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The World of Poker x Math

e Pioneer mathematicians in Poker include Emile Borel, John von Neumann,
Harold W. Kuhn, John Nash, and Lloyd Shapley.

e They believed that real-life scenarios mirror poker with their elements of bluff-
ing and strategic thinking.

e They have simplified the complexities of the game, making it tractable for
game theoretic analysis.

Emile Borel John von Neumann Harold W. Kuhn Jdohn Nash Lloyd Shapley
1871-1956 || |} 1903 - 1957 == EE= 1925 - 2014 E= 1928 - 2015 EE= 1923 -2016
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Emile Borel

1871 - 1956 I I

- First to define the notion
of games of strategy.

- Contributions to Measure
Theory and Probability laid
a robust foundation for
modern mathematical
analysis.

- Published several papers
on poker, incorporating
themes of imperfect
information and
credibility.

- Suggested the existence
of mixed strategies—
probability distributions
over actions that can lead
to equilibrium.

John von Neumann
1903 - 1957 = BEE=

- Worked in the area 'of set
theory, game theory,
economic behavior,
operator algebra, quantum
mechanics, computer
science, neural network,
and the theory of
automata.

- His great achievement in
game theory was the book
written with the Austrian
economist O. Morgenstern.
- Co-invented the Monte
Carlo Method with
Stanislaw Ulam during
World War Il.

- The methods of Monte-
Carlo and the duality
theorem in LP are the two
most distinguished results
that he contributed in
computer-oriented
numerical analysis.

Harold W. Kuhn
1925 - 2014 EHE=

- An important figure in math
programming and game
theory.

- Developed Kuhn poker, a
simplified version with three
cards: King, Queen, and Jack
- Co-developed the Ku/in-
Tucker theorem and
conditions with Albert Tucker,
fundamental in optimization.
- Developed Hungarian
Method, an algorithm for the
problem of assigning of
workers to tasks. It was later
shown to be the first
algorithm of polynomial
complexity for a large class of
linear programs.
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Jdohn Nash
1928 - 2015

Lloyd Shapley
1923 -2016

= =

- dohn Nash & Lloyd Shapley’s important
paper: “A Simple Three-person Poker Game”

(1950)

- Nash is known for the Nash Equiliorium— no
player can benefit from changing their
strategy unilaterally.

- Nash portrayed in the film A Beautiful Mind.
- Nash received the Nobel Prize in Economics

in 1994.

- Shapley made fundamental contributions to
the analysis of both cooperative and non-
cooperative games.

- Some of his foundational ideas have led to
the study of matching markets and to the
thriving branch of practical economics known
as ‘market design’.

- Shapley received the Nobel Prize in
Economics in 2012.



Outline

Summary of von Neumann Poker (1938): 2-player, continuous

Game theory refresher

von Neumann Poker: 2-player, discrete

von Neumann Poker: 3-player, discrete

von Neumann Poker: 3-player, continuous



von Neumann Poker

In 1938, John von Neumann proposed his now-famous mathematical model of
poker, a game with an uncountably infinite deck.

Player I and Player II are dealt (uniformly at random) two “cards”, real
numbers z, y € [0,1].

They each see their own card, but have no clue about the opponent’s card.
At the start they each put $1 into the pot (the so called ante).

Player I has the option to check or bet $b, while Player IT can only call or fold.

+(b+1) +1

Fig: Betting tree



von Neumann’s pure Nash Equilibrium

I

. Bet , Check | Bet
T

™)

Fold . Call | IT

o
o
-

A<C<B
+(b+1) +1

von Neumann proved that the following pair of strategies is a pure Nash Equilibrium (NE), i.e. if
the players both follow their chosen strategy, neither of them can do better (on average) by doing a
different strategy.

e Player I: If 0 < z < (b+4)b(b+1) or (fﬁ)‘l&ﬁ) < x < 1 you should bet, else check.

e Player II: [f 0 <y < % you should fold, otherwise call.

The game favors Player I, and his expected gain is m.
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Bet |

Bet , Check

Fold Call

—{ II
1
A<C<B

When b = 2, the advice spells out as follows:

e Player I: if 0 < 2 < % or g < x < 1 you should bet, otherwise check.

e Player II: If 0 < y < g you should fold, otherwise call.

e The expected value, i.e. the value of the game (for Player I) is %.

It can be shown that b = 2 maximizes Player I's payoff under the NE strategies.



Finitely Many Cards

e In real life there are only finitely many cards, and in fact, not that many.

e We were wondering whether there exists pure Nash equilibria when there are
only finitely many cards 1, 2, ..., n.

1(b+1) +1




Game Theory Refresher

Payoff Matrix: A table that describes the payoffs for each player based on the
strategies chosen by both players in a game.

