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One of the most exciting mathematical dis-
coveries in the early 1990’s was the Wilf-
Zeilberger(WZ) Algorithm that can be used for
proving, evaluating and searching identities in-
volving hypergeometric terms automatically by
computer. A discrete function F (n, k) is called
hypergeometric if both

F (n+ 1, k)
F (n, k)

and
F (n, k + 1)
F (n, k)

are rational functions of n and k. The Binomial
coefficient

(
n
k

)
= n!/(k!(n − k)!), is the simplest

(non-trivial) example.

Suppose that you are faced with identities of the
form A = B where A is a sum of terms involv-
ing hypergeometric terms and B is a conjectured,
simpler answer. For example, the trivial binomial
theorem

n∑
k=0

(
n

k

)
xkyn−k = (x+ y)n, ,

and the (less trivial) Dixon’s identity
n∑

k=−n

(−1)k
(

2n
n+ k

)3

=
3n!
n!3

, .

You may ask yourself: “Is there a computer-
ized method that would certify the validity of the
identity without human intervention?” (for all n,
not just for many special cases). Thanks to Herb
Wilf and Doron Zeilbrger, the answer is YES!.
Furthermore, unlike computerized proof tech-
niques in other areas, the computerized proofs
outputted by their method may be directly ver-
ified by mere humans. This certification is
achieved by producing what is called a WZ-pair.

A WZ-Pair. A WZ-pair, or Wilf-Zeilberger pair,
is a pair of discrete functions (F (n, k), G(n, k))
such that

F (n+ 1, k)− F (n, k) = G(n, k + 1)−G(n, k).

Suppose that we want to prove an identity of the
form ∑

k

f(n, k) = r(n) , n ≥ n0.

(for some integer n0, usually 0). If r(n) 6= 0,
divide through by r(n) to get∑
k

F (n, k) = 1, where F (n, k) = f(n, k)/r(n).

Let S(n) =
∑
k F (n, k). To show S(n) = 1 for all

n ≥ n0, it suffices to show that

(1) S(n+ 1)− S(n) = 0 for all n ≥ n0

and check that S(n0) = 1 (usually a trivial
check). A good way to certify (1) would be to
display a “nice” function G(n, k) such that

F (n+ 1, k)− F (n, k) = G(n, k + 1)−G(n, k),

for then we simply sum over all integers k to find
that (under suitable hypotheses) indeed

S(n+ 1)− S(n) = 0.

(since the sum on the right side is telescoping.)

Wilf and Zeilberger proved, in general, that if the
summand is hypergeometric, and G(n, k) exists
(and surprisingly it does in 99.99 percents of the
cases where r(n) is “nice”, and whenever it does,
it can be easily found by their algorithm, that is
based on the so-called Gosper algorithm), G has
the form:

G(n, k) = C(n, k)F (n, k).

Here C is rational in both n and k, and is called
the WZ proof certificate.

If r(n) is not “nice” then the so-called Zeilberger
algorithm guarantees that it is holonomic (a so-
lution of a linear recurrence equation with poly-
nomial coefficients.
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The WZ algorithm is implemented in Zeilberger’s
Maple package EKHAD available from www.
math.rutgers.edu/~zeilberg/ and the built-
in SumTools package in Maple. A Mathemat-
ica package written by Peter Paule and Markus
Schorn is also available.

Example. Suppose we want to prove:∑
k

(−1)k
(
n

k

)(
2k
k

)
4n−k =

(
2n
n

)
.

Applying the WZ algorithm to the summand
(−1)k

(
n
k

)(
2k
k

)
4n−k, yields a WZ-Pair (F,G),

where

F (n, k) =
(−1)k

(
n
k

)(
2k
k

)
4n−k(

2n
n

) ,

G(n, k) = C(n, k)F (n, k) and

C(n, k) = − 2k2

(n+ 1− k)(2n+ 1)
.

Doubling the fun! Besides getting a very short
proof for any given summation identity, one can
discover a new identity from a WZ-pair. Here is
how. Suppose the identity∑

k

F (n, k) = r(n), (n ≥ n0)

yields a WZ-pair (F,G). If the WZ-pair satisfies
(i) for each k, fk := lim

n→∞
F (n, k) < ∞ and (ii)

lim
L→∞

∑
n≥n0

G(n,L) = 0, then we get a new iden-

tity ∑
n≥n0

G(n, k) =
∑
j≤k−1

(fj − F (n0, j)).

Example. The identity∑
k

k

(
n

k

)
= n2n−1, n ≥ 1

has a WZ-pair (F,G), where

F =
k

2n−1n

(
n

k

)
and G = − 1

2n

(
n− 1
k − 2

)
.

Furthermore, the WZ-pair satisfies the above con-
ditions, and hence we have a new identity

∞∑
n=1

1
2n

(
n− 1
k − 2

)
=
{

1 if k ≥ 2
0 otherwise .

Finding closed forms for sums. Does the
WZ method apply to find directly the B part of
A = B? The answer is yes whenever the sum-
mands in A are proper-hypergeometric. A discrete

function F (n, k) is proper-hypergeometric if it can
be written in the form:

P (n, k)
∏I
i=1(ain+ bik + ci)!∏J
j=1(ujn+ vjk + wj)!

xnyk,

where

• P (n, k) is a polynomial in n and k,
• I and J are fixed integers,
• ai, bi, uj , vj are integers, and
• ci, wj , x, y may depend on parameters.

Finding closed forms for sums relies on the fun-
damental theorem of WZ theory which states
that if F (n, k) is a proper-hypergeometric term,
then there exists a (proper) hypergeometric term
G(n, k) such that

(2)
J∑
j=0

aj(n)F (n+j, k) = G(n, k+1)−G(n, k),

where aj(n) are polynomials in n. Suppose we
want to find a closed form expression for

S(n) =
∑
k

F (n, k)

where F is a proper-hypergeometric. Then by the
fundamental theorem we get a recurrence equa-
tion of the form (2) for F (n, k). Summing both
sides of (2) with respect to k yields

J∑
j=0

aj(n)S(n) = 0 .

(assuming, as is usually the case that
G(n,±∞) = 0). If the order of the recurrence,
J , happens to be 1, then we can easily solve this
recurrence and get the closed-form solution. If
J > 1, then Petkovšek algorithm’s can be used
to find a closed-form solution, if one exists, or
else rule out this possibility. Either way, de-
scribing a sequence {S(n)} in terms of the linear
recurrence equation with polynomial coefficients
that it satisfies, together with the initial con-
ditions (S(0), S(1), . . . , S(J − 1)) is an effective
and canonical way to describe it, and is almost as
good as “closed-form”. The recurrence can also
be used to compute, in linear time, and constant
memory, as many terms as desired.

Proving identities of the form A = B when
B has no simple form. Suppose we want to
prove identities of the form∑

k

F (n, k) =
∑
k

H(n, k), (n ≥ n0).



3

Let L(n) and R(n) be the left and right sides of
the equation. Find recurrences for each side, and
see whether they coincide, and check the initial
conditions.
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