On two constants in a paper by
 R. Dougherty-Bliss, C. Koutschan and D. Zeilberger

J.-P. Allouche
CNRS, IMJ-PRG, Sorbonne
4 Place Jussieu
F-75252 Paris Cedex 05, France
jean-paul.allouche@imj-prg.fr

Abstract

We simplify the expression of two constants occurring in a paper by DoughertyBliss, Koutschan and Zeilberger. This shows that both constant are transcendental, thanks to a deep result of Nesterenko.

1 Introduction

The famous irrationality proofs for $\zeta(3)$ by Apéry [1] and by [2] inspired the paper [4], where Dougherty-Bliss, Koutschan and Zeilberger search "miraculous" irrationality proofs à la Apéry. Two of the constants that their paper mentions (on top of p. 987) are

$$
W_{1}:=-24-81 \sqrt{\pi} \frac{\Gamma(7 / 3)}{\Gamma(-1 / 6)} \text { and } W_{2}:=\frac{13}{2}-\frac{6 \Gamma(19 / 6)}{\sqrt{\pi} \Gamma(8 / 3)}
$$

We will confirm that these two constants are transcendental thanks to a theorem of Nesterenko.

2 Rewriting the two constants

It is probably well known that $\Gamma(1 / 6)=3^{1 / 2} 2^{-1 / 3} \pi^{-1 / 2} \Gamma(1 / 3)^{2}$ (see, e.g., [5). This expression can be obtained by taking $x=1 / 6$ after combining the duplication and the reflection formulas for the gamma function:

$$
\Gamma(2 x)=2^{2 x-1} \pi^{-1 / 2} \Gamma(x) \Gamma\left(x+\frac{1}{2}\right)=2^{2 x-1} \pi^{-1 / 2} \Gamma(x) \frac{\pi}{\sin \left(\pi\left(x+\frac{1}{2}\right)\right) \Gamma\left(\frac{1}{2}-x\right)}
$$

The patient reader can now prove the following equalities, by repeatedly using the identity $\Gamma(x+1)=x \Gamma(x):$

$$
W_{1}=-24+3^{3 / 2} 2^{-1 / 3}\left(\frac{\Gamma(1 / 3)^{3}}{\pi}\right) \text { and } W_{2}=\frac{13}{2}-\frac{273}{80}\left(\frac{\Gamma(1 / 3)^{3} 2^{1 / 3}}{\pi^{2}}\right)
$$

$3 \quad W_{1}$ and W_{2} are transcendental

A deep theorem of Nesterenko (Corollary 5 in [6, p. 1321]) states that $\pi, e^{\pi \sqrt{3}}$ and $\Gamma(1 / 3)$ are algebraically independent on the rationals. This immediately implies the following result for the (rewritten) constants:
W_{1} and W_{2} are transcendental.
(Note that a result weaker than Nesterenko's, namely that π and $\Gamma(1 / 3)$ are algebraically independent suffices here: this was proved by Čudnovs'kiĭ, see [3]; also see [8].)

References

[1] R. Apéry, Irrationalité de $\zeta(2)$ et $\zeta(3)$, Journés Arithmétiques de Luminy, Astérisque 61 (1979), 11-13.
[2] F. Beukers, A note on the irrationality of $\zeta(2)$ and $\zeta(3)$, Bull. London Math. Soc. 11 (1979), 268-272.
[3] G. V. Čudnovs'kǐ̆, Algebraic independence of constants connected with the exponential and the elliptic functions, Dokl. Akad. Nauk Ukrain. SSR Ser. A 8 (1976), 698-701, 767.
[4] R. Dougherty-Bliss, C. Koutschan, D. Zeilberger, Tweaking the Beukers integrals in search of more miraculous irrationality proofs a la Apéry, Ramanujan J. 58 (2022), 973-994.
[5] D. Fischer, (answer to a question on math.stackexchange about $\Gamma(1 / 6)$), electronically available at the URL: https://math.stackexchange.com/questions/881581/ show-that-frac-gamma-frac-1-32-gamma-frac-1-6-frac-sqrt-pi-sqrt.
[6] Yu. V. Nesterenko, Modular functions and transcendence questions, (in Russian), Mat. Sb. 187 (1996), 65-96; English translation in Sb. Math. 187 (1996), 1319-1348.
[7] A. van der Poorten, A proof that Euler missed? Apéry's proof of the irrationality of $\zeta(3)$. An informal report, Math. Intelligencer 1 (1978/79), 195-203.
[8] M. Waldschmidt, Les travaux de G. V. Čudnovs'kiĭ sur les nombres transcendants, Séminaire Bourbaki, Vol. 1975/76, 28e année, Exp. No. 488, pp. 274-292, Lecture Notes in Math. 567, Springer, Berlin, 1977.

