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Abstract. We show how to enumerate words in 1m1 . . . nmn that avoid the increasing consecutive

pattern 12 . . . r for any r ≥ 2. Our approach yields an O(ns+1) algorithm to enumerate words in

1s . . . ns, avoiding the consecutive pattern 1 . . . r, for any s, and any r. This enables us to supply

many more terms to quite a few OEIS sequences, and create new ones. We also treat the more

general case of counting words with a specified number of the pattern of interest (the avoiding

case corresponding to zero appearances). This article is accompanied by three Maple packages

implementing our algorithms.

Introduction.

Rodica Simion and Herbert Wilf initiated the study of enumerating classical pattern-avoidance.

This is a very dynamic area with its own annual conference and Wikipedia page ([Wi]). Recall that

a permutation π = π1 . . .πn avoids a pattern σ = σ1 . . .σk if none of the
(

n
k

)

length-k subsequences

of π, reduces to σ.

Alex Burstein ([Bu]), in a 1998 PhD thesis, under the direction of Herb Wilf, pioneered the enu-

meration of words avoiding a set of patterns. This field is also fairly active today, with notable

contributions by, inter alia, Toufik Mansour ([BuM]) and Lara Pudwell ([P]).

The enumeration of permutations avoiding a given (classical) pattern, or a set of patterns, is

notoriously difficult, and it is widely believed to be intractable for most patterns, hence it would be

nice to have other notions for which the enumeration is more feasible. Such an analog was given,

in 2003, by Sergi Elizalde and Marc Noy, in a seminal paper ([EN]), that introduced the study

of the enumeration of permutations avoiding consecutive patterns. A permutation π = π1 . . .πn

avoids a consecutive pattern σ = σ1 . . .σk if none of the n− k + 1 length-k consecutive subwords,

πiπi+1 . . .πi+k−1 of π, reduces to σ.

Algorithmic approaches to the enumeration of permutations avoiding sets of consecutive patterns

were given by Brian Nakamura, Andrew Baxter, and Doron Zeilberger ([Na], [BaNaZ]). Our present

approach may be viewed as an extension, from permutations to words, of Nakamura’s paper, who

was also inspired by the Goulden-Jackson cluster method, but in a sense, is more straightforward,

and closer in spirit to the original Goulden-Jackson cluster method ([GJ], that is beautifully ex-

posited (and extended!) in [NoZ]).

In this article we will consider consective patterns of the form 1 . . . r, i.e. increasing consecutive

patterns, and show how to count words in 1m1 . . . nmn avoiding the pattern 1 . . . r (Theorem 1, that

is due to Ira Gessel [Ge1]). Throughout this article we will only consider consecutive patterns,

so the word “consecutive” may be omitted. In particular, we will look at how to efficiently count

words in 1s . . . ns avoiding the pattern 1 . . . r. All the sequences for s = 1 and 3 ≤ r ≤ 9 are in the

On-Line Encyclopedia of Integer Sequences, with many terms. Also, quite a few of theses sequences
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for s > 1 are already there, but with very few terms. Our implied algorithms are O(ns+1) and

hence yield many more terms, and, of course, new sequences.

In the last part of the paper, we will provide a new proof of Theorem 1 by tweaking the Goulden-

Jackson cluster method. Using this proof, along with a little more effort, we will generalize Theorem

1 to counting words with a specified number of the pattern 12 . . . r (Theorem 2), instead of just

avoiding, that is, having zero occurrence of the pattern of interest.

We close this introduction by mentioning the pioneering work of Anthony Mendes and Jeff Rem-

mel([MR]), in combining the two keywords ‘consecutive patterns’ and ‘words’. We were greatly

inspired by their article, but our focus is algorithmic.

Maple Packages: This article is accompanied by three Maple packages available from the webpage:

http://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/icpw.html .

These are

• ICPW.txt: For fast enumeration of sequences enumerating words avoiding increasing consecutive

patterns.

