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Abstract: Inspired by a recent beautiful construction of Armin Straub and Wadim Zudilin, that

‘tweaked’ the sum of the sth powers of the n-th row of Pascal’s triangle, getting instead of sequences

of numbers, sequences of rational functions, we do the same for general binomial coefficients sums,

getting a practically unlimited supply of Apéry limits. While getting what we call “major Apéry

miracles”, proving irrationality of the associated constants (i.e. the so-called Apéry limits) is very

rare, we do get, every time, at least a “minor Apéry miracle” where an explicit constant, defined

as an (extremely slowly-converging) limit of some explicit sequence, is expressed as an Apéry limit

of some recurrence, with some initial conditions, thus enabling a very fast computation of that

constant, with exponentially decaying error.

Preface: The Major and Minor (but still interesting!) Apéry Miracles

One way that Roger Apéry’s [A] [vdP] seminal proof of the irrationality of ζ(3) could have been

discovered, in a counterfactual world, was to consider, out of the blue, the second-order linear

recurrence

n3un −
(
17n2 + 51n+ 39

)
(2n+ 3) un−1 + (n− 1)3un−2 = 0 ,

and let an and bn be the solutions of that recurrence with initial conditions

a0 = 0, a1 = 6 ; b0 = 1, b1 = 5,

then let the computer compute many terms, evaluate a1000
b1000

to many decimals, and then use Maple’s

identify, and lo and behold, get that it (most probably) equals ζ(3) (i.e.
∑∞
i=1

1
i3 ). Then, still

empirically and numerically, after rewriting an
bn

as
a′n
b′n

, where now both numerator and denominators

are integers (initially bn were integers, but an were not), estimate that there exists a positive number

δ (about 0.0805) such that

|a
′
n

b′n
− ζ(3)| ≤ CONSTANT

(b′n)1+δ
,

that immediately entails (see [vdP]) that ζ(3) is irrational.

Using the terminology that has now become standard (e.g. the titles of [CS] and [SZ]), we say that

ζ(3) is the Apéry limit of the above recurrence, and initial conditions.

The reason that this was a major miracle, as explained so eloquently in [vdP], is that while any

naturally occurring constant that is not obviously rational, e.g. the sum of the series
∑∞
i=1

1
i(i+1) ,

is definitely (in the everyday sense of the word) irrational (there are only ℵ0 rational numbers,

while there are 2ℵ0 real numbers, hence the ‘probability’ of a real number being rational is a (very

small!) 0), it is extremely difficult to (rigorously) prove that a specific constant is irrational.

Witness the fact that, in spite of many attempts, there are still no proofs of the irrationality of

the Euler-Mascheroni constant γ (the limit of the partial sums of the harmonic series minus log(n),

or equivalently −
∫∞
0
e−x log x dx), the Catalan constant C :=

∑∞
i=0

(−1)i
(2i+1)2 , ζ(5) :=

∑∞
i=1

1
i5 (and
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more generally ζ(2i+ 1), for all i ≥ 2). The same is also true for e+ π and e π (but they can’t be

both rational [proof left to the reader]).

This theme is pursued in [Ze2], [Ze3] and much more recently, in [DKZ], [DZ] and [ZeZu], where

the motivation was to discover irrationality proofs of other constants. In [DKZ] there were

quite a few ‘Apéry miracles’, alas, most of them were reproved irrationality of constants that were

already proved irrational (for example, algebraic numbers or logarithms of them) and the novelty

was establishing explicit irrationality measures. This is still interesting, but not exciting. We also

found few other ‘weird’ constants given in terms of products of Gamma values at rational numbers,

that should yield fully rigorous first proofs of explicit constants, but since these constants were

name-less, it gave us neither fame nor fortune.

But the minor Apéry miracle was not number-theoretical but rather numerical-analytical.

Here is an explicitly defined constant ζ(3) :=
∑∞
i=1

1
i3 , in other words the limit of the sequence of

rational numbers {
∑n
i=1

1
i3 }, that converges very slowly to its limit. Realizing it as an Apéry limit,

i.e. coming up with an explicit linear recurrence equation with polynomial coefficients, and

two sets of initial conditions, for which the limit of the ratios (of the emerging two sequences)

converges to that number with an exponentially decaying error. This enables one to compute

the constant in question to many decimal digits. On the other hand, computing it to that accuracy

using the definition would take zillions of years. The purpose of this article is to show how one can

produce lots of other ‘minor Apéry miracles’ where one can express explicitly defined constants,

whose definition entails very slow convergence, as Apéry limits of recurrences and initial conditions

that enables computing these constants with exponentially decaying errors. The key idea is to

introduce what we will call the Zudilin-Straub t-Transform, that generalizes a construction

Armin Straub and Wadim Zudilin discovered [SZ] for the special case of sums of powers of

binomial coefficients.