Player II plays 1 | Player II plays 2 | Player II plays 3
Player I plays 1 (8, 2) (0, 9) (7, 3)
Player I plays 2 (3, 6) (9, 0) (2, 7)
Player I plays 3 (1, 7) (6, 4) (8, 1)
Player I plays 4 (4, 2) (4, 6) (5, 1)

Pure Nash Equilibrium: A situation in a game where no player can benefit by
changing their pure strategy while the other players keep theirs unchanged.

e given Player II's strategy, Player I is playing the best strategy he can (to
maximize his payoff), and

e given Player I's strategy, Player II is playing the best strategy she can.

This concept is important because this strategy pair can be considered stable as
neither player has an incentive to deviate from his choice.
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Player II plays 1 | Player II plays 2 | Player II plays 3
Player I plays 1 (8,2) (0, 9) (7, 3)
Player I plays 2 (3, 6) (9,00) 2, 7)
Player I plays 3 (1, 7) (6, 4) (8,1)
Player I plays 4 (4,2) (4, 6) (541)

Play-safe strategy: Each player looks for the worst that could happen if he makes
each choice in turn. He then picks the choice that results in the least worst
option.

e Player I calculates the minimum value for him each row. Then, select the
maximum of these minimums. magX (mn ...)

e Player II calculates the minimum value for her each column. Then, select the
maximum of these minimums.

¥ Both playes will geb lefter puptts if ey collbrat. €4 (b4, (7,2,


Tipaluck Krityakierne
choice


The zero-sum game is the game where the entries in each cell add up to 0. Col-
laboration does not give any advantageous in a zero-sum game (while it does in the
NoN-zero sum game).

Player II plays 1 | Player II plays 2 | Player II plays 3
Player I plays 1 (3, -3) (-4, 4) (2,-2)
Player I plays 2 (-1, 1) (4, -4) (-2, 2)
Player I plays 3 (-3, 3) (1,-1) (4, -4)
Player I plays 4 (1, -1) (-1, 1) (1, -1)

A pay-off matrix of the zero-sum game is written from Player 1’s point of view only:

3 —4 2
-1 4 =2
-3 1 4
1 -1 1

Important! The pay-off of Player II in each entry is the negative of the entry.
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Play-safe strategies for the zero-sum game

e For Player I (row): the row maximin.

e For Player II (column): the column minimax. (Player II aims to minimize

their expected loss, or equivalently the expected gain of Player I.)
min

The fl ) safe s\mbw IS J Rowy minio]
3 —4 2 -4

ﬁ)ﬂ‘ow I #a‘oy £, ] .Z:g it M 1 4 9 2
fqvtl"I[ rlmﬂj 1 \9\ -3 1 4 -3
1

—1 -4 <«——max

Column maimum 3 4 4

Theorem 1. In a zero-sum game there will be a pure NE if and only if

the row maximin = the column minimax.



Finitely Many Cards

e In real life there are only finitely many cards, and in fact, not that many.

e We were wondering whether there exists pure Nash equilibria when there are
only finitely many cards 1, 2, ..., n.

1(b+1) +1
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» Finding all pure Nash Equilibria via the Maximin “Vanilla” approach

Question: How can we construct a payoff matrix with n cards?
e A strategy for Player I can be any subset, Sy, of {1,...,n}, that advises: ‘If
your card belongs to S7 you should bet, otherwise, check’.

e Similarly a strategy for Player II, Sy, can be any such subset, that tells her to
‘call if her card j € S5, otherwise fold’.

e Thus, the payoff matrix can be obtained by listing outcomes of all pairs [St, So]
- Question: What is the size of this payoff matrix?

e Once constructed, we look for pure NEs in the usual way:

“If the row maximin equals the column minimax, then NEs exist.”
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Example: Payoff Matrix for n = 2 cards, Best size b = 2

Player |
is the
Row
Player.

He can
either
Bet or

Check.

Strategy

S1=1{}
Always

Check

(-1+1)/2 =

o

(-1+1)/2 =

o

(-1+1)/2 =

(-141)/2 =

o

Row
Min

Sy = {1}
Bet if “17,
Check if “2”

(+141)/2 =

1

(+141)/2 =

1

(-3+1)/2 =

-1

(-3+1)/2 =

-1

S =12}
Bet if “2”,
Check if “1”

(-1+1)/2 =

o

(-1+3)/2 =

1

(-141)/2 =

ol

(-143)/2 =
1

S, ={1,2}
Always
Bet

(+143)/2 =
2

(-3+1)/2 =

-1

(-3+3)/2 =
[e]

Column
Max

12

Paytable for 2 cards: {1,2},

and with bet size b=2.



Example: Payoff Matrix for n = 2 cards, Best size b = 2

Player |
is the
Row
Player.

