Combinatorial Proofs of Capelli's and Turnbull's Identities from Classical Invariant Theory

Dominique Foata and Doron Zeilberger Errata for Version 21 Sep 1993

0. Introduction

• "Turnbull" is misspelt "Turnbulll" in the first paragraph of the article.

1. The Capelli identity

- In the second line of §1, you write $o_{i,j}$, meaning $p_{i,j}$ obviously.
- When you introduce the $x_{i,j}$ and $p_{i,j}$, it might be good to tell what h is. The important thing is to say that h must commute with all $x_{i,j}$ and all $p_{i,j}$. This is, of course, obvious to anyone who knows where the h comes from, but I am sure Ekhad would have troubles reading the paper without an explicit statement that $hx_{i,j} = x_{i,j}h$ and $hp_{i,j} = p_{i,j}h$...

Combinatorial Proof of Capelli's Identity

- In the sentence "The weight w(G, K) will be defined in the following way: consider the single monomial introduced in (1.3); if *i* belongs to *K*, drop $x_{b,i}$ and replace $p_{b_{i},i}$ by *h*; if *i* belongs to $I \setminus K$, drop $x_{b,i}$ and replace $p_{b_{i},i}$ by $x_{b_{i},i} p_{b_{i},i}$.", you should replace $x_{b,i}$ by $x_{b_{i},i}$ two times.
- In the formula

$$w(G,K) = \left(\prod_{i \in K} D_i \prod_{i \in I \setminus K} \Delta_i\right) w(K),$$

the w(K) should be a w(G).

You give two definitions of the term w (G, K): (1) "The weight w(G, K) will be defined in the following way: consider the single monomial introduced in (1.3); if i belongs to K, drop x_{b,i} and replace p_{bi,i} by h; if i belongs to I \ K, drop x_{b,i} and replace p_{bi,i} by k; if i belongs to I \ K, drop x_{b,i}

$$w(G, K) = \left(\prod_{i \in K} D_i \prod_{i \in I \setminus K} \Delta_i\right) w(K)$$

None of these definitions extends to the symmetric case (i. e. to the proof of Turnbull's Identity). In (1), it becomes unclear whether to drop all $x_{b,i}$ (or just one $x_{b,i}$) and to replace all $p_{b_i,i}$ (or just one $p_{b_i,i}$) by $x_{b_i,i} p_{b_i,i}$. In (2), the differentials $\frac{\partial}{\partial p_{b_i,i}} \frac{\partial}{\partial x_{b_i,i}}$ in the definition of Δ_i lead to extra coefficients of 2 before the monomials (because the variable $p_{b_i,i}$ may appear twice in the monomial, and

 $\frac{\partial}{\partial p_{b_i,i}} p_{b_i,i}^2 = 2p_{b_i,i}$). The correct definition that works for both the Capelli and the Turnbull proofs is this here: In order to obtain w(G, K), do the following:

- write out the term w(G) as a product of $x_{i,j}$, $p_{k,\ell}$ and h;
- move all the $x_{i,j}$ to the left, all the $p_{k,\ell}$ to the middle and all the h to the right (so the term looks like $x_{i_1,j_1}x_{i_2,j_2}...x_{i_u,j_u}p_{k_1,\ell_1}p_{k_2,\ell_2}...p_{k_v,\ell_v}$ after the moving) *ignoring* the fact that $x_{i,j}$ and $p_{i,j}$ don't commute (just do as if they commute);
- for each $i \in K$: remove one $p_{b_i,i}$ and one $x_{b_i,i}$ from the product (which one doesn't matter, since all $x_{i,j}$ commute with each other, and so do all $p_{k,\ell}$), and insert a h at the end of the product.

The resulting term is w(G, K). (Not exactly what you call w(G, K), but it has the same value, because $x_{i,j}$ commutes with $p_{k,\ell}$ whenever $(i, j) \neq (k, \ell)$.)

- In many places throughout the text, you are rather inconsistent about whether multiple indexes are to be separated by commata or not. For example, you write: "The simple drop-add rule just defined guarantees that no $p_{i,j}$ remains to the left of x_{ij} in any of the weight w(G, K)."
- You write: "Let i = i(G, K) be the greatest integer $(1 \le i \le n 1)$ such that either *i* a link source belonging to *K*, or the *i*-th column has an entry equal to 1 on the last row." Here, "either *i*" should be "either *i* is".
- You write: "Hence, as i is in K, but not in K', the operator D_i (resp. Δ_i) is to be applied to w(G) (resp. G') in order to get w(G, K) (resp. w(G, K')), so that:" Here, w(G, K') should be w(G', K'), and "resp. Δ_i" should be "resp. nothing" (because i is not a link source in G').
- Here is the main issue I am having with this proof: The derivation of (1.6) in the first case. It is morally true, but needs more details in order not to fail in some cases. Your formulae

