
THE UMBRAL TRANSFER-MATRIX METHOD.
V. The Goulden-Jackson Cluster Method for Infinitely Many Mistakes

Doron ZEILBERGER 1

Abstract: This is the fifth, and last, installment of the saga on the Umbral Transfer-Matrix
method, based on Gian-Carlo Rota’s seminal notion of the umbra. Here we extend the powerful
Goulden-Jackson Cluster method, that enables one to compute generating functions enumerating
words that avoid, as factors, any given finite set of “mistakes”, to the case where there are infinitely
many mistakes. This infinite set of mistakes should be a union of finitely many finite-parameter
families, given symbolically in frequency notation. We illustrate the method by introducing a new
‘toy model’ for self-avoiding walks, that is much more interesting and complex than finite-memory
approximations, yet much simpler than the (probably intractable) “real thing”.

Required Reading

The reader is expected to be familiar with [Z1], and the classical Goulden-Jackson Cluster Method
([GJ1],[GJ2]), lucidly described in [NZ].

How Likely is a Monkey to Type YHVH?

It is a sin to utter the name of the Lord in vain, or even to have it written down, or printed,
except in a holy text. Ignoring spaces, it is also bad luck to have the letters Yod, Heh, Vav,
Heh consecutively. The classical Goulden-Jackson Cluster Method answers the following question.
What is the probability that a random word will not contain, consecutively, the word YHVH?.
Or for that matter, any other given word, or finite set of words, for example the set of words
{Y HV H,DORON,DAV ID, IAN}.

It is immediate that the enumerating generating function is always a rational function, since the
‘language’ of ‘clean words’ is regular, and can be modeled by a finite automate. This also implies
an algorithm for computing the generating function that, however, is impractical. The amazing
Goulden-Jackson method is an efficient method for computing such generating functions.

But a naughty monkey may type YYYHHHHVVVVHHHH, which does not contain YHVH, so by
the letter of the law it should not be punished, but by the spirit of the law it is committing an even
graver sin. So what we really want to avoid is any factor of the form Y a+1Hb+1V c+1Hd+1, for any
a, b, c, d non-negative integers. Of course, now we have infinitely many ‘mistakes’ to avoid, and the
classical Goulden-Jackson method will take infinite time and infinite space.

1 Department of Mathematics, Rutgers University (New Brunswick), Hill Center-Busch Campus, 110 Frelinghuysen

Rd., Piscataway, NJ 08854-8019, USA. zeilberg@math.rutgers.edu , http://www.math.rutgers.edu/~zeilberg/.

First version: May 21, 2001 (written while the author was still at Temple University). This version: Feb. 13, 2002.

Accompanied by the Maple packages UGJ, SymUGJ and SiPerUGJ, available from Zeilberger’s homepage, or

from http://www.math.rutgers.edu/~zeilberg/utm.html. Supported in part by the NSF.

1

Y a+1Hb+1V c+1Hd+1 is an example of what we will call symbolic word.

Symbolic Words

Definition: Given a finite alphabet W , and a finite set of symbols {a1, a2, . . . , as}, that represent
generic non-negative integers, an (s-parameter) symbolic word is a creature of the form

wL1
1 wL2

2 . . . wLr
r ,

where for all i, 1 ≤ i ≤ r, wi ∈ W , and each Li is an affine linear combination, with non-negative
coefficients of the ai. In other words, each Li can be written as

Li = c0 +
s∑

j=1

cjaj ,

where the cj are specific non-negative integers, and c0 > 0.

An Example of A Symbolic Word: If the alphabet is {1, 2, 3} and the set of generic non-
negative integers is {a, b, c}, then 1a+12a+b+13b+c+11c+1 is an example of a symbolic word. Its
embodiment is the (triply) infinite set of mistakes

{1a+12a+b+13b+c+11c+1|a, b, c ≥ 0}

i.e. {1231, 112231, 11122231, . . . , 122331, . . .}.

A plain word is also symbolic, since it can be viewed as a 0-parameter symbolic word. For example
the word 3112 is written 311221.

The GOAL

Given a finite alphabet and a finite set of symbolic words, to be called mistakes, in the letters of
the alphabet, compute the generating function

f(t) :=
∑

n=0

bntn ,

where bn is the number of n-letter words in the alphabet that do not contain, as factors, any
instance of any of these (symbolic) mistakes.