• ICPWt.txt: For fast computation of sequences of weight-enumerators for words according to the

number of increasing consecutive patterns (t = 0 reduces to the former case).

• GJpats.txt: For conjecturing generating functions (that still have to be proved by humans).

This page also has links to numerous input and output files. The input files can be modified to

generate more data, if desired.

The Goulden-Jackson Cluster Method

Recall that the original Goulden-Jackson method ([GJ][NoZ]) inputs a finite alphabet, A, that may

be taken to be {1, ..., n}, and a finite set of ‘bad words’, B.

It outputs a certain rational function, let’s call it F (x1, . . . , xn), that is the multi-variable gen-

erating function, in x1, . . . , xn, for the discrete n-variable function

f(m1, . . . ,mn) ,

that counts the words in 1m1 . . . nmn (there are altogether (m1 + . . .+mn)!/(m1! · · ·mn!) of them)

that never contain, as consecutive subwords (aka factors in linguistics) any member of B. In other

words:

F (x1, . . . , xn) =
∑

(m1,...,mn)∈Nn

f(m1, . . . ,mn)x
m1

1 · · ·xmn

n .

This is nicely implemented in the Maple package DavidIan.txt, that accompanies [NoZ], and is

freely available from
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http://sites.math.rutgers.edu/~zeilberg/tokhniot/DavidIan.txt .

For example, if n = 4, so the alphabet is {1, 2, 3, 4} and the set of ‘bad words’ to avoid is

{1234, 1432}, then, starting a Maple session, and typing:

read ‘DavidIan.txt‘: lprint(subs(t=0,GJgf(1,2,3,4,[1,2,3,4],[1,4,3,2],x,t)));

immediately returns

1/(1-x[1]-x[2]-x[3]-x[4]+ 2*x[1]*x[2]*x[3]*x[4]) ,

that in Humanese reads
1

1− x1 − x2 − x3 − x4 + 2x1x2x3x4
.

Enumerating Words Avoiding Consecutive Patterns: Let the Computer Do the Guess-

ing

Now we are interested in words in an arbitrarily large alphabet {1, . . . , n} avoiding a set of consec-

utive patterns, but each pattern, e.g. 123, entails an arbitrarily large set of forbidden consecutive

subwords. For example, in this case, the set of forbidden consecutive subwords is

{i1 i2 i3 | 1 ≤ i1 < i2 < i3 ≤ n} .

We can ask DavidIan.txt to find the generating function for each specific n, and then hope to

conjecture a general formula in terms of x1, . . . , xn, for general (i.e. symbolic) n.

This is accomplished by the Maple package GJpats.txt, available from the webpage of this article.

It uses the original DavidIan.txt to produce the corresponding generating functions for increasing

values for n, and then attempts to conjecture a meta-pattern. For example for words avoiding the

consecutive pattern 123 (alias the word 123), for n = 3,

GFpats({[1, 2, 3]}, x, 3, 0); yields

1/(1− x1 − x2 − x3 + x1x2x3) .

This is simple enough. Moving right along,

GFpats({[1, 2, 3]}, x, 4, 0); yields

1/(1− x1 − x2 − x3 − x4 + x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 − x1x2x3x4) ,

while GFpats({[1, 2, 3]}, x, 5, 0); yields

1/(1− x1 − x2 − x3 − x4 − x5 + x1x2x3 + x1x2x4 + x1x2x5 + x1x3x4 + x1x3x5 + x1x4x5+

x2x3x4+x2x3x5+x2x4x5+x3x4x5−x1x2x3x4−x1x2x3x5−x1x2x4x5−x1x3x4x5−x2x3x4x5) .
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These look like symmetric functions. Procedure SPtoM(P,x,n,m) expresses a polynomial, P, in the

indexed variables x[1], . . . , x[n] in terms of the monomial symmetric polynomials mλ. Applying this

procedure we have

SPtoM(denom(GFpats({[1, 2, 3]}, x, 5, 0)), x, 5,m); yields

-m[1, 1, 1, 1] + m[1, 1, 1] - m[1] + m[] .