He can
either
Bet or

Check.

Strategy Row
Min
Si={}
Always (-141)/2 = | (-1+1)/2 = | (-1#1)/2 = )(-1+1)/z =
Check o o o o
S; = {1}
Bet if “17, | (+1+1)/2 = | (+1+1)/2 = | (3+1)/2 = | (-3+1)/2 =
Check if “2” 1 1 -1 -1 -1
Sy =1{2}
Bet if “2”, | (-1+1)/2 = | (-143)/2 = | (-1#1)/2 = | y(-1+3)/2 =
Check if “1” o 1 ) 1 o
S, ={1,2} =
Always (+143)/2 = | (-3+1)/2 = | (-3+3)/2 =
Bet 1 2 -1 o -1
Column 1 2 o 1
Max
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Paytable for 2 cards: {1,2},
and with bet size b=2.

Row maximin = Column minimax = o
So there are TWO pure NEs.

In both of them,
= Player 1l calls if her card is “2” and
folds if her card is "1, while

- Player | always checks in the first
strategy, and checks if his card is “1”
in the second strategy.

This is not very interesting,
since the expected gain
(value of the the game) is o.



Let’s fix the bet size b = 2, and consider the pure NEs for other n cards.

e If the card has only 2 cards, vnNE (2, 2) ; gives

0,12}] and [{2}, {2}]

e vnNE (3, 2) ; isequally boring, giving the two trivial pairs [¢, {3}] and [{3}, {3}]

e vnNE (4, 2);, vaNE (5, 2;), and vnNE (6, 2) ; are even more boring, they
are empty! That is, there is no pure NEs.

> VnNE (2,2) ;
{[{ 7. {2301 [{2}. {2}. 01}
> VnNE (3,2) ;
{[{ 3. {33 0L[{3}. {301}
> VnNE (4,2) ;
{7}
> VnNE (5,2) ;
{}
> vnNE (6,2) ;

{3

14



Maple package: https://sites.math.rutgers.edu/~zeilberg/tokhniot/FinitePoker.txt.

2] < 0 sites.math.rutgers.edu @ 0 M o+ @

von Neumann and Newman Pokers with Finite Decks

By Tipaluck Krityakierne, Thotsaporn "Aek" Thanatipanonda, and Doron Zeilberger

pdf .tex

First Written: July 22, 2024.

John von Neumann and Donald J. Newman proposed, and brilliantly solved, toy models of poker where the cards are drawn from an infinite deck (in fact very infinite, the set of real numbers from 0 to 1). We show the
power of bolie ion by i ing, and experil ing with, these models for finite decks of cards.

Pictures

John Nash and friends

Also See pictures,

Maple packages

o FinitePoker.txt, a Maple package for finding pure and mixed Nash Equilbria for poker with a finite number of cards, doing it completely ab initio

o ThreePersonPoker.txt, a Maple package for studying three person poker in the footsteps of John Nash

Sample Input and Output for FinitePoker.txt

o If you want to see ALL pure Nash equilibria (and one mixed one) for von Neumann poker with number of cards from 2 to 10, and bet sizes from 1 to 5 and one mixed one
the input gives the output.

If you want to see ALL pure Nash equilibria, and one mixed one, for von Neumann poker with number of cards from 2 to 11, and bet sizes from 1to 3
the input gives the output.

If you want to see ALL pure Nash equilibria and one mixed one, for von Neumann poker with number of cards from 2 to 27, and bet size 2 only using suggested strategies
the input gives the output.

If you want to see ALL pure Nash equilibria and one mixed one, for DJ Newman poker with number of cards from only using suggested strategies
the input gives the output.
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https://sites.math.rutgers.edu/~zeilberg/tokhniot/FinitePoker.txt