$$|w(G, K)| = \dots x_{b_i,a_i} h \qquad \dots p_{b_i,j} \qquad \dots$$
$$|w(G', K')| = \dots h \qquad \dots x_{b_i,a_i} p_{b_i,j} \qquad \dots$$

are not always correct. The exception is when there is an "anti-link" (k, i) in G, by which I mean a pair (k, i) with i < k satisfying $d_i = d_k = 0$ and $(b_k, k) = (b_i, a_i)$. This is almost the same as a link with the only difference that i < krather than k < i. The problem is when i < k < j, because in this case this anti-link (k, i) of G gives rise to a link (not anti-link) (k, j) in G', so the number k, which was not a link source in G, becomes one in G', and therefore we need to apply the operator Δ_k to w(G') in order to obtain w(G', K') (while we do not have to apply the operator Δ_k to w(G) in order to obtain w(G, K)) And as a consequence, in your formulae

$$|w(G, K)| = \dots x_{b_i, a_i} h \qquad \dots p_{b_i, j} \qquad \dots$$
$$|w(G', K')| = \dots h \qquad \dots x_{b_i, a_i} p_{b_i, j} \qquad \dots$$

the middle ... terms are not as equal as they look like. And this is not surprising, because these middle terms have a p_{b_i,a_i} in them, so if they were equal, |w(G, K)| and |w(G', K')| would not be equal (because we cannot move the x_{b_i,a_i} to the right past a p_{b_i,a_i})!

Fortunately, this is the *only* problematic case, and in this case the proof needs only a few minor alterations (luckily, there can be only one anti-link with end i). The proof becomes easier when one defines the term w(G, K) the way I did above, because in that case all the $x_{i,j}$ stand before all the $p_{k,\ell}$, so we get

$$|w(G, K)| = \dots x_{b_i, a_i} \qquad \dots p_{b_i, j} \qquad \dots h \dots$$
$$|w(G', K')| = \dots x_{b_i, a_i} \qquad \dots p_{b_i, j} \qquad \dots h \dots$$

which are obviously equal (in |w(G, K)|, the terms $x_{b_{i,i}}$ and $p_{b_{i,i}}$ were removed and replaced by h because of $i \in K$).

- You write: "As before, w(G) and w(G) have opposite signs." The second G here is actually a G'.
- Directly after this sentence, you show that (1.6) holds in the second case, too. I don't think it is necessary - instead it is necessary to show that the mapping $G \mapsto G'$ from the second case into the first one is really the inverse of the mapping $G \mapsto G'$ from the first case into the second one. Once this is shown, (1.6) will clearly hold in the second case because it does in the first case.
- The proof can be generalized almost for free. The generalization is this one: Let $x_{i,j}$ be mutually commuting indeterminates for all $(i, j) \in \{1, 2, ..., m\} \times \{1, 2, ..., n\}$. Let $p_{i,j}$ be mutually commuting indeterminates for all $(i, j) \in \{1, 2, ..., m\} \times \{1, 2, ..., n\}$. Assume that $x_{i,j}$ commutes with $p_{k,\ell}$ for all i, j, k, ℓ unless $(i, j) = (k, \ell)$, and assume that $p_{i,j}x_{i,j} - x_{i,j}p_{i,j} = h$ for some h that is independent of i, j and that commutes with all $x_{i,j}$ and with all $p_{i,j}$. For every positive integer n and for $1 \leq i, j \leq n$ let

$$A_{i,j} = \sum_{k=1}^{m} x_{k,i} p_{k,j} + h (n-i) \,\delta_{i,j}.$$

Let X denote the matrix $(x_{i,j})_{1 \le i \le m, 1 \le j \le n}$, and let P denote the matrix $(p_{i,j})_{1 \le i \le m, 1 \le j \le n}$. Then

$$\sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) A_{\sigma 1,1} A_{\sigma 2,2} \dots A_{\sigma n,n}$$

=
$$\sum_{1 \le j_1 < j_2 < \dots < j_n \le m} \det (\text{the submatrix of } X \text{ consisting of the rows numbered } j_1, j_2, \dots, j_n \text{ only})$$

· det (the submatrix of P consisting of the rows numbered $j_1, j_2, ..., j_n$ only).

(Of course, this means that $\sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) A_{\sigma 1,1} A_{\sigma 2,2} \dots A_{\sigma n,n} = 0$ for m < n and that $\sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) A_{\sigma 1,1} A_{\sigma 2,2} \dots A_{\sigma n,n} = \det X \cdot \det P$ for m = n.)