SPtoM(denom(GFpats({[1, 2, 3]}, x, 6, 0)), x, 6,m); yields

m[1,1,1,1,1,1]-m[1,1,1,1]+m[1,1,1]-m[1]+m[] .

SPtoM(denom(GFpats({[1, 2, 3]}, x, 7, 0)), x, 7,m); yields

-m[1,1,1,1,1,1,1]+m[1,1,1,1,1,1]-m[1,1,1,1]+m[1,1,1]-m[1]+m[] .

You don’t have to be a Ramanujan to conjecture the following result.

Fact: The generating function for words in {1, 2, . . . , n} avoiding the consecutive pattern 123, let’s

call it F3(x1, . . . , xn) is

F3(x1, . . . , xn) =
1

1− e1 + e3 − e4 + e6 − e7 + e9 − e10 + . . .
,

where ei stands for the elementary symmetric function of degree i in x1, . . . , xn, i.e. the coefficient

of zi in (1 + x1 z) . . . (1 + xn z).

(Note that ei = m1i).

Doing the analogous guessing for the consecutive patterns 1234 and 12345, a meta-pattern emerges,

and we were safe in formulating the following theorem that we discovered using the present ex-

perimental mathematics approach. After the first version of this article was posted, we found out,

thanks to Justin Troyka, that this theorem is due to Ira Gessel ([Ge1] , p. 51, Example 3).

Theorem 1 (Gessel [Ge1]) For n ≥ 1, r ≥ 2, the generating function for words in {1, 2, . . . , n}

avoiding the consecutive pattern 12 . . . r, let’s call it Fr(x1, . . . , xn) is

Fr(x1, . . . , xn) =
1

1− e1 + er − er+1 + e2r − e2r+1 + e3r − e3r+1 + . . .
.

Of course, if Gessel did not prove it before us, these would have been ‘only’ guesses, but once known,

humans can prove them. We did it by tweaking the cluster method to apply to an arbitrarily large

alphabet, i.e. where even the size of the alphabet, n, is symbolic. Our proof of Gessel’s theorem

will be given at the end of this article.

Efficient Computations

The Theorem immediately implies the following partial recurrence equation for the actual coeffi-

cients.
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Fundamental Recurrence: Let fr(m) be the number of words in the alphabet {1, . . . , n} with

m1 1’s, m2 2’s, . . . , mn n’s (where we abbreviate m = (m1, . . . ,mn)) that avoid the consecutive

pattern 1 . . . r. Also let Vi be the set of 0− 1 vectors of length n with i ones, then

fr(m) =
∑

v∈V1

fr(m− v) −
∑

v∈Vr

fr(m− v)

+
∑

v∈Vr+1

fr(m− v) −
∑

v∈V2r

fr(m− v)

+
∑

v∈V2r+1

fr(m− v) −
∑

v∈V3r

fr(m− v)

+
∑

v∈V3r+1

fr(m− v) −
∑

v∈V4r

fr(m− v) + . . . .

Suppose that we want to compute f3(1100), i.e. the number of permutations of length 100 that

avoid the consecutive pattern 123. If we use the above recurrence literally, we would need about

2100 computations, but there is a shortcut!

Enter Symmetry

It follows from the symmetry of the generating function Fr(x1, . . . , xn), that fr(m1, . . . ,mn) is

symmetric, hence the above Fundamental Recurrence immediately implies the following recurrence,

that enables a very fast computation of the sequences, let’s call them ar(n), for the number of

permutations of length n that avoid the consecutive pattern 1 . . . r.

Fast Recurrence For Enumerating Permutations avoiding the consecutive pattern 1 . . . r

ar(n) = nar(n−1)−

(

n

r

)

ar(n−r)+

(

n

r + 1

)

ar(n−r−1)−

(

n

2r

)

ar(n−2r)+

(

n

2r + 1

)

ar(n−2r−1)

−

(

n

3r

)

ar(n− 3r) +

(

n

3r + 1

)

ar(n− 3r − 1) − . . . .

