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Dear Professor Zeilberger,

I want to record the main points of a proof of Saffari’s conjecture, although written
down somewhat hastily. The method is different from yours. Almost certainly
there are a few typographical errors in the exposition below, but I believe the
mathematics is correct. (It goes without saying that this proof deserves a more
thorough write-up to be more certain of this.)

We recall the inductive definition of Shapiro polynomials: P0(z) = Q0(z) = 1
and
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Let
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which is an element of SU(2) for |z| = 1 and may be seen as a normalized version
of the matrices above. Indeed,(
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We will prove a conjecture of Saffari:

Theorem 1 (Saffari’s Conjecture). For ω a random variable distributed uni-
formly on the unit circle, |ω| = 1,

E
∣∣∣ Pk(ω)√

2k+1

∣∣∣2n ∼ 1

n+ 1

as n→∞.

This characterizes the radial distribution of Pk(ω)/
√

2k+1. Likely this normalized
polynomial is uniformly distributed in the unit circle (the conjecture of Mont-
gomery), but we don’t prove this here.

Noting that Pk(ω) has the same distribution as Pk(ω2), Theorem 1 will be a
consequence of



Theorem 2 (Equidistribution). For ω a random variable uniformly distributed
on the unit circle, the matrix product

g(ω2k

) · · · g(ω)

tends in distribution to Haar measure on SU(2).

The conjecture of Saffari then follows by examining the distribution of g

(
1
0

)
for

g ∈ SU(2) distributed according to Haar measure. (One may use Euler angles
for instance.)

The moral of Theorem 2 is clear; it is that ω, ω2, ..., ω2k

resemble i.i.d random
variables ω0, ..., ωk so that the matrix product in the theorem resembles a random
walk (which may be seen to be supported on no proper subgroup of SU(2) and
to be aperiodic). We shall not prove the theorem using this method however –
instead we take a step backwards and make use of the representation theory of
SU(2).

Indeed, if we can show for every nontrivial irreducible representation π of SU(2)
that

Eπ(g(ω2k

) · · · g(ω) = Eπ(g(ω2k

)) · · ·π(g(ω))→ 0,

then we will have demonstrated the theorem. This is really just a variant of
the moment method in this context, and fortunately the representation theory of
SU(2) is elegant and well understood (see, e.g., Vilenkin’s monograph).

Any matrix of SU(2) has the form

g =

(
α β

−β α

)
,

with |α|2 + |β|2 = 1. Nontrivial irreducible representations are parameterized by
half-integers ` = 1/2, 1, 3/2, ... and consist of the matrices with entries

t`mn =

√
(`−m)!(`+m)!

(`− n)!(`+ n)!

∫
Γ

(αz + γ)`−n(βz + δ)`+nzm−`
dz

2πiz
,

where m,n ∈ {−`,−(`− 1), ..., `}, and the contour Γ is the unit circle. Note that

t`m,n(g(ω)) =

√
(`−m)!(`+m)!

(`− n)!(`+ n)!

(−1)`

2`

∫
Γ

(z + 1)`−n(z − 1)`+nzm−`
dz

2πiz︸ ︷︷ ︸
t̃`mn

ω2n,

with t̃`mn itself a unitary matrix, corresponding to the representation of the matrix
g(1).

If ` = 1/2, 3/2, 5/2, ... then it is transparent that

E t`(g(ω2k

)) · · · t`(g(ω)) = 0,
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for all n ≥ 0, since every entry of the matrix product of which we are taking the
expectation will be a polynomial in ω and ω−1 with only odd powers.

On the other hand, for ` = 1, 2, ... nothing so simple is true. Each entry of

t`(g(ω2k

)) · · · t`(g(ω)) will be a polynomial in ω and ω−1 with even exponents
however, so at least we have

E t`(g(ω2k

)) · · · t`(g(ω)) = Et`(g(ω2k−1

)) · · · t`(g(ω−1/2))

We use the notation:

T `(ω) := t̃`


ω−`

ω−(`−1)

. . .

ω`

 = t`(g(ω1/2)).

In order to show ET `(ω2k

) · · ·T `(ω) → 0 as we must to prove the theorem, we

need only show that all constant coefficients in T `(ω2k

) · · ·T `(ω) go to 0. To this
end we note that following two facts:

i. The matrix entries of T `(ω2k

) · · ·T `(ω) will be polynomials in ω and ω−1,

lying in the span of {ω(2k+1−1)`, ..., ω−(2k+1−1)`}.

ii. The coefficients of ων2k+1

for ν ∈ Z (and in particular constant coefficients)

of T `(ω2k

) · · ·T `(ω) are determined entirely by the coefficients of ων2k

for

ν ∈ Z of T `(ω2k−1

) · · ·T `(ω).

