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We have the biviarate generating function
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for the jump statistic. Writing
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and r(s) = (es/2 + 1)−2, the results of Bender and Richmond [1] imply (after

some analytic bounding on B) a central limit theorem and, with a bit more work, should give an LCLT
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as n → ∞. As a check, we plot of the series coefficients c(s) = [qsx175]H(q, x) compared to the expected
distribution. Proving such limit theorems is automated (and implemented in Sage) for many multivariate
rational generating functions [2] but automating this for algebraic generating functions is ongoing work.
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