Payoff Matrix for n = 4 cards, Best size b = 2

Row | Paytable for 4 cards: {1,2,3,4},
Strategy 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 Min and with bet size b=2.
1 0 0 0 0o o 0 0 0o o 0 0 0 0 0 0 0 Q<
2 2 Y2 ye 16 (6 16 16 e -6 -6 -6 -6 -1/6 -16  -12 -2
3 312 Y3 0 0 Y2 16 16 0 0 3 16 e e -3 -6 Strategy  Player | bets if... | Player Il calls if...
4 6 Y3 Y3 e e 12 Y3 0 Y3 0 -6 12 16 0 0 116 L ¢
5 0 6 16 16 0 Y3 Y3 e 13 (6 1/.6 2 Y3 B (3 12 O(— : =
6 566 1 12 e (48 23 Y3 Y3 -6 -6 -2 O 0 -3 Ee -2/3 j :z
7 2)3 56 142 13 0O 2)3 12 16 16 -6 Y3 Y3 0 -6 <12 13 : @
8 2 23 Y3 Y3 (e 12 Y2 Y3 16 0 0 Y3 16 Y6 -6 0 6 a2
9 2 5/6 2/3 16 -6 1 Y2 16 Y3 0 Y2 23 Y3 6 -3 0 7 1,3}
10 Y3 23 12 16 O 56 12 13 13 (16 -6 23 12 16 0O 13 8 0, 4}
1 e w2 w2 o e s 2 e @B @) o 1w @B B (23 ° 3
12 1 43 56 13 0 706 2/3 Y3 16 -6 -2/3 Y2 16 -3 -5/6 -2 i o
13 5/6 7/6 2/3 Y3 (16 1 2)3 (12 16 0 A3 12 Y3 o -2 -6 :12 :13 :)3)
14 2)3 1 2/3 (12 o0 1 56 13 12 0 -6 56 Y3 e -6 16 13 024
15 71721 566 13 -6 4/3 56 Y3 (2)3 ‘e -3 (7/6 (23 16 0O 12 14 3,4}
16 1 32 1 172 o 32 1 Y2 12 0 -2 1 172 0 -2 0 15 {2, 3,4}

16 {1,2,34)

" U Y

Rowy Matkini) =Q 7 £ No pue ME!
Yo

v minima X =
16 G



But now comes a nice surprise, vnNE (7, 2) ; gives three pure, non-trivial, NEs.

e For all of them Player I bets if his card belongs to {1,6,7}. Player II calls if
her card is in {3,6,7}, {4,6,7}, or {5,6,7}. The value of the game is =

21"

e So with 7 cards we already have bluffing! If Player I has the card labeled 1,
he should bet even though he would definitely lose the bet if Player II calls.

> vnNE(7,2) ;

{{{1:61}:{3:6}}:5“{1:6:?}:{4=6:7}=i}=[{1=6=7}={5=6=7}=2-—J}

Moving right along, vnNE (8, 2) ; also gives you three pure NEs.

e For all of them Player I bets if his card belongs to {1, 7,8}, but Player II calls
if her card is in either {4,7,8}, {5,7,8}, or {6,7,8}. The value of the game is
2%, getting tantalizingly close to von Neumann’s %.

> VnNE (8,2) ;

3 3 3
{[{1: 7.8} {4 s‘:ﬁ:ﬁ}:[{l: 7.8}.{5.7. 8}=§]=[{1: 7.8}. {6. f:S}:E}}
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» Curse of dimensionality!

Since the size 2" by 2" of the payoff matrix grows exponentially, and we did not
make any plausibility assumptions, there is only so far we can go with this naive
vantlla approach.

But nine cards, with 512 x 512, paytable are still doable.
Indeed, vnNE (9, 2) ; gives you seven pure NEs in this case.

e For all of them S; = {1,8,9}, but Player II has seven choices, all with four
members, including, of course, {6,7,8,9}.

> VnNE (9,2) ;

{[{L&Q}:{3,6,8,9},3},[{1=8=9}={3,7,8,9},%},[{1=8=9}= {4,6,8,9},%},[{1=8=9}= {4,7,8,9},3},

{{L&QL{S: 6. s=9}=ﬂ{{1=&9}:{5= 7. 8=9}=ﬂ[{1=8=9}:{6= 7. s=9}=ﬂ}

18



»» Mixed NEs

Mixed Strategy: A strategy where a player randomizes over two or more pure
strategies, assigning a probability to each option.

Expected Payoff: The anticipated value of a player’s payoff, calculated as the
sum of possible payoffs, each weighted by its probability of occurrence.

Nash Equilibrium: A situation in a game where no player can benefit by changing
their strategy while the other players keep theirs unchanged.

von Neumann’s Theorem (1928): Every finite two-person zero-sum game has
at least one Nash equilibrium in mixed strategies. They are the maximin mixed
strategies.

19



»» Mixed NEs via Linear Programming

e The study of mixed strategies in two-player zero-sum games can be elegantly
formulated as a primal-dual linear programming (LP) problem.

e A mixed strategy involves each player choosing optimal actions according
to a probability distribution, introducing uncertainty.

e An equilibrium solution to this dual pair of linear programs reveals optimal
mixed strategies (mixed NE) for both players.

e Given the 2" by 2" payoff matrix (m;;) as input, Player I aims to maximize
his worst-case expected gain, minimizing over all possible actions of Player II.

