(w)} t^{\operatorname{dep}(w)}=t^{\operatorname{area}(p)} \sum_{w \in \phi^{-1}(p)} q^{\operatorname{inv}(w)}
$$

In the example of $p=U U H D D U D$,

$$
\begin{aligned}
\omega(p) & =(q t)^{1 / 2} \cdot[2](q t)^{3 / 2} \cdot([2]+[3])(q t)^{2} \cdot[2](q t)^{3 / 2} \cdot(q t)^{1 / 2} \cdot(q t)^{1 / 2} \cdot(q t)^{1 / 2}, \\
& =(q t)^{7}[2]^{2}([2]+[3]) .
\end{aligned}
$$

If Conjecture 1 is true, we can follow [3] to express the generating function for permutations with respect to depth and inversions as

$$
F(q, t, z)=\sum_{n \geq 0} \sum_{w \in S_{n}} q^{\operatorname{inv}(w)} t^{\operatorname{dep}(w)} z^{n}=\sum_{p \in \operatorname{Motz}} \omega(p) z^{|p|},
$$

where $|p|$ is the number of steps in the path p. The continued fraction for Motzkin paths counted by the product of steps weighted according to height is:

$$
F=\frac{1}{1-b_{0}-\frac{a_{1} c_{1}}{1-b_{1}-\frac{a_{2} c_{2}}{1-b_{2}-\frac{a_{3} c_{3}}{1-\cdots}}}}
$$

where b_{h} is the weight of a horizontal step at height h, a_{h} is the weight of step U at height h, and c_{h} is the weight of step D at height h.

If we substitute the weights for $a_{h}=c_{h}=[h](q t)^{(2 h-1) / 2} z, b_{h}=([h]+[h+1])(q t)^{h} z$, we get $a_{h} c_{h}=[h]^{2}(q t)^{(2 h-1)} z^{2}$, and so

$$
\begin{equation*}
F(q, t, z)=\frac{1}{1-z-\frac{q t z^{2}}{1-([1]+[2]) q t z-\frac{[2]^{2}(q t)^{3} z^{2}}{1-([2]+[3])(q t)^{2} z-\frac{[3]^{2}(q t)^{5} z^{2}}{1-([3]+[4])(q t)^{3} z-\frac{[4]^{2}(q t)^{7} z^{2}}{1-\cdots}}}} .} \tag{0.3}
\end{equation*}
$$

I think (from Chapter 5 of [2]) this expression is equivalent to the following:

Here, for $k \geq 0$, the $(2 k)$ th term is $[k+1](q t)^{k} z$, and the $(2 k+1)$ st term is $[k+1](q t)^{k+1} z$.

References

[1] P. Diaconis and R. Graham, Spearman's footrule as a measure of disarray, J. Roy. Statist. Soc. Ser. B 39 (1977), 262-268. 1
[2] I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley-Interscience, 1983. 4
[3] M. Guay-Paquet and T. K. Petersen, The generating function for total displacement, Electronic Journal of Combinatorics, 2014. 1, 3
[4] D. Knuth, The Art of Computer Programming, vol. 3, Addison-Wesley, 1998. 1
[5] T. K. Petersen and B. E. Tenner, The depth of a permutation, submitted arXiv:1202.4765. 1
[6] D. Zeilberger, An Experimental (yet fully rigorous!) Study of a certain "Measure Of Disarray" that 12-year Noga Alon Proved was always Even, 2021. 1
Email address: tpeter21@depaul.edu
Department of Mathematical Sciences, DePaul University, Chicago IL 60614, USA