But before defining the Zudilin-Straub t-transform, let’s define Apéry limit more formally, and also

introduce the new notion of Generalized Apéry limit.

Definition 1: A constant c is an Apéry limit if there exists a homogeneous linear recurrence

with polynomial coefficients
L∑
i=0

pi(n)X(n+ i) = 0 ,

and two sets of initial conditions [a0, a1, . . . , aL−1] and [b0, b1, . . . , bL−1], such that if A(n) and

B(n) are the solutions of that same recurrence with

A(0) = a0 , . . . , A(L− 1) = aL−1 ; B(0) = b0 , . . . , B(L− 1) = bL−1 ,

then

c = lim
n→∞

A(n)

B(n)
.

While not part of the definition, it turns out that often, and in all the naturally occurring cases,

we also have the following nice feature.
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Exponential decay of Error Property

There exist constants C > 0 and α > 1 such that

|A(n)

B(n)
− c| ≤ C

αn
.

Given a recurrence and initial conditions, it is very fast to compute many terms. In fact one only

needs constant memory (well, linear memory if you go by bit-size) and linear time to compute

any specific approximation, A(n)
B(n) .

Let’s introduce a mild extension, that of a Generalized Apéry limit.

Definition 2: A constant c is a Generalized Apéry limit if there exist two sequences of rational

numbers A(n) and B(n) such that

c = lim
n→∞

A(n)

B(n)
,

where A(n) and B(n) are solutions of linear recurrences with polynomial coefficients (the first

homogeneous, the second inhomogeneous)

L∑
i=0

pi(n)B(n+ i) = 0 ,

subject to initial conditions B(0) = b0, . . . , B(L− 1) = bL−1, and

L∑
i=0

pi(n)A(n+ i) = C(n) ,

subject to initial conditions A(0) = a0, . . . , A(L − 1) = aL−1, where the right side, C(n), in

turn is a solution of another, (this time homogeneous) linear recurrence equation with polynomial

coefficients
M∑
i=0

qi(n)C(n+ i) = 0 ,

subject to some initial conditions C(0) = c0, . . . , C(M − 1) = cM−1.

Note that by using recurrence operators, it is easy to express both A(n) and B(n) as solutions of

the same homogeneous linear recurrence, so a generalized Apéry limit can always be expressed as

an Apéry limit, alas, with the recurrences being of a much higher order, namely L+M .

Also note that in order to prove irrationality à la Apéry, exponential decay of error does not suffice.

After writing the quotients of rational numbers A(n)/B(n) as an
bn

, where an and bn are integers,

one needs an inequality of the form,

|an
bn
− c| ≤ CONSTANT

b1+δn

,
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where δ > 0, yielding an irrationality measure 1 + 1
δ (see [vdP]). The attempts in [Ze2],[Ze3],

[DZ], and [DKZ], to find new (major) Apéry miracles, i.e. irrationality proofs of hopefully new

constants, consisted of going backwards. Rather than trying to hit the “bull’s-eye”, one shoots first,

and then draws the bull’s eye around the bullet hole. Using the Zeilberger, Almkvist-Zeilberger,

and multi-Almkvist Zeilberger algorithms (see [DKZ] for references) we generated recurrences for

known sequences B(n), then changed the initial conditions, getting a companion sequence A(n),

then we computed (very fast, to high accuracy) approximations to the limit of A(n)/B(n). Then

we used Maple’s identify (and our extensions) to conjecture an explicit value of the Apéry limit,

and hoped to prove it later. But often, neither Maple, nor our extension, was able to identify the

Apéry limit. In many cases we were able to identify the Apéry limit, but the δ turned out to be

negative, so it was useless for proving irrationality. Nevertheless, since we always had 1 + δ > 0,

we still got exponentially decaying error.

In this paper we will forget about our irrationality obsession and only enjoy the exponential decay

of error property of Apéry limits (and the generalized version). However here the focus would

be to introduce explicit constants, defined as a limit of very slowly-converging sequences, and

express them as Apéry limits or generalized Apéry limits, enabling computing these constants very

fast, to any desired accuracy. In other words, we will do what numerical analysts call convergence

acceleration, with very dramatic acceleration.