20



Zxi=1,

e
0<% <

Mixed strategies for n = 2 cards | £xi!
g ) Y\alﬂ&r 1
Player Il
plays with
probabilities
Player |
plays with Strategy
probabilities
S1={}
x1 Always Check o o
S = {1}
x2 Bet if “17, -1 -1
Check if “2”
S =12}
x3 Bet if “2”, o 1
Check if “1”
S1 = {112}
x4 Always Bet -1 o

21
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0&7y; <1



Mixed strategies for n = 2 cards
® Let x = (x1, 9,23, x4) be the mixed strategy probability of Player I.

o Let y = (y1,¥2,¥s3,vs) be the mixed strategy probability of Player II.

y1 y2 y3 ya

Strategy 1l 2 ‘ 3 4
x1 1 miy mip mi3 Mg
x2 2 Ma1 Moy Ma3 Moy
X3 3 ms; m3y ms3 m3y
X4 a4 ™My M4 M43 My

Player I (Primal problem=Maximin the Payoff):

4 4 4 4
max min E LM, E Lq1M2, E Z;1M3, E L1Mi4
T1+x2+x3+x4=1 : 2 : :

0<z;<1

Player II (Dual problem=Minimax the Loss):

4 4 4 4
min max E miiy; E Mol E M3l E MA;Yi
e b a1 : 197> ¢ 1950 £ L 343
J=1 Jj=1 J=1 Jj=1

0<y,; <1

22



» Slow LPs for mixed NE

Player I (Primal problem):

o

min E Timy, E ZiM;2, E Z;m;s, E TiMmiy
z1+x02+23+z4 1

Player II)(Dual problem):

min
y1+y2+y3+y4 1
0<y;<1

4 4 4 4
{3 S 3 |
j=1 =1 =1 =

Primal: Maximize v,

gn
s.t. Z T; - Mij > v for ] = 1, ,2”
i=1
on
S o=
i=1
r; >0 fori=1,..,2".
Dual: Minimize v
on
s.t. Zmij cy; <wp fori=1,..,2"

Jj=1

=
doy=1
j=1

y; >0 forj=1,..2"

By the minimax theorem at an equilibrium, v; = vy = v*, which represents the value of the

game.
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We have implemented the above LP procedure in MNE (M, S1, S2).

For example, when n = 4 cards and b = 2, type:

M := PayTable(4,2)[1]:
S1 := Stral(4):
S2 := Straz2(4):

MNE (M, S1, S2) ; gives outputs:

[ {[{4}, 1/271, [{1,4}, 1/2]}, {[{4}, 1/27, [{2,4}, 1/2]}, 1/12 ]
Translation:
e The value of the game is 1/12 (last entry).
e Player I has two strategies specified within the first set of braces:

— with probability 1/2, bet if his card is 4 and check if his cards are 1, 2, or 3;
— with probability 1/2, bet if his card is 1 or 4 and check if his cards are 2 or 3.

e Player II has two strategies specified within the second set of braces:

— with probability 1/2, call if her card is 4 and fold if her cards are 1, 2, or 3;
— with probability 1/2, call if her cards are 2 or 4 and fold if her cards are 1 or 3.

24



We call the above approach “Slow LP” procedure because it is really SLOW!

Due to the exponentially large size of the matrix, it restricts us from considering more than 6-7
cards without the inconvenience of reducing the dominated rows/columns of the payoff matrix.

This is worse than the vanilla approach. ®

Question: Is it possible to reduce the number of constraints?

25



» Fast LPs for mixed NE

The answer is Yes!
Trick: Focus on the “card-by-card” strategies rather than the “all-cards” strategies.

With this formulation, we can reduce the number of constraints from exponential to linear.

Let’s explore how this works...

26



Card-by-card strategies

e A strategy for Player I is given by a vector P = [py,...

— if his card is ¢, bet with probability p;,
— and check with probability 1 — p;.

e A strategy for Player II is given by a vector O = [q,

— if her card is j, call with probability ¢;,
— and fold with probability 1 — ¢;.

27
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» Fast LPs for mixed NE of Player I

Each sets of constraints Player I corresponds to the expected payoff (over distribution P), condi-
tioned on the card that Player II has and whether she calls or folds:

n
.1
Maximize — E vj
n

j=1
st —— Y (call(,j,b+1) <pi+Call(i,j,1) < (1= pi)) > v; (j=1,...,n (Player II calls)
i
— > (pi +call(i,j,1) < (1= py)) > v; (j=1,...,n(Player II folds)
i
0<p; <1 i=1,...,n, (VN-I)
where

R ifi>j
—R ifi<j.