This recurrence goes back to Florence Nightingale David and David Barton ([DB], p. 157, line

6 from the top), whose proof used a probabilistic language and an inclusion-exclusion argument

that may be viewed as a precursor of the cluster method, applied to the special case of increasing

patterns.

Equivalently, we have the following exponential generating function ([DB], p. 157, line 4)

∞
∑

n=0

ar(n)
xn

n!
=

1

1− x+ xr

r! −
xr+1

(r+1)! +
x2r

(2r)! −
x2r+1

(2r+1)! +
x3r

(3r)! −
x3r+1

(3r+1)! + . . .
.
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While this ‘explicit’ (exponential) generating function is ‘nice’, it is more efficient to use the fast

recurrence. And indeed, the OEIS has these sequences for 3 ≤ r ≤ 9, with many terms. These are

(in order): A049774, A117158, A177523, A177533, A177553, A230051, A230231.

Efficient Computations of Permutations of words with Two Occurrences of each Letter

Let br(n) be the number of words with 2 occurrences of each of 1, 2, . . . , n avoiding the pattern

1 . . . r. Quite a few of them are currently (April 17, 2018) in the OEIS, but with relatively few

terms

• b3(n): https://oeis.org/A177555 (15 terms)

• b4(n): https://oeis.org/A177558 (15 terms)

• b5(n): https://oeis.org/A177564 (14 terms)

• b6(n): https://oeis.org/A177574 (14 terms)

• b7(n): https://oeis.org/A177594 (14 terms)

br(n) for r > 7 are not yet (April 17, 2018) in the OEIS.

We can compute br(n) in cubic time as follows. If you plug-in fr(2n) into the Fundamental Recur-

rence, you are forced to consider the more general quantities of the form fr(2α1β). Defining

Br(α,β) = fr(2
α1β) ,

and using symmetry, we get the following recurrence for Br(α,β).

Br(α,β) = αBr(α− 1,β + 1) + βBr(α,β − 1)

−
∑

i1+i2=r

(

α

i1

)(

β

i2

)

Br(α− i1,β − i2 + i1) +
∑

i1+i2=r+1

(

α

i1

)(

β

i2

)

Br(α− i1,β − i2 + i1)

−
∑

i1+i2=2r

(

α

i1

)(

β

i2

)

Br(α− i1,β − i2 + i1) +
∑

i1+i2=2r+1

(

α

i1

)(

β

i2

)

Br(α− i1,β − i2 + i1) − . . . .

In particular br(n) = Br(n, 0). Using this recurrence we (easily!) obtained 80 terms of each of the

sequences br(n) for 3 ≤ r ≤ 9, and could get many more. See the output file

http://sites.math.rutgers.edu/~zeilberg/tokhniot/oICPW1.txt .

Efficient Computations of Permutations of words with Three Occurrences of each

Letter

Let cr(n) be the number of words with 3 occurrences of each of 1, 2, . . . , n avoiding the pattern

1 . . . r. Quite a few of them are currently (April 17, 2018) in the OEIS, but with relatively few

terms
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• c3(n): https://oeis.org/A177596 (Only 10 terms)

• c4(n): https://oeis.org/A177599 (Only 10 terms)

• c5(n): https://oeis.org/A177605 (Only 10 terms)

• c6(n): https://oeis.org/A177615 (Only 9 terms)

• c7(n): https://oeis.org/A177635 (Only 9 terms)

cr(n) for r > 7 are not yet in the OEIS.

We can compute cr(n) in quartic time as follows. If you plug-in fr(3n) into the Fundamental

Recurrence, you are forced to consider the more general quantities of the form fr(3α2β1γ). Defining

Cr(α,β, γ) = fr(3
α2β1γ) ,

and using symmetry, we get the following recurrence for Cr(α,β, γ).