The work of Straub and Zudilin that motivated the Zudilin-Straub t-transform

In a recent beautiful article [SZ] (Theorem 1.3 there) (that brilliantly proved some conjectures in

the equally beautiful article [CS]) they expressed ζ(2j) j = 1, 2, 3 . . . (or equivalently π2j) as Apéry

limits with explicit recurrences and explicit initial conditions. The recurrences in question were

obtained from the Zeilberger [Ze1] (see also [PWZ]) algorithm applied to sums of binomial

powers, also known as Franel numbers (here s is any positive integer):

F (s)
n :=

n∑
k=0

(
n

k

)s
=

n∑
k=0

n!s

k!s(n− k)!s
,

with s ≥ 2j + 1. The beauty is that they did it for infinitely many cases.

Let’s describe what they did. Recall that the rising factorial, also called Pochhammer symbol

(that features in the definition of a hypergeometric series), is defined by

(x)n := x (x+ 1) · · · (x+ n− 1) .

(Note that (1)n = n!.)

The starting point in [SZ] was to consider, instead of the sequence of integers {F (s)
n }∞n=1, the

sequence of rational functions, let’s call them {f (s)n (t)}∞n=1, defined by

f (s)n (t) :=

n∑
k=0

n!s

(1 + t)sk(1− t)sn−k
,
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(note that f
(s)
n (0) = F

(s)
n ).

Their key idea was to apply the Zeilberger algorithm to the modified sum rather than the original

sum, and see what happens. Let’s recall some basic definition from Wilf-Zeilberger algorithmic

proof theory [PWZ] that would also be needed later on, when we will describe our generalization

of the Straub-Zudilin [SZ] work.

Definition 3 ([PWZ], p. 64): A discrete function F (n, k) (defined on {(n, k) | 0 ≤ n, k < ∞}) is

said to be a proper hypergeometric term if it can be written in the form

F (n, k) = P (n, k)

∏uu
i=1(ain+ bik + ci)!∏vv
i=1(uin+ vik + wi)!

xk , (1)

in which x is an indeterminate over, say, the complex numbers, and

• P is a polynomial

• the a’s, b’s, u’s, and v’s are specific integers, that is to say, they do not contain additional

parameters, and

• the quantities uu and vv are finite non-negative, specific integers.

Recall that for any proper hypergeometric term F (n, k) as defined above, the Zeilberger algorithm

[Ze1] [PWZ] furnishes, for some non-negative integer L (called the order) , polynomials in n,

p0(n), . . . , pL(n), as well as another proper hypergeometric term, G(n, k) called the certificate

(that furthermore has the property that G(n, k)/F (n, k) is a rational function of (n, k)), such

that

p0(n)F (n, k) + p1(n)F (n+ 1, k) + . . . + pL(n)F (n+ L, k) = G(n, k + 1)−G(n, k) .

By summing with respect to k from k = 0 to k = n, we have the immediate corollary that the

hypergeometric sum

f(n) :=

n∑
k=0

F (n, k) ,

satisfies the linear recurrence equation with polynomial coefficients

p0(n)f(n) + p1(n)f(n+ 1) + . . . + pL(n)f(n+ L) = G(n, n+ 1)−G(n, 0) . (2)

Note that in general, the right side is not zero, so one gets an inhomogeneous linear recurrence,

but whenever the summand is natural, for example any binomial coefficient sum that contains(
n
k

)
in it (in particular, of course, for the Franel sequences) the right side vanishes, and one gets that

the sum f(n) satisfies a homogeneous linear recurrence equation with polynomial coefficients.
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Since (1 + t)k = (t+ k)!/t! and (1− t)n−k = (n− (t+ k))!/(−t)!, the generalized Franel sum above,

namely f
(s)
n (t) :=

∑n
k=0

n!s

(1+t)s
k
(1−t)s

n−k
, yields the same recurrence, but of course not the same

certificate. In particular the right side G(n, n+ 1)−G(n, 0) is no longer 0 but some multiple of the

summand by a rational function of t and n. But then came a nice surprise, indeed, yet-another-

miracle. For any specific s, this miracle follows immediately from the output of the Zeilberger

algorithm. It is proved in general in [SZ] (using human ingenuity).

The Straub-Zudilin-Franel miracle

For any s > 2, the right side of the inhomogeneous recurrence satisfied by f
(s)
n (t) is divisible by

ts+1 if s is odd and by ts if s is even.