Call(i,j,R) = {

28



» Fast LPs for mixed NE Player 11

Similarly, for the Fast LP for Player II, the constraints are calculated based on the expected loss
(over distribution Q), conditioned on the card that Player I has and whether he raises or checks:

S.t.

n
.1
Minimize — E v;
n

i=1
1
— ) (call(i,j,b+1) «g; +(1=gj) < v i=1,...,n (Player I raises)
J#1
1 .. .
— %;Call(z,], 1) <wv; i=1,...,n (Player I checks)
0<¢g; <1 j=1,...,n. (VN-II)
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With 3 cards and bet size 1, typing lprint (vnMNE (3, 1)) ; outputs:

[ 1/18, .5555555556e-1, [1/3, 0, 11, [0, 1/3, 171 1
Translation:

e The value of the game is 1/18.
e Its value in decimals is 0.055555. . ..

e Player I's strategy is: If your card is 1, bet with probability % and check with probability %
If your card is 2 then definitely check, while if your card is 3 then you should definitely
bet.

e Player [I's strategy is: If your card is 1, definitely fold, if your card is 2, call with probability
% and fold with probability %, while if your card is 3 then definitely call.

So already with three cards, Player I should sometimes bluff if his card is 1, but only with probability
1

3
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Note that a pure NE is also a mixed one, and indeed sometimes we get pure NEs. For example,
lprint (vnMNE (9, 2)); gives:

[ 1/9, .1l111111111, (1, O, O, O, O, O, O, 1, 11, [O, O, O, O, O, 1, 1, 1,
11 7.

Translation:

e The value of the game is 1/9.

e The value of the game in floating-point is 0.111111111. ...
e Player I: Bet iff your card is in {1, 8, 9}.

e Player II: Call iff your card is in {6,7,8,9}.

e This was so much faster than the “vanilla” approach for pure NEs.

e With this fast LP formulation, we can handle more than 200 cards now.
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» Three-player Poker Game

e As early as 1950, future Economics Nobelists, John Nash and Lloyd Shapley, pioneered the
analysis of a three-player poker game.

e They explored a simplified version where the deck contains only two kinds of cards, High and
Low, in equal numbers.

e Today, eighty years after von Neumann’s 1938 analysis of poker, the dynamics of the three-
player game therein remain unexplored.

e We now take the opportunity to analyze these dynamics in both their finite and infinite
versions.
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» Three players, Finite deck

I

Check

One Call,
One Fold

+(b+2) +2
or —(b+1) Fig: Betting tree

+2(b+1)
or—(b +1)
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» Three players, Finite deck

e While the two-player game can be solved using LP, here we require NLP.

e The NLP formulation for the three-player game closely follows the LP model for the two
players.

e Each player aims to minimize their expected loss, or the expected gain of the
other players.

Assume we are given'3-D payoff matrices (M Ll=1,2, 3) for the three players:

My = (mi,) where 7,7,k =1,2,...,2"

e E.g, given Player I's payoff matrix M?!, Players II and I1] attempt to minimize the maxi-
mum potential loss incurred due to Player I’s choices.

— This involves constraints that utilize matrix M! and the probability distributions
Y= (y1,...,y2n) and z = (21, ..., zon) of Players II and [II.

— These are embedded in the first set of constraints in the NLP formulation, which we
will now formulate.
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»» Slow NLP for three players

3

Minimize E v
271/
s.t. E m}jk gy <ol fori=1,2,..2"
jk=1

27L
§ miy o wp ez <0 (for j=1,2,.2"
ik=1

2n
Z miy - wi -y <o dork=1,2,..,2"

,j=1

2" 2n "
inzl, Zyj:l’ Z,Zkzl
i=1 j=1 k=1

xi, Y,z >0 fore, g, k=1,2,..,2"

Yet, this is SLOW!
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Remark: NLP of three players can be reduced to LP of two players

Three players (NLP)

3
Minimize Z o —> Nimmze
=1 Two players

il Player II's LP
s.t. Zm,}jk‘yj'ZkS’Ul fori—12..2 ( y )

Jisk=1 Dual: Minimize vy

2n on

Z miy -z 2 <v* for j=1,2,..,2" 6. ) my -y <vy fori=1,.,2"
i,k=1 j=1

2n on

Z MY <v>—for k=12,7:2" Zyj =1
1,j=1 j=1

2n 2m 2m e n

yi =0 forg—1,..,2".
i=1 j=1 k=1

zi, Y5,z >0 fori,j,k=1,2,..,2"
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» Fast NLP for three players: Card-by-card strategy

e Strategy for Player I is given by a vector P = [py, ..., p,], indicating that if his card is 7, he
bets with probability p;, and checks with probability 1 — p;.

e Strategy for Player II is given by a vector Q = [qy, .. ., ¢,], indicating that if her card is j, she
calls with probability ¢;, and folds with probability 1 — g;.

e Similarly, a strategy for Player I11 is represented by a vector R = [r, ..., ., following the
same interpretation as Player II.
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» Fast NLP for three players: Objective function

n

n n
e . 1 1 1 2 1 2
Minimize — E v, + — E v+ — g O
n n LN
c=

c=1 S ce=1

Overview of Constraints:

e The Fast NLP contains three sets of constraints—one set for each player—corresponding to
minimizing the expected loss of the other two players over the pairs of distributions @ — R,