Cr(α,β, γ) = αCr(α− 1,β + 1, γ) + βCr(α,β − 1, γ + 1) + γCr(α,β, γ − 1)

−
∑

i1+i2+i3=r

(

α

i1

)(

β

i2

)(

γ

i3

)

Cr(α− i1,β − i2 + i1, γ − i3 + i2)

+
∑

i1+i2+i3=r+1

(

α

i1

)(

β

i2

)(

γ

i3

)

Cr(α− i1,β − i2 + i1, γ − i3 + i2)

−
∑

i1+i2+i3=2r

(

α

i1

)(

β

i2

)(

γ

i3

)

Cr(α− i1,β − i2 + i1, γ − i3 + i2)

+
∑

i1+i2+i3=2r+1

(

α

i1

)(

β

i2

)(

γ

i3

)

Cr(α− i1,β − i2 + i1, γ − i3 + i2) − . . .

In particular, cr(n) = Cr(n, 0, 0). Using this recurrence we (easily!) obtained 40 terms of each of

the sequences cr(n) for 3 ≤ r ≤ 9, and could get many more. See the output file

http://sites.math.rutgers.edu/~zeilberg/tokhniot/oICPW1.txt .

Efficient Computations of Permutations of words with Four Occurrences of each Letter

Let dr(n) be the number of words with 4 occurrences of each of 1, 2, . . . , n avoiding the pattern

1 . . . r. Quite a few of them are currently (April 17, 2018) in the OEIS, but with relatively few

terms.

• d3(n): https://oeis.org/A177637 (8 terms)

• d4(n): https://oeis.org/A177640 (8 terms)

• d5(n): https://oeis.org/A177646 (8 terms)
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• d6(n): https://oeis.org/A177656 (8 terms)

• d7(n): https://oeis.org/A177676 (8 terms)

dr(n) for r > 7 are not yet in the OEIS.

We can compute dr(n) in quintic time as follows. If you plug-in fr(4n) into the Fundamental Re-

currence, you are forced to consider the more general quantities of the form fr(4α3β2γ1δ). Defining

Dr(α,β, γ, δ) = fr(4
α3β2γ1δ) ,

and using symmetry, we get the following recurrence for Dr(α,β, γ, δ).

Dr(α,β, γ, δ) = αDr(α−1,β+1, γ, δ)+βDr(α,β−1, γ+1, δ)+γDr(α,β, γ−1, δ+1)+δDr(α,β, γ, δ−1)

−
∑

i1+i2+i3+i4=r

(

α

i1

)(

β

i2

)(

γ

i3

)(

δ

i4

)

Dr(α− i1,β − i2 + i1, γ − i3 + i2, δ − i4 + i3)

+
∑

i1+i2+i3+i4=r+1

(

α

i1

)(

β

i2

)(

γ

i3

)(

δ

i4

)

Dr(α− i1,β − i2 + i1, γ − i3 + i2, δ − i4 + i3)

−
∑

i1+i2+i3+i4=2r

(

α

i1

)(

β

i2

)(

γ

i3

)(

δ

i4

)

Dr(α− i1,β − i2 + i1, γ − i3 + i2, δ − i4 + i3)

+
∑

i1+i2+i3+i4=2r+1

(

α

i1

)(

β

i2

)(

γ

i3

)(

δ

i4

)

Dr(α− i1,β − i2 + i1, γ − i3 + i2, δ − i4 + i3) − . . .

In particular dr(n) = Dr(n, 0, 0, 0). Using this recurrence we (easily!) obtained 20 terms of each of

the sequences cd(n) for 3 ≤ r ≤ 9, and could get many more. See the output file

http://sites.math.rutgers.edu/~zeilberg/tokhniot/oICPW1.txt .

Comment: Ira Gessel kindly informed us that an alternative approach to extracting coefficients

from the generating function in Theorem 1, is to use the elegant method described in section 3 of

[Ge2].