What do we mean by compute? Since f(t) is not going to be a rational function, there is no a
priori reason to expect that f(t) can be represented explicitly, whatever that means.

So we have to be content to find some kind of equation: algebraic, differential, functional, integral,
or what have you (or even of mixed type), that would be satisfied by f(t), and that would enable
computing the first n terms of f(t) in time (and space) polynomial in n. I confess that I can’t do
it, and I am almost sure that it can’t be done.

2

Failing this, something almost as good can be achieved. I will show that there exist finitely many
catalytic variables (corresponding to the set of generic integers), x1, x2, . . . , xs, and a finite set of
generating functions (corresponding to the symbolic mistakes) F1, . . . , Fr that depend on t and
x1, . . . , xs, such that collectively

F1(t;x1, . . . , xs) , F2(t;x1, . . . , xs) , . . . , Fr(t;x1, . . . , xs)

satisfy a system of (inhomogeneous) linear-functional equations, and such that f(t) can be written
as

f(t) =
1

1 − dt − ∑r
i Fi(t; 1, . . . , 1)

,

where d is the number of letters in the alphabet. Note that the system can be used to iteratively
find higher and higher order terms (in t) of the Fi’s, and hence, after plugging in all the xi’s to be
1, will yield successive terms of f(t).

An Important Assumption

No symbolic mistake can ever have an instance that is a factor of an instance of (the same or
another) symbolic mistake.

For example the input Y a+1Hb+1V c+1Hd+1 is not legitimate, since, for example, Y HHV V H is a
factor of Y Y Y HHV V HH. But we do not lose any generality by insisting on this. All we have to do
is consider the minimal symbolic word Y 1Hb+1V c+1H1, that has the desired property, and of course
the original problem is equivalent to the problem of enumerating words that avoid Y 1Hb+1V c+1H1

as factors, and the modified problem is even simpler, since it only involves a 2-parameter symbolic
mistake.

The Clusters

The Classical Goulden-Jackson method goes verbatim to the present case, except that now the
entries of the clusters are symbolic mistakes, and each cluster really represents infinitely many
possible instances.

A cluster of m mistakes can be represented as a sequence

M1 , i1 , M2 , i2, . . . , Mm−1 , im−1 , Mm

where M1,M2, . . . ,Mm are symbolic mistakes, and i1, i2, . . . , im−1 are integers such that ik ≤
length(Mk) (for k = 1, . . . ,m − 1), that indicate at what part of Mk starts the overlap with the
next mistake Mk+1.

For example, if

M1 = 1a+12a+b+13a+b+11b+1 , M2 = 3a′+11a′+b′+12a′+b′+13b′+1 , M3 = 2a′′+13a′′+b′′+11b′′+1 ,

the following is a cluster:
(M1, 3,M2, 3,M3) .

3

It is being assumed that the overlapping sections coincide. It may well happen that a symbolic
cluster can’t be realized, i.e. its set of instances is empty.

There is still some choice involved in instantiating a symbolic cluster. It is the decision where
exactly does the first (symbolic) letter of Mk+1 start under the ik-th letter of Mk? That distance
is also symbolic, let’s denote it by ck. Another decision to make is: how much does the symbolic
letter of Mk+1 that lies right under the last letter of Mk stick out? Let’s call this distance dk.

For a symbolic cluster to be realizable, the respective lengths (‘frequencies’) of overlapping letters
that lie on top of each other must match, getting a system of linear diophantine equations. If they
are all satisfied, then the whole cluster has a well-defined symbolic length: length(cluster). If the
last mistake in the cluster is the s-parameter mistake Mm, that has parameters a1, a2, . . . , as, say,
then

Definition:

Weight(M1, i1,M2, i2, . . . , im−1,Mm) := −tlength(cluster)xa1
1 xa2

2 . . . xas
s .

The Umbral Evolution

To each symbolic mistake associate a vertex. It is clear that each symbolic cluster is a walk in that
graph, with the obvious adjacency pattern, where there is an edge between mistake Mi and mistake
Mj for each of the possible interfaces, i.e. for each of the times a proper suffix of Mi coincides with
a proper prefix of Mj , and their set of instances is non-empty.