It follows that for any r < s, the sequence obtained by extracting the coefficient of tr from the

summand n!s

(1+t)s
k
(1−t)s

n−k
of f

(s)
n (t) automatically satisfies the very same homogeneous linear recur-

rence satisfied by the Franel sequence F
(s)
n , but, of course, with different initial conditions. Hence

the limit of the ratios of the later sequence with the Franel sequence F
(s)
n is an Apéry limit of some

constant. Can we describe this constant directly? Yes we can!

Let’s rewrite the sum f
(s)
n (t) as follows

f (s)n (t) :=

n∑
k=0

n!s

(1 + t)sk(1− t)sn−k
=

n∑
k=0

n!s

k!s(n− k)!s
·
(

k!s(n− k)!s

(1 + t)sk(1− t)sn−k

)
.

Let’s give the coefficient of tr in the Taylor expansion (about t = 0) of k!s(n−k)!s
(1+t)s

k
(1−t)s

n−k
a name.

Definition 4: c
(s)
r (n, k) is the coefficient of tr in the Taylor expansion of the rational function of t

k!s(n−k)!s
(1+t)s

k
(1−t)s

n−k
.

Interesting consequences of the Straub-Zudilin-Franel miracle

Now fix a power s > 2 and r < s+ 1, and let B(n) be the Franel sequence and A(n) the sequence

of the coefficients of tr in the Taylor expansion of f
(s)
n (t). Then

B(n) =

n∑
k=0

(
n

k

)s
,

A(n) =

n∑
k=0

(
n

k

)s
c(s)r (n, k) .

Now consider the Apéry limit

lim
n→∞

A(n)

B(n)
=

∑n
k=0

(
n
k

)s
c
(s)
r (n, k)∑n

k=0

(
n
k

)s .
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Note that the left side is a certain Apéry limit with the Franel recurrence and appropriate initial

conditions (hence the limit can be computed very fast, with exponentially-decaying error). On the

other hand the right side is a weighted-average of the n+ 1 numbers

{c(s)r (n, k) | 0 ≤ k ≤ n} ,

with weights {
(
n
k

)s | k = 0, . . . , n}. Since (recall the Central Limit Theorem, see De Bruijn’s classic,

section 3.4, for details) most of the weight is in the middle, we have that the above Apéry limit has

an explicit description, namely

lim
n→∞

c(s)r (n, bn/2c) .

For any specific r, one can express c
(s)
r (n, k) in terms of partial sums of the harmonic series or

partial sums of ζ(i) (i.e.
∑n
k=1

1
ki ). As r gets larger, things get complicated but our Maple package

Zudilin.txt can handle it easily (it is implemented by procedure CrL(A,r,L)). In particular, for

r = 2, things are still fairly easy. We have the following lemma, whose proof is omitted. The proof

involves elementary manipulations with power series, fully automated in our Maple package, and

is too boring to reproduce here.

Lemma 1:

c
(s)
2 (n, k) =

s

2

(
k∑
i=1

1

i2
+

n−k∑
i=1

1

i2

)
+
s2

2

(
−

k∑
i=1

1

i
+

n−k∑
i=1

1

i

)2

.

Note that in particular, the Apéry limit for the case r = 2 in the Straub-Zudilin t-version of Franel

equals s ζ(2).

For each specific integer s, (and also for each specific even integer r) we can prove that (for

sufficiently large s) you get ζ(r), as is proved, in general, using human ingenuity, in [SZ].

Generalized Franel Sums

The Zeilberger algorithm, just as easily, can find a homogeneous linear recurrence equation with

polynomial coefficients for the generalized Franel sum

n∑
k=0

(
n

k

)s
ak ,

for any positive rational number a (or for that matter even for symbolic a). It turns out that for

all the s that we tried, the same miracle, i.e. that the right side of the linear inhomogeneous

recurrence satisfied by
n∑
k=0

n!s

(1 + t)sk(1− t)sn−k
· ak ,

is divisible by tr for r ≤ s. It follows that the first s Taylor coefficients vanish. We are sure that

this is provable in general using the method of [SZ], but we leave it to the interested reader.
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Let us now state the following result.

Theorem 1: For any positive rational number a, and for s ≥ 3, and for 1 ≤ r < s if s is odd, and

for 1 ≤ r ≤ s− 1 if s is even. Let α be the such that, as n→∞, k = αn maximizes the summand(
n

k

)s
ak

(this can be easily found by computing the ratio of consecutive terms, setting it equal to 1 and

solving for α as n→∞, it is implemented in our Maple package by procedure FindMaxk(F,n,k)).