PR orP -0

e For each player | = 1,2, 3, there are two sets of constraints depending on the card that Player
[ has and whether they follow their first strategy or the second strategy
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» Fast NLP for three players
Two sub-procedures:

e Call2 is used to calculate the payoff if either Player II or Player III decides to fold, leaving
only two players (one of whom is Player I) to compare their cards. Let us assume that Player
I1T folds. Then,

R+1 ifi>j
Call2(i,j,R) = * 1 Z ‘7
-R if 1 < j.

e Call3 is used to calculate the payoff when all the three players are comparing their
cards:

2R ifi>jandi >k

Call3(i,j,k,R) = {—R ifi<jori<k
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» First set of constraints due to Player I

Players IT and II try to minimize their expected loss due to Player 1.

1
g 2 2 Cal3 ik ) S el =

i ki

(n = 1>1(n —2) (Z > Call3(i,j,k,b+ 1) @i

JF ki

(Player I checks)

+Call2(i,j,b+1) g (1 —rx) + Call2(i, k,b+ 1) (1 — g) 1%

+2(1—qj)-(1—rk)> <wv, i=1,...,n
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(Player I bets)



®» Second set of constraints due to Player I1

Players I and III try to minimize their expected loss due to Player II.

1 . . .
(n—1)(n—2) YD (Fpitcalld(iik ) (1=p)) <vi j=1...n
i£] ki

— 1)1(n 5 (Z > call3(j i kb+1)p;

i#] k#i,j

J

(Player 1II folds)

+call2(j,i,b+ 1)~pl--(1—rk)—|—Ca113(j,i,k:,1)~(1—pz’)> <v: j=1,...,n
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(Player II calls)



®» Third set of constraints due to Player II1

Players I and II try to minimize their expected loss due to Player III.

1
= 1D(n—2) Z Z ($pi+cCall3(k,i,j,1) (1 —p)) <vi k=1,...,n ((Player Il folds)
itk jik

(n— 1)1(n —2) (Z > cal1s(k,i,j,b+1) - pi g

itk jik
+ Call2(k,i,b+1)-p;i- (1 —gqj)+ Call3(k,i,j,1) (1 _pi)> <vi k=1,...,n
(Player IIT calls)

0<pi,q,m<1 t,5,k=1,...,n
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Assume that Players II and III adopt identical strategies.
With 4 cards, and bet size 1,

FastMNE (4, 1) ;
gives

[ [0, 1/24, -1/48, -1/481, [2/3, O, 0, 11, [0, O, 1/4, 11, [0, O, 1/4, 1]
1.

Translation:

e The value of the game (for Player 1) is 1/24, while for Players II and III are -1/48 each.

e Player I's strategy is: If your card is 1, bet with probability of % and check with probability
%. If your card is 2 or 3, then definitely checks; if your card is 4, definitely bet.

e Player [I’s and Player [1] s strategies are: If their card is 1 or 2, they definitely fold. If their
card is 3, they call with probability of % and fold with probability %. If their card is 4, they
definitely call.
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Another example, with 10 cards, and bet size 2,
FastMNE (10, 2) ; produces

[ [0, 106/1125, -53/1125, -53/1125], [l16/19, O, O, O, O, O, O, O, O, 11,
(, o, o, 0, o, o, 3/25, 1, 1, 11, [0, O, O, O, O, O, 3/25, 1, 1, 11 1.

Translation:

e The value of the game (for Player 1) is 106/1125, while for Players II and III are -53/1125
each.

e Player I's strategy is: If your card is 1, bet with probability of % and check with probability
1%. If your card is 2 to 9, then definitely checks; if your card is 10, definitely bet.

e Player [I’s and Player [11 s strategies are: If their card is 1 to 6, they definitely fold. If their
card is 7, they call with probability of % and fold with probability % If their card is 8 to
10, they definitely call.
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Another example, with 24 cards, and bet size 2,
FastMNE (24, 2) ; produces

[ [0, 1106/9547, -553/9547, -553/9547],

Translation?

Extension to a continuous model?

A<C<B
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» Extension of von Neumann’s continuous model to three players

One Call,

2(b 1) One Fold
+2(b+

A +(b+2)
or—(b +1) or —(b+1)

Check

+2

Bet ,
1

Check

Bet

A

Fold

Call

A<C<B

IT,
III

e Each of the three players contributes 1 dollar to the pot and receives independent uniform(0,1)

hands.

e Player I has the option to check or bet a fixed amount b, while Player II and

only call or fold.
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Determining the NE strategies

. Bet |, Check ! Bet | T

1 1 1 1

0 A B 1

. Fold , Call | IT,

0 c 1 ITI
A<C<B

For numbers A, B, C, yet to be determined,

e Player . If 0 < x < A or B < x <1 he should bet, otherwise check.

e Player II and [11: If 0 < y < C' they should fold, otherwise call.
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The Principle of Indifference states that, in mixed strategy Nash equilibria, players are indiffer-
ent between their available strategies because each strategy yields the same expected payoff.