Keeping Track of the Number of Occurrences

Above we showed how to enumerate words avoiding the consecutive pattern 1 . . . r, in other words,

the number of words, with a specified number of each letters, with zero such patterns. With a

little more effort we can answer the more general question about the number of such words with

exactly j consecutive patterns 1 . . . r for any j, not just j = 0. Let W(m) = W(m1, . . . ,mn) be the

set of words in the alphabet 1, . . . , n with m1 1’s, . . ., mn n’s (note that the number of elements of

W(m) is (m1 + . . .+mn)!/(m1! · · ·mn!)).

We are interested in the polynomials in t

gr(m; t) =
∑

w∈W(m)

tα(w) ,
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where α(w) is the number of occurrences of the consecutive pattern 1 . . . r in the word w. (For

example α(831456178) = 3 if r = 3. Note that α(w) = 0 if w avoids the pattern.)

[Also note that gr(m; 0) = fr(m) and gr(m; 1) = (m1 + . . .+mn)!/(m1! · · ·mn!).]

Using GJpats.txt we were able to conjecture the following theorem, whose proof will be presented

later.

We first need to define certain families of polynomial sequences.

Definition: For any integer k ≥ 1 and r ≥ 2, P (r)
k (t) is defined as follows.

If k < r, then it is 0. If k = r then it is t− 1, and if k > r then

P (r)
k (t) = (t− 1)

r−1
∑

i=1

P (r)
k−i(t) .

Theorem 2: For k ≥ 1, r ≥ 2, the generating function of gr(m; t), let’s call it Gr(x1, . . . , xn; t), is

Gr(x1, . . . , xn; t) =
1

1− e1 −
∑n

k=r P
(r)
k (t)ek

.

This implies the

Fundamental Recurrence for gr: Let gr(m; t) be the weight-enumerator of words in the alphabet

{1, . . . , n} with m1 1’s, m2 2’s, . . .mn n’s (where we abbreviate m = (m1, . . . ,mn)), according to

the weight

“t raised to the power of the number of occurrences of the consecutive pattern 1 . . . r”.

Also, let Vk be the set of 0− 1 vectors of length n with k ones, then

gr(m) =
∑

v∈V1

gr(m− v) +
n
∑

k=r

∑

v∈Vk

P (r)
k (t) gr(m− v) .

Analogously to the avoidance case we can get efficient recurrences for the permutations, and words

in 1s · · ·ns, for each s > 1. For each s it is still polynomial time, but things are slower because of

the variable t. This is implemented in the Maple package ICPWt.txt .

Proofs.

A New Proof of Gessel’s Theorem 1.

We will use the general set-up of the Goulden-Jackson cluster method as described in [NoZ], but

will be able to make things simpler by taking advantage of the specific structure of our forbidden
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patterns, that happen to be the increasing patterns 1 . . . r. That would enable us to use an elegant

combinatorial argument, without solving a system of linear equations.

First let us quickly review some basic definitions. (We will not go into the details of the cluster

method but readers who wish to see an excellent and concise summary of the cluster method are

welcome to refer to the first section of [W].) A marked word is a word with some of its factors

(consecutive subwords) marked. We are assuming that all the marks are in the set of bad words

B. For example (13212; [1,3]) is a marked word with 132 marked, with [1,3] denoting the location

of the mark. A cluster is a marked word where the adjacent marks overlap with each other and

all the letters in the underlying word belong to at least one mark of the cluster. For example

(145632; [1,3],[2,4],[4,6]) is a cluster whereas (145632; [1,3],[4,6]) is not. We let the weight of a

marked word w = w1w2 . . . wk be weight(w) := (−1)|S| ·
∏k

i=1 x[wi] where S is the set of marks in

w. For example, the weight of the cluster (135632; [1,3],[2,4],[4,6]) is (−1)3x1x2x2
3x5x6.