(Note that α is always an algebraic number, that our Maple package can always find in each case.)

Let B(n) be
∑n
k=0

(
n
k

)s
ak and let A(n) be solution of the same recurrence, of order L, say, that

is satisfied by B(n) by the Zeilberger algorithm, but with the initial conditions extracted from the

coefficients of tr in
∑n
k=0

(
n!

(1+t)k(1−t)n−k

)s
ak , for n = 0, . . . , n = L− 1, then the sequence A(n)

B(n)

converges with exponentially decaying error to the constant

lim
n→∞

c(s)r (n, bαnc) .

Disclaimer: We took the liberty of calling the above statement ”Theorem”, and we are sure that

it is correct, but we did not work out the full details of the proof. Wadim Zudilin informed us

that indeed he strongly believes that the full proof should follow along the lines described in [deB],

section 3.4. and [SZ].

The proof of the exponential decay of error property, in general for all such binomial coefficients

sums, and more generally, for any binomial coefficient sum with positive summand, follows the

same lines as the special case of Apéry’s original proof in [vdP] (p. 196), and is omitted here. Note

that for any specific binomial coefficient sum, it is proved fully rigorously, ab initio, by the

computer.

Note that trying to evaluate this limit from the definition would take for ever, since the convergence

is so slow. So we can get lots of minor Apéry miracles.

The output files https://sites.math.rutgers.edu/~zeilberg/tokhniot/oZudilin1.txt and

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oZudilin2.txt contain many exam-

ples.

Let’s explain why α is algebraic. The summand
(
n
k

)s
ak is clearly unimodal, hence it is maximal

for that value of k when the ratio of consecutive terms satisfy(
n− k + 1

k

)s
a ≤ 1 <

(
n− k
k + 1

)s
a

Writing k = αn, and remembering that n→∞, we have

(1− α)sa = 1 ,
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and this an algebraic equation for α for any specific positive integer s and positive a.

The Zudilin-Straub t-Transform

The beautiful construction in [SZ] was obtained by replacing k! by (1+t)k and (n−k)! by (1−t)n−k.

This naturally leads to

Definition 5: The Zudilin-Straub t-transform of the proper hypergeometric term given in (1) is

F̂ (n, k; t) = P (n, k + t)

∏uu
i=1(bit+ 1)ain+bik+c∏vv
i=1(vit+ 1)uin+vik+wi

xk .

It is immediate to see that the recurrence obtained via the Zeilberger algorithm applied to the

Zudilin-Straub t-transform of any proper hypergeometric term is the same as the original, except

that the right side is not zero, i.e., since the right side of Equation (2) is no longer 0, the linear

recurrence is inhomogeneous Unfortunately, in general, the Franel-Straub-Zudilin miracle does not

occur, but it is easy to see that for any specific positive integer r the coefficient of tr in the

Taylor expansion of the right side is still P -recursive in n (i.e. satisfies a linear recurrence equation

with polynomial coefficients), and a recurrence for it can be algorithmically obtained, either by the

‘holonomic machine’ ([ApaZ] [K]), or by ‘guessing’ that can be made fully rigorous using the general

theorems of [ApaZ]. In this way we can get lots of generalized Apéry limits describing constants

defined as limits of explicit sequences that converge very slowly. Rather than stating the formal

theorem we refer the reader to the output files given in the front of this article

https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/zudilin.html .

In particular, we recommend the following output files

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oZudilin1.txt

for many examples of Theorem 1, and the output file

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oZudilin3a.txt , and

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oZudilin5.txt ,

for examples where the recurrence equation for B(n) is inhomogeneous

The Maple package Zudilin.txt implements everything. Once you download it to your com-

puter (that has Maple), load it to a Maple session with read ‘Zudilin.txt‘. To get a list of the

main functions, type ezra();, and to get help with a specific function, type ezra(FunctionName).

For example, to get help with procedure ZT (that implements the Zudilin-Straub t-transform) type

ezra(ZT);. Enjoy!

Conclusion

While major Apéry miracles are few and far between, thanks to the Zudilin-Straub t-transform,
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we can obtain many minor Apéry miracles. The front of this article contains numerous examples,

but using our Maple package, readers can generate many new ones.

Acknowledgment: Many thanks are due to Wadim Zudilin and the two referees, whose insightful

and useful remarks considerably improved the exposition.
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