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Abstract

We simplify the expression of two constants occurring in a paper by Dougherty-
Bliss, Koutschan and Zeilberger. This shows that both constant are transcendental,
thanks to a deep result of Nesterenko.

1 Introduction

The famous irrationality proofs for ζ(3) by Apéry [1] and by [2] inspired the paper [4],
where Dougherty-Bliss, Koutschan and Zeilberger search “miraculous” irrationality proofs à
la Apéry. Two of the constants that their paper mentions (on top of p. 987) are

W1 := −24− 81
√
π

Γ(7/3)

Γ(−1/6)
and W2 :=

13

2
− 6Γ(19/6)√

πΓ(8/3)
·

We will confirm that these two constants are transcendental thanks to a theorem of Nesterenko.

2 Rewriting the two constants

It is probably well known that Γ(1/6) = 31/22−1/3π−1/2Γ(1/3)2 (see, e.g., [5]). This expression
can be obtained by taking x = 1/6 after combining the duplication and the reflection formulas
for the gamma function:

Γ(2x) = 22x−1π−1/2Γ(x)Γ

(
x+

1

2

)
= 22x−1π−1/2Γ(x)

π

sin(π(x+ 1
2
))Γ(1

2
− x)

.

The patient reader can now prove the following equalities, by repeatedly using the identity
Γ(x+ 1) = xΓ(x):

W1 = −24 + 33/22−1/3
(

Γ(1/3)3

π

)
and W2 =

13

2
− 273

80

(
Γ(1/3)321/3

π2

)
.
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3 W1 and W2 are transcendental

A deep theorem of Nesterenko (Corollary 5 in [6, p. 1321]) states that π, eπ
√
3 and Γ(1/3)

are algebraically independent on the rationals. This immediately implies the following result
for the (rewritten) constants:

W1 and W2 are transcendental.

(Note that a result weaker than Nesterenko’s, namely that π and Γ(1/3) are algebraically
independent suffices here: this was proved by Čudnovs’kĭı, see [3]; also see [8].)
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