Suppose that we have an already constructed cluster

M1 , i1 , M2 , i2 , . . . , Mm−1 , im−1 , Mm .

In how many ways can one add another mistake Mm+1? Of course, all that matters is Mm, so
things are Markovian.

Let’s try to understand the edges and the Rota operators. Let Mm = A and Mm+1 = B. How can
B follow A? Suppose A is

A = AL1
1 AL2

2 . . . ALr
r ,

where Li are affine linear combinations of a set of discrete variables {a1, . . . , aR} and

B = BN1
1 BN2

2 . . . BNs
s ,

where Ni are affine linear combinations of a set of discrete variables {b1, . . . , bS}, and the letters of
both A and B belong to the alphabet W , i.e. Ai ∈ W, i = 1, . . . , r and Bi ∈ W, i = 1, . . . , s.

Let’s call the underlying word of a symbolic word SymWord := AL1
1 AL2

2 . . . ALk

k the plain word
A1A2 . . . Ak−1Ak, and denote this by U(SymWord). Question: What are the potential edges

4

between A and B? Answer: Whenever a proper suffix of U(A) coincides with a proper prefix of
U(B). In other words, whenever there is a u such that

Ar−u+1 = B1 , Ar−u+2 = B2 , . . . , Ar = Bu .

In addition, the following system of compatibility conditions, in the variables

{a1, . . . , aR} ∪ {b1, . . . , bS} ∪ {c, d}

must be satisfied:

Lr−u+1 = c + N1 , Lr−u+2 = N2, . . . , Lr−u+i = Ni ,

. . . , Lr−1 = Nu−1 , Lr + d = Nu . (Ian)

Here c denotes the ‘vacuum’ before BN1
1 that lies under A

Lr−u+1
r−u+1 , and d denotes the ‘vacuum’ after

ALr
r that lies above BNu

u .

The set of equations (Ian) needs to be modified when u = r, when u = 1, and when s = 1. When
u = r, the c in the first equation of (Ian) needs to be replaced by c + 1, since when c = 0 we won’t
have a proper cluster. When s = 1, i.e. U(B) consists of just one letter, then the d has to be
replaced by d + 1. Finally, when u = 1, (Ian) only contains one equation: Lr + d = c + N1.

If (Ian) has solutions with all the unknowns ai, bi, c, d non-negative integers, then there is an edge
between A and B corresponding to this particular interface. If the set of solutions of (Ian) is empty,
then there is no edge.

For any two symbolic mistakes A and B, there may be zero, or several, edges, each corresponding
to the scenario where a proper suffix of U(A) coincides with a proper prefix of U(B) and the
corresponding set of Linear Diophantine Equations, (Ian), is satisfied.

But how do we determine whether the system (Ian) is solvable? More generally, how do we solve it?
Luckily, there are algorithms for doing this. First, there was the theoretical seminal work of Richard
Stanley (see [S], section 4.6), that had an algorithm implicit in it. However, for our purposes, it
is most convenient to adapt the beautiful work of George Andrews, Peter Paule and Axel Riese,
in resurrecting, extending, and implementing MacMahon Partition Analysis[APR]. In particular,
the Mathematica package OMEGA, written by Mathematica Wizard Axel Riese, and available at the
Risc-Linz website, is exactly what we need.

Alas, I have two problems with OMEGA. The first one is linguistic. I am a Maple person, who does
not, and will not use Mathematica. The other problem is cultural, perhaps even “theological”.
Andrews, Paule, and Riese justify the algorithm using the dubious notion of analytic convergence,
and their power series represent ‘analytic’ functions (whatever that means).

I “remedy” both defects in [Z6], that is accompanied by a Maple package LinDi that is a Maple ana-
log of Riese’s OMEGA. The parts of LinDi that were needed for the present project were transported
to the Maple packages UGJ, SymUGJ, SiPerUGJ.

5

Let’s introduce ‘continuous’ variables x1, . . . , xR and y1, . . . , yS corresponding to the discrete vari-
ables a1, . . . , aR, b1, . . . , bS respectively, plus z and w corresponding to the ‘slack’ variables c and
d. Consider the formal power series

F (x1, . . . , xR; y1, . . . , yS ; z,w) :=
∑

xa1
1 xa2

2 . . . xaR

R · yb1
1 yb2

2 . . . ybS

S · zcwd , (Richard)

where the sum ranges over the set of solutions of (Ian) with all the ai, bj , c and d being non-negative
integers.