LetM be the set of all marked words in the alphabet {1, .., n}. Recall from [NoZ] that weight(M) =

1 + weight(M) · (x1 + x2 + . . . + xn)+weight(M) · weight(C) where C is the set of all possible

clusters. This implies, according to [NoZ], that the multivariate generating function for words

avoiding the consecutive pattern 1 . . . r (i.e. our target generating function) is equal to weight(M) =
1

1−e1−weight(C) . So we only need to figure out weight(C). However, to use the classical Goulden-

Jackson cluster method, we would have to solve a system of
(

n
r

)

(the number of bad words) equations

(recall that we write C as a summation of C[v]’s where v is a word in B, and for each C[v] there is an

equation) and no obvious symmetry argument seems to help. So we will use a slick combinatorial

approach.

Notice that since the pattern to be avoided is 12 . . . r, the clusters can only be of the form

(a1 . . . aj ; [1, r], . . .)

where

1 ≤ a1 < a2 < . . . < aj ≤ n .

Therefore weight(C) is a summations of multivariate monomials on x1, x2, .., xn where the exponent

of each variable xi is zero or one.

Any fixed monomial in weight(C), it can come from many different clusters. The number of clus-

ters it comes from and the coefficient of the monomial are uniquely determined by the number

of variables in the monomial. For example, for r = 3, the monomial x1x3x5x6x7 can come from

the cluster (13567; [1, 3], [2, 4], [3, 5]) or (13567; [1, 3], [3, 5]). The first cluster contributes weight

(−1)3x1x3x5x6x7 whereas the second cluster contributes weight (−1)2x1x3x5x6x7. So when sum-

ming up, they cancel each other out and there is no monomial x1x3x5x6x7 in weight(C). So is the

case with any other monomial of degree 5. Therefore, let us focus on the monomial x1x2x3 . . . xk

and figure out its coefficient.

Definition: Let coeff(x1x2 . . . xk) (k ≥ 1) be the coefficient of x1x2 . . . xk in weight(C).
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It is clear that for k < r, coeff(x1x2x3 . . . xk) = 0, because 12 . . . k cannot be a cluster (it does not

have enough letters to be marked). And when k = r, we have coeff(x1x2 . . . xk) = −1, since there

can be only one mark. So let us move on to the case when k > r. We have the following claim.

Claim 1:

For k > r, coeff(x1x2 . . . xk) = − coeff(x2x3 . . . xk)− coeff(x3x4 . . . xk)− . . .− coeff(xrxr+1 . . . xk).

(i.e. coeff(x1x2 . . . xk) = − coeff(x1x2 . . . xk−1)− coeff(x1x2 . . . xk−2)−. . .− coeff(x1x2 . . . xk−r+1).)

This is because there are (r − 1) ways in which the left-most marked word can ‘interface’ with the

one to its immediate right. For example, if the clusters are of the form (1 . . . k; [1, r], [3, r + 2], . . .)

(that is, the second mark starts at 3), then the contribution will be (−1)· coeff(x3x4 . . . xk). This is

simply because of the bijection between the set of clusters in the form of (1 . . . k; [1, r], [3, r+2], . . .)

with set of the clusters in the form (3 . . . k; [3, r + 2], . . .). By peeling off the first mark [1, r], we

just lose a factor of (−1) in the coefficient of our monomial.

Similarly, if the clusters are of the form (1 . . . k; [1, r], [u, u + r − 1], . . .) (1 < u ≤ r), then the

contribution from this case will be (−1)· coeff(xuxu+1 . . . xk). Note that if k < 2r−1, there cannot

be as many as (r−1) cases. However, in this case, we can make the convention that there are (r−1)

places for the second mark because for k < r the coefficient of x1x2x3 . . . xk is 0. So the above

formula still holds. For example, for the clusters associated with the word 123456, and r = 4, the

first mark has to be 1234, the second mark can only be 2345 or 3456. But, according to the natural

convention, the second mark can also start with 4 and be 456, and so, coeff(x1x2x3x4x5x6) =

−coeff(x2x3x4x5x6)−coeff(x3x4x5x6)−coeff(x4x5x6)= −coeff(x2x3x4x5x6)−coeff(x3x4x5x6).