We let P be the space of Laurent polynomials in ω (with complex coefficients) and
define an operator S` on the product space P 2`+1 as follows: if for A ∈ P 2`+1,

T `(ω)A = T `(ω)
[
A−`(ω) · · · A`(ω)

]T
=
[∑

j∈Z β−`(j)ω
j · · ·

∑
j∈Z β`(j)ω

j
]T
,

we define
S`A :=

[∑
j∈Z β−`(2j)ω

j · · ·
∑
j∈Z β`(2j)ω

j
]T

For any v ∈ C2`+1, note that

ET `(ω2k

) · · ·T `(ω)v = E (S`)k+1v.

Moreover, note that if P` = spanC{ω−(`−1), ..., ω`−1}, then S` maps (P`)
2`+1 into

itself. We let S` be the operator S` restricted to (P`)
2`+1. If we show the spectral

radius of S` is strictly less than 1, by a standard argument, we will have therefore
proved the theorem. The remainder of the note is devoted to a proof of this fact.

Let ρ(·) denote the spectral radius of an operator. We note that

i. Because T `(ω) is unitary and S` is just a subsequent projection onto even
polynomials, we have ρ(S`) ≤ 1, and therefore, since S` is just a restriction
of this operator, we have ρ(S`) ≤ 1 as well.
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ii. If S` has an eigenvalue c with |c| = 1, then there must exist non-zero
A ∈ (P`)

2`+1 such that

T `(ω)A(ω) = cA(ω2).

The reason is as follows. From the definition if S` has an eigenvalue with
modulus 1, there must exist non-zero A ∈ (P`)

2`+1 and a polynomial vector
B of dimension 2`+ 1 with

T `(ω)A(ω) = cA(ω2) + ωB(ω2),

by dividing the polynomial vector on the left hand side into odd and even
powers. But because T `(ω) is unitary and A and B have complementary
powers, this implies

E ‖A(ω)‖2`2 = |c| ·E ‖A(ω2)‖2`2 +E ‖B(ω2)‖2`2 = |c| ·E ‖A(ω)‖2`2 +E ‖B(ω)‖2`2
but since |c| = 1 by hypothesis, this implies B = 0.

We therefore will be done if we can show that the only A ∈ (P`)
2`+1 satisfying

T `(ω)A(ω) = cA(ω2) is A = 0. Labelling the coefficients of A, we are looking to
find numbers αh(j) such that

t̃`


ω−`

ω−(`−1)

. . .

ω`



∑`−1
j=−(`−1) α−`(j)ω

j

...∑`−1
j=−(`−1) α`(j)ω

j

 = c


∑`−1
j=−(`−1) α−`(j)ω

2j

...∑`−1
j=−(`−1) α`(j)ω

2j


By coupling coefficients this gives us a system of linear equations. We outline
the proof that the only solution of this system of equations is αh(j) = 0 for all
h, j, the demonstration of which completes the proof Theorem 1. (Written out
more properly, the argument takes a few pages, with some kind of ugly notational
issues that I hope to make better with more thought.)

Let L(ν) be the linear equation in the coefficients αh(j) that results from exam-
ining the coefficient of ων above. Meaningful information is got from L(ν) for
−2` + 1 ≤ ν ≤ 2` − 1. The information we need about t̃` in solving this system
is not very special; we need

i. t̃` is invertible.

ii. |t̃`00| < 1.

iii. t̃` satisfies the following property: if any of the following hold,

t̃`



β−`
...

β−1
0
0
...
0


=



0
γ0

0
γ1

0
...
0


or t̃`



β−`
...

β−1
0
0
...
0


=



γ0

0
γ1

0
γ2

...
γ`


or t̃`



0
...
0
0
β1

...
β`


=



0
γ0

0
γ1

0
...
0


or



0
...
0
0
β1

...
β`


=



γ0

0
γ1

0
γ2

...
γ`


,
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then βi = 0 and γi = 0 for all i.

The claim iii. is the only non-trivial statement here; it follows from using the
explicit calculation of t̃` to show that any of these statements implies a polynomial
identity that is impossible unless βi, γi = 0 for all i.

Using these claims, we examine first the linear equations L(−2` + 1),L(−2` +
3), ...,L(2` − 1). Using i. one can see straightforwardly in this way that the
matrix [αh(j)] (with j constant in columns, and h constant in rows) has 0 entries
along alternating skew diagonals. We now consider L(−2(` − 1)) and see from
iii. that the first column of αh(j) has all 0 entries. We now iteratively consider
L(−2(`− 2)), L(−2(`− 3)), ..., L(−2) to see again from iii. that each of the first
` − 1 columns of [αh(j)] are 0 (being careful to update our information about
which entries of the matrix are 0 with each step of the iteration) and also that
the first 2` − 1 skew-diagonals of the matrix are 0. Proceeding in the opposite
direction, we iteratively consider L(2(`−1),L(2(`−2), ...,L(2) to see in the same
fashion as before that the last ` − 1 rows of [αh(j)] are 0 and the last 2` − 1
skew-diagonals are 0. This process leaves only one entry α0(0) that could be
non-zero, but we can show α0(0) = 0 as well by using property ii.

This argument thus shows that all eigenvalues of S` must have modulus less than
1 and therefore proves Theorem 2 and Saffari’s Conjecture, at least if I have made
no mistake.

Best,
Brad Rodgers
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