The proof is just your proof up to a small correction: In the case d = 0 (resp. $d_i = 0$), the number b (resp. b_i) should be allowed to range from 1 to m rather than from 1 to n

2. A Combinatorial Proof of Turnbull's Identity.

- In the statement of Turnbull's Identity, you say "their entries satisfying the same commutation rules". Of course, not *literally* the same, because while $x_{i,j}$ commuted with $p_{k,\ell}$ for all i, j, k, ℓ unless $(i, j) = (k, \ell)$ in the Capelli case, in the Turnbull case it has the stronger condition "unless $(i, j) = (k, \ell)$ or $(i, j) = (\ell, k)$ ". The same remark relates to the antisymmetric analogues.
- In the proof of Turnbull's identity, you misuse the word "verify" in the meaning of "satisfy". (Was it Foata who wrote this part? This "verify instead of satisfy" mistake is a typical error made by Francophones.)
- In the proof of Turnbull's identity, during the construction of K' in Case 2 (on page 8), you write: "Define K' = K ∪ {(i, j)} in the first subcase and K' = K ∪ {(i, j), (k, i)} \ {(k, j)}." Though it is clear what you want to say here, it wouldn't hurt to add "in the second one" at the end of this sentence.
- Just as the Capelli identity, the Turnbull identity can be generalized: Let m and n be integers such that $m \ge n \ge 0$. Let $x_{i,j}$ be mutually commuting indeterminates for all $(i, j) \in \{1, 2, ..., m\} \times \{1, 2, ..., n\}$ bound only to the relations

 $(x_{i,j} = x_{j,i} \text{ for all } (i,j) \in \{1,2,...,n\} \times \{1,2,...,n\}).$

Let $p_{i,j}$ be mutually commuting indeterminates for all $(i, j) \in \{1, 2, ..., m\} \times \{1, 2, ..., n\}$ bound only to the relations

$$(p_{i,j} = p_{j,i} \text{ for all } (i,j) \in \{1, 2, ..., n\} \times \{1, 2, ..., n\}).$$

Assume that $x_{i,j}$ commutes with $p_{k,\ell}$ for all i, j, k, ℓ unless $\{i, j\} = \{k, \ell\}$, and assume that $p_{i,j}x_{i,j} - x_{i,j}p_{i,j} = h$ for some h that is independent of i, j and that commutes with all $x_{i,j}$ and with all $p_{i,j}$. For every positive integer n and for $1 \le i, j \le n$ let

$$A_{i,j} = \sum_{k=1}^{m} x_{k,i} \widetilde{p}_{k,j} + h \left(n - i \right) \delta_{i,j},$$

where $\tilde{p}_{k,j}$ is defined as $p_{k,j} (1 + \delta_{k,j})$.

Let X denote the matrix $(x_{i,j})_{1 \le i \le m, 1 \le j \le n}$, and let \tilde{P} denote the matrix $(p_{i,j} (1 + \delta_{i,j}))_{1 \le i \le m, 1 \le j \le n}$. Then

$$\sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) A_{\sigma 1,1} A_{\sigma 2,2} \dots A_{\sigma n,n}$$

$$= \sum_{1 \le j_1 < j_2 < \dots < j_n \le m} \det (\text{the submatrix of } X \text{ consisting of the rows numbered } j_1, j_2, \dots, j_n \text{ only})$$

· det (the submatrix of P consisting of the rows numbered $j_1, j_2, ..., j_n$ only).

(Of course, this means that $\sum_{\sigma \in S_n} \operatorname{sgn}(\sigma) A_{\sigma 1,1} A_{\sigma 2,2} \dots A_{\sigma n,n} = \det X \cdot \det \tilde{P}$ for m = n.)

The proof is just your proof up to a small correction: In the case d = 0 (resp. $d_i = 0$), the number b (resp. b_i) should be allowed to range from 1 to m rather

than from 1 to n.

Note that this generalization easily yields the formula (11.2.7) in your reference [H-U] (while the Turnbull identity itself doesn't).

3. What about the Anti-symmetric Analog?

- In the statement of the Howe-Umeda-Kostant-Sahi Identity, I bet you want $x_{i,i} = 0$ and not only $x_{i,j} = -x_{j,i}$. (Or are you working over a field of characteristic 0 all the time? It is not quite clear.)
- A formula is labelled (1") on page 9. This seems out of place; probably (3.1) would be more appropriate.
- In the statement of Turnbull's Anti-Symmetric Analog, you write "be an anti-symmetric matrices". The "an" is misplaced here.

References

• The right page numbers for [T] are p. 76-86.