By the celebrated theorem of Stanley ([S], Theorem 4.6.11), F must be a rational function of its
arguments. Furthermore the numerator has positive coefficients, and the denominator is a product
of terms of the form (1 − monomial). Using OMEGA, or my Maple analog, LinDi, one can compute
this rational function F explicitly.

Finally we are ready for the Umbral Evolution. The Pre-Umbra is

xa1
1 . . . xaR

R → ConstantTermx1,...,xR

F (x1, . . . , xR; y1, . . . , yS; z,w)
xa1

1 xa2
2 . . . xaR

R

.

The right side is an expression in the remaining variables y1, . . . , ys and z and w. Once we find it,
we plug in z = 1 and w = 1.

However, this operation only takes care of the catalytic variables. The most important variable, t,
carrying the length of the cluster, has not been mentioned yet. First, we must have a minus sign in
front, since the sign of a cluster is (−1) to the power of the number of mistakes participating in it,
and adding the mistake B changes the sign. Next we have to multiply by t raised to the power of
the ‘newly acquired length’, which, in the above notation is d + Nu+1 + Nu+2 + . . . + Ns. So what
we really need to compute is the generating function

G(x1, . . . , xR; y1, . . . , yS ; z,w) :=
∑

xa1
1 xa2

2 . . . xaR

R · yb1
1 xb2

2 . . . ybS

S · zcwdtd+Nu+1+Nu+2+...+Ns ,

(George)
where the summation set in (George) is the same as in (Richard).

It is easy to see (and compute) G in terms of F . Indeed if the coefficient of a variable bi in the affine
linear combination d + Nu+1 + Nu+2 + . . . + Ns is, say, ei, and its free term is e0, then, obviously

G(x1, . . . , xR; y1, . . . , yS ; z,w; t) := −te0F (x1, . . . , xr; te1y1, . . . , t
eS yS; z,wt) .

The full Pre-Umbra is

xa1
1 . . . xaR

r → ConstantTermx1,...,xR

G(x1, . . . , xr; y1, . . . , ys; 1, 1; t)
xa1

1 xa2
2 . . . xaR

r
. (GianCarlo)

This is unlike the situations in [Z2],[Z3], and [Z4], where our Maple packages found explicit expres-
sions for pre-umbras, that were then converted to Umbral Schemes with procedures transported
from the general package ROTA.

6

However, it turns out that the Pre-Umbra given in the form

xa1
1 . . . xar

r → ConstantTerm
H(x1, . . . , xr; y1, . . . , ys)

xa1
1 . . . xar

r
,

can also be converted, often, into what we called Rota Operators in [Z1]. And the central tool of
OMEGA and LinDi, viz. partial fraction decomposition, comes to the rescue once again.

Let’s illustrate this with a simple example in one variable. Consider the pre-umbra

xn → Coeffxn

a

1 − Ax
,

yielding the pre-umbra xn → aAn, which gives the umbra f(x) → af(A).

Since the denominators of the rational functions of interest are products of terms of the form
(1 − monomial), we can write:

R(x) =
P (x)

(1 − A1x)(1 − A2x) · · · (1 − Amx)
,

where x is the current variable, with the degree of P (x), in x, being less than m. Performing a
partial-fraction decomposition splits R(x) into a sum of terms of the form a/(1 − Ax), which was
considered above.

In the generic case, things should work out, even when we have to constant-termize with respect
to several variables. But once in a while, we might get stuck, in which case there is no Umbral
Scheme. It is possible to also treat the non-generic case, but since in all the natural examples that
I tried things worked out, I did not bother.

A Very Simple Example

Let’s count the number of words in the alphabet {1, 2, 3}, that avoid any factor of the form A :=
12a+13a+11, i.e. you can’t have {1231, 122331, 12223331, . . .} as factors. Even in this simple case
we already have to avoid infinitely many mistakes.

The Clusters must be of the form (A, 4, A, 4, A, 4, . . . , A). Let’s call the cluster generating function
F (x; t), i.e. the weight-enumerator of all clusters with the weight (−1)mtlengthxa, where the last A

was 12a+13a+11. The set of clusters consisting of one A has weight-enumerator −t4/(1− t2x), while
the rest has weight-enumerator −t3F (1; t)/(1 − t2x). It follows that F (x; t) satisfies the functional
equation:

F (x; t) =
−t4

1 − t2x
− t3F (1; t)

1 − t2x
.

The desired generating function is 1/(1 − 3t − F (1; t)). In this trivial case, we can actually solve
the Umbral Scheme. Plugging in x = 1 yields

F (1; t) =
−t4

1 − t2
− t3F (1; t)

1 − t2
,

7

and hence F (1; t) = −t4/(1 − t2 + t3), and the generating function is f(t) = 1/(1 − 3t − F (1; t)) =
(1 − t2 + t3)/(1 − 3t − t2 + 4t3 − 2t4).

The Maple Package UGJ

This is implemented in the Maple package UGJ. In order to use it, download it from my website,
keeping its name UGJ. Now get into Maple, by typing maple (or the appropriate command on your
system), followed by ENTER. Once in Maple, assuming that you are in the same directory as UGJ,
type read UGJ:, and follow the instructions given there. In particular, to see the list of the main
procedures, type ezra();, and for help with any given procedure, type ezra(ProcedureName);.
For example, try ezra(UmSc);.

Given a list of symbolic words ListSW, UmSc(ListSW,x,t) constructs an Umbral Scheme for the
Cluster generating function for enumerating words that avoid instances of the words of ListSW as
factors. For example, to get automatically the trivial example above, type:

UmSc([[[[1,1],[2,a+1],[3,a+1],[1,1]],[a]]],x,t);

Another main procedure is UGJseries. UGJseries(ListSW,NumLetters,L) finds the first L terms
of the series expansion enumerating words that avoid any instances of the mistakes of ListSW,
where NumLetters is the number of letters. For example, type:

UGJseries([[[[1,1],[2,a+1],[3,a+1],[1,1]],[a]]],3,10);

In order to check the program empirically, I wrote the procedure CheckU. CheckU uses the classical
(finite) Goulden-Jackson method to check the validity of UGJseries, and hence of UmSc, since the
former depends on the latter. The syntax of CheckU is: CheckU(ListSW,Alphabet,L);, where
Alphabet is the alphabet. For example type:

CheckU([[[[1,1],[2,a+1],[3,a+1],[1,1]],[a]]],{1, 2, 3},10);.

You should get the same output.

The Symmetric Case

If the set of symbolic mistakes is symmetric with respect to the action of the symmetric group, then
it is much more efficient to only consider each representative. This is implemented in the analogous
Maple package SymUGJ. However, we had to slightly modify the notion of Umbral Scheme, to that
of Weighted Umbral Scheme, to take care of the multiplicities resulting from each equivalence class.
Hence the main procedure of SymUGJ is WtUmSc. Everything else is analogous.

Symmetry Under the Action of the Group of Signed Permutations

If the alphabet is {−1, 1,−2, 2, . . . ,−n, n}, then a stronger symmetry is possible. Namely, the
action of the group of signed permutations. If our set of symbolic mistakes is invariant under

8

the action of this group, we can have even a bigger saving in time and memory. In this case,
this means that if, say, 211a+121 is a symbolic mistake, then so are 21(−1)a+121, (−2)11a+1(−2)1,
(−2)1(−1)a+1(−2)1, and the four other symbolic mistakes obtained by transposing 1 and 2. If we
use UGJ, then we need an Umbral Matrix of size 8. If we use SymUGJ, we still need the Umbral
Matrix to be of size 4. But if we exploit the full symmetry, then we would only need an Umbral
Matrix of size 1.

This is implemented in the package SiPerUGJ, that is completely analogous.

Fancy Toy Models for Self-Avoiding Walks

John Noonan [N] used the finite Goulden-Jackson method, as extended in [NZ], to derive new upper
bounds for the so-called connective constants for self-avoiding walks. He did this by considering
the finite-memory approximation, that considers random walks on the lattice that do not visit any
site visited in the previous m steps. In other words, the walker only remembers what she did in
the previous m steps, and avoids the sites visited then, but she may return to sites visited more
than m steps ago.

It is easy to see that a finite (m) memory walk on the d-dimensional lattice can be modeled in terms
of a Goulden-Jackson type problem of enumerating the words in the alphabet {1,−1, 2,−2, . . . , d,−d}
that avoid all the walks one obtains by starting anywhere on one of the (finitely many) self-avoiding
polygons of length ≤ m, and traversing it in either direction. This set of ‘mistakes’ is obviously
invariant under the group of signed permutations, and John Noonan took advantage of this.

Even though finite-memory approximation give relatively good upper bounds, they are not theo-
retically interesting, since the generating functions are always rational, giving a boring asymptotics
of the form Cµn rather than the more realistic Cµnnθ (θ 6= 0).

A natural toy problem is to consider walks that avoid any rectangular subwalks (in addition to
retracing), or, those that avoid retracing, rectangular, and hexagonal subwalks, etc.. Now we have
infinitely many mistakes, and SiPerUGJ is ideally suited for the task. Procedures SawUm4 and
SawUm6 compute the Umbral Schemes for these problems, respectively, and Tony4 and Tony6 find
the ‘series expansions’. Unfortunately, even though the generating functions are (probably) not
rational, the asymptotics seems to still be Cµn (i.e. θ = 0), like in the Markovian, finite-memory
case. So even though we excluded infinitely many kinds of bad events, apparently this was not
enough. Also the empirically derived connective constants do not compete with the ones found by
Noonan.

By combining rectangles and hexagons with larger, specific (not symbolic) mistakes, it should be
possible to get improved upper bounds for connective constants of self-avoiding walks.

The webpage for this article: http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/umbV.html con-
tains sample input and output files for the three Maple packages UGJ, SymUGJ and SiPerUGJ, with
Umbral Schemes and series expansions.

9

Acknowledgement: Many thanks are due to the referee for his careful reading and many useful
remarks and suggestions.

REFERENCES

[APR] George E. Andrews, Peter Paule, and Axel Riese, MacMahon’s partition analysis III: The
Omega package, Europ. J. Comb. 22 (2001), 887-904. The accompanying Mathematica package is
available at http://www.risc.uni-linz.ac.ac/research/combinat/risc/software/Omega/.

[GJ1] Ian Goulden and David M. Jackson, An inversion theorem for cluster decompositions of
sequences with distinguished subsequences, J. London Math. Soc.(2)20 (1979), 567-576.

[GJ2] Ian Goulden and David M. Jackson, ”Combinatorial Enumeration”, John Wiley, 1983, New
York.

[N] John Noonan, New upper bounds for the connective constants of self-avoiding walks, J. Stat.
Physics 91 (1998), 871-888.

[NZ] John Noonan and Doron Zeilberger, The Goulden-Jackson Cluster Method: Extensions, Ap-
plications, and Implementations, J. Difference Eq. Appl. 5, 355-377, (1999).

[S] Richard Stanley, “Enumerative Combinatorics”, vol. 1, Wadsworth, Monterey, 1986. Reprinted
by Cambridge University Press.

[Z1] Doron Zeilberger, The Umbral Transfer-Matrix Method. I. Foundations, J. Comb. Theory Ser.
A 91 (2000), 451-463. [Rota memorial issue].

[Z2] Doron Zeilberger, The Umbral Transfer-Matrix Method. II. Counting Plane Partitions, Per-
sonal Journal of Ekhad and Zeilberger, http://www.math.rutgers.edu/~zeilberg/pj.html .

[Z3] Doron Zeilberger, The Umbral Transfer-Matrix Method. III. Counting Animals, submitted.
Available from http://www.math.rutgers.edu/~zeilberg/papers1.html .

[Z4] Doron Zeilberger, The Umbral Transfer-Matrix Method. IV. Counting Self-Avoiding Polygons
and Walks, submitted. Available from http://www.math.rutgers.edu/~zeilberg/papers1.html .

[Z5] Doron Zeilberger, The Umbral Transfer-Matrix Method. V. The Goulden-Jackson Cluster
Method for Infinitely Many Mistakes, this article.

[Z6] Doron Zeilberger, George Andrews’s Resurrection of MacMahon’s Partition Analysis Done
Right: Let’s Be fORmAL, not ANALytic, in preparation.

10