So we have: coeff(x1x2 . . . xr) = −1; coeff(x1x2 . . . xr+1) = (−1) · (−1) = 1; coeff(x1x2 . . . xr+2) =

−coeff(x2x3 . . . xr+2) − coeff(x3x4 . . . xr+2) = −coeff(x1x2 . . . xr+1) − coeff(x1x2 . . . xr) = 0. Con-

tinuing this process, it is easy to see that x1x2 . . . xmr (m ≥ 1) has coefficient −1 (so is any other

monomial of degree mr ) and x1x2 . . . xmr+1 has coefficient 1 (so is any other monomial of degree

mr+1). The monomials with other number of variables all have coefficient 0. From this argument

and summing over all clusters, we conclude weight(C) = −er+er+1−e2r+e2r+1+ . . . and therefore

weight(M) = 1
1−e1+er−er+1+e2r−e2r+1+... .

Proof of Theorem 2.

This proof can be directly generalized from the proof of Theorem 1 based on the ‘t-generalization’

described in [NoZ]. Again, let the set of marked words on {1, 2, . . . , n} be M . However, this time we

let the weight of a marked word w of length k be weight(w) := (t−1)|S|·
∏k

i=1 x[wi] where S is the set

of marks in w. We still have weight(M) = 1+weight(M)·(x1+x2+. . .+xn)+weight(M)·weight(C)

and Gr(x1, . . . , xn; t) is equal to weight(M), which is 1
1−e1−weight(C) .

The procedure to calculate weight(C) directly follows from the proof of Theorem 1. We simply re-

place (−1) with (t−1) in various places, because the only difference is that now we assign a different

weight to a marked word. For example, we have coeff(x1x2 . . . xr) = t − 1; coeff(x1x2 . . . xr+1) =
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(t − 1)(t − 1) = (t − 1)2; coeff(x1x2 . . . xr+2) = (t − 1)(coeff(x2x3 . . . xr+2) + coeff(x3x4 . . . xr+2))

= (t − 1)((t − 1) + (t − 1)2). Again it is clear that for k < r, coeff(x1x2x3 . . . xk) = 0 and when

k = r, coeff(x1x2 . . . xk) = t− 1. For the case when k > r, we generalize Claim 1 to the following:

Claim 2:

For k > r, coeff(x1x2 . . . xk) = (t−1) (coeff(x2x3 . . . xk)+ coeff(x3x4...xk)+...+ coeff(xrxr+1...xk)).

(i.e. coeff(x1x2...xk) = (t− 1) (coeff(x1x2...xk−1)+ coeff(x1x2...xk−2) + ...+ coeff(x1x2...xk−r+1).)

The proof of Claim 2 directly generalizes from the proof of Claim 1. Now one mark contributes

a factor of (t − 1) instead of (−1) to the weight of a marked word. For example, for the clusters

associated with the word 123456, and r = 3, the first mark has to be 123, the second mark can

be 234 or 345. So coeff(x1x2x3x4x5x6) = (t− 1)(coeff(x2x3x4x5x6)+coeff(x3x4x5x6)). In general,

like in the proof of Theorem 1, if we are interested in keeping track of the number of appearances

of the consecutive pattern 12 . . . r, then there are (r − 1) scenarios of clusters that can give rise to

the monomial x1x2 . . . xk, depending on where the second mark is. By peeling off the first mark,

now we loose a factor of (t− 1) instead of (−1) in the coefficient of our monomial.

As the coefficients of the monomials of the same length are the same, Claim 2 immediately implies

that weight(C) =
∑n

k=r P
(r)
k (t)ek where P (r)

k (t) satisfies the recurrence

P (r)
k (t) = (t− 1)

r−1
∑

i=1

P (r)
k−i(t) .

(In fact P (r)
k (t) is just a concise way of writing coeff(x1x2 . . . xk), where the consecutive pattern of

interest is 12 . . . r.) From this Theorem 2 follows directly.

Acknowledgment: Many thanks are due to Sergi Elizalde for help with the references. Also many

thanks to Justin Troyka for pointing out that “our” Theorem 1 appeared in Ira Gessel’s PhD thesis.
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