Theorem 2 (The Equilibrium Theorem). Consider a two-player, zero sum game with nq X ny payoff
matriz M and value of the game v. Let x = (x1,...,xy,,) be a mized strategy probability of Player I
andy = (Y1, ..., Yn,) be a mized strateqy probability of Player II. Then,

Z TiMyj = U for all j for which y; > 0.

and

Z miy; = v for all i for which x; > 0.
j=1

Theorem 2 is useful for helping direct us toward the solution:

e Player I searches for a strategy x = (1, ...,,,) that makes Player II indifferent as to which
of the (good) pure strategies to use.

e Player I should play in such a way (searching fory = (y1, ..., yn,)) to make Player I indifferent
among his (good) strategies.

This is called the Principle of Indifference.
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Assume 0 < A < C < B. To determine the cut points A, B and C' we solve three indifference

1

equations as follows.
. Bet , Check ,  Bet | T
0o A 8 1
@ For Player I to be indifferent at A: , Fold . call , IT,
0 c 1 III
(a) (If Player I checks at x = A, his expected payoff is
\/ 2Y<% JXE sy 4

A A A
.
&S ndt Maw“mi //2dzdy+// 1dzdy+// 1dzdy ©)
0 0 0 4 0

4 (b) (If Player I betsiat # = A, his expected payoff is
'H_'FOHgl E (M\\SbW”&
1 1

ORIC)

[$} d 1

0 C

>z

Equating the two expressions above yields the following equation:

342 -1 =3C%*+bC?* —b—1.
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. Bet , Check Bet
) T

A ; 1T
@ For Player I to be indifferent at B:
. Fold , Call  IT,
(a) If Player I checks at x = B, his expected payoff is ° ¢ LI
\/ B B B 1
dees pet watter wak //dedy + // ldzdy + // 1dzdy
5, 1L does 0 0 0
(b) If Player I bets at x = B, his expected pa;\ioff is . Lo
: dd call A fu\
MH‘D{ 1PC cé[ X’B C B B
//2dzdy+// (b+2) dzdy—i—// (b+2) dzcly—l—//Q (b+ 1)dzdy
0 0 c 0 c c
\1 B COJL
+// (b+1 dzdy—l—// (b+1) dzdy+//—(b—|—1)dzdy
0 B B
z<><< 9<'>C<t x<yz ,lod”‘“’"u“
Equating the two expressmns above yields the following equation:
3B* — 1= —2bCB + 3bB*>+3B* —b— 1. (Eq. B)
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Bet , Check ,  Bet
T

I } { I
0 A B 1
@ For |[Player II| (or Player 11I) to be indifferent at C:
Assume that Player I bets. r o + = 1 gI
(a) If Player II folds at y = C', her expected payoff is
A1
o %‘uﬁ
\70\\09( // —ldzdx + // —ldzdx
00
(b) If'Player II calls at y = C, her expected payoff is
//b+2dzd:v—|—// b+1dzd:c+// (b+ 1)dzdx
o E <)
0 0 B 0
Equating the two expressions above yields the following equation:
—A+B—-1=20CA+3CA—-bA—-—A—-b+bB+ B —1. (Eq. C)
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Solving the above non-linear system of three equations in three unknowns gives us the solutions
for A, B and C for the Nash equilibrium strategies.

In particular, when b = 2, Optimal (2) ; returns:

A =0.137058194328370
B = 0.829422249795391
C = 0.641304115985175.

This results in the value of the game (for Player I) being 0.122557074714865.

Further discussion

e We can also determine the best bet amount b, that maximizes Player I’s payoff under the Nash

equilibrium strategies. Approximately, b* ~ 2.07, resulting in Player I achieving a maximum
payoff of 0.122590664136184.

e Therefore, we observe that the highest payoff for Player I in the three-player game exceeds
that of the von Neumann’s two-player game, which is 1/9 = 0.111111 achieved at b* = 2.

e Finally, Nash equilibrium for the three-player continuous game resembles those observed in
the discrete model when n is large.
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Then & Now: von Neumann’s House

Z

ézﬁl Hl

i /

Klara and John von Neumann outside their Princeton home,
from Klara and the Bomb, © Crystal Bennes.

Right:  Standing at the doorstep of genius,
captured by current owner Karen Reid on May 31, 2024.
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