Tutorial on Applications of Expectation and Variance

Doron ZEILBERGER

Version of Nov, 8, 2015 (thanks to Tamar Zeilberger, who won a dollar, for finding a typo in p.5)
Example I: Two classes, one consisting of ONLY boys, that has 30 students, and another consisting of ONLY girls, that has 20 students, go to a field trip. Each class had one teacher.

One of the students is randomly selected, each student with equal probability. Let random variable X denote the number of children in that chosen student's class.

One of the teachers of these two classes is randomly selected, each with the same probability. Let the random variable Y denote the number of students of the chosen teacher's class.
(a) What is larger $E(X)$ or $E(Y)$? Explain why these quantities are different.
(b) Compute $\operatorname{Var}(X)$ and $\operatorname{Var}(Y)$

Solution to Example I:

(a)

There are $30+20=50$ students, 30 are boys and 20 are girls, and since each student is equally likely (with prob. $\frac{1}{50}$) to be picked:

$$
P(\text { Boy })=\frac{30}{50}=\frac{3}{5} \quad, \quad P(\text { Girl })=\frac{20}{50}=\frac{2}{5} .
$$

Also, for the random variable X

$$
X(\text { Boy })=30 \quad, \quad X(\text { Girl })=20
$$

Hence

$$
E(X)=P(\text { Boy }) \cdot X(\text { Boy })+P(\text { Girl }) \cdot X(\text { Girl })=\frac{3}{5} \cdot 30+\frac{2}{5} \cdot 20=\frac{130}{5}=26
$$

For the random variable Y, the values are analogous

$$
Y(\text { TeacherOf Boys })=30 \quad, \quad Y(\text { TeacherOfGirls })=20
$$

but the probability distribution is different:

$$
P(\text { TeacherOfBoys })=\frac{1}{2} \quad, \quad P(\text { TeacherOfGrils })=\frac{1}{2} .
$$

Hence

$$
E(Y)=P(\text { TeacherOf Boys }) \cdot Y(\text { TeacherOf Boys })+P(\text { TeacherOfGirls }) \cdot Y(\text { TeacherOfGirls })
$$

$$
=\frac{1}{2} \cdot 30+\frac{1}{2} \cdot 20=\frac{50}{2}=25
$$

Answer to $\mathbf{I}(\mathbf{a}): E(X)=26$ and $E(Y)=25$. Hence $E(X)$ is larger. This is as it should be, since in this case the "coin" is loaded in favor of the boys, since there are more of them.
(b)
(b) regarding X

We already know from part (a) that $E(X)$, let's call it μ, equals 26 .
So
$\operatorname{Var}(X)=E\left((X-\mu)^{2}\right)=\frac{3}{5} \cdot(30-26)^{2}+\frac{2}{5} \cdot(20-26)^{2}=\frac{3}{5} \cdot(4)^{2}+\frac{2}{5} \cdot(-6)^{2}=\frac{3}{5} \cdot 16+\frac{2}{5} \cdot 36=\frac{120}{5}=24$.
(b) regarding Y

We already know from part (a) that $E(Y)$, let's call it μ, equals 25 .
So
$\operatorname{Var}(Y)=E\left((Y-\mu)^{2}\right)=\frac{1}{2} \cdot(30-25)^{2}+\frac{1}{2} \cdot(20-25)^{2}=\frac{1}{2} \cdot(5)^{2}+\frac{1}{2} \cdot(-5)^{2}=\frac{1}{2} \cdot 25+\frac{1}{2} \cdot 25=25$.
Answer to $\mathbf{I}(\mathbf{b}): \operatorname{Var}(X)=24$ and $\operatorname{Var}(Y)=25$.
Do Right Now: Problem 1 of Homework 5-PolySci 200A.

Important Properties of Expectation

Linearity of Expectation: For any random variables X, Y (with the same unerlying probability space of course)
[Warning: In Example I, this is not the case!], we have

$$
E(X+Y)=E(X)+E(Y)
$$

(In words: whenever you have to take the expectation of a sum, you can take the sum of the expectations, in other words, you can distribute)

Warning: $E(X Y)$ is NOT $E(X) E(Y)$. It is only true if X and Y are independent random variables (they do not influence each other). In fact it is true, more generally, if they are uncorellated.

"Taking a Constant Out" Rule for Expectation

For any constant c

$$
E(c X)=c E(X)
$$

(In words: You can take constants out of the E symbol).
Note: This makes perfect sense. If everything gets, e.g., doubled, then the expectation is also doubled.

The expectation of a constant random variable is that constant!

If c is a constant, then

$$
E(c)=c
$$

Of course, if it is always the same (very boring!) the 'expectation' is guaranteed and is equal to that constant.

Important special cases:

$$
E(1)=1 \quad, \quad E(0)=0 .
$$

Taking a Constant Out Rule for Variance

$$
\operatorname{Var}(c X)=c^{2} \operatorname{Var}(X) .
$$

Warning: Note the c^{2} on the right side, e.g. $\operatorname{Var}(3 X)=9 \operatorname{Var}(X)$ NOT $3 \operatorname{Var}(X)$.
Adding a constant Rule Variance: If c is any constant, then

$$
\operatorname{Var}(c+X)=\operatorname{Var}(X)
$$

Comment: Adding a constant does not change the "variability", it gets cancelled out!

Example II:

If $E(X)=3$ and $E\left(X^{2}\right)=1$, and $E\left(X^{3}\right)=-1$. Find
(a) $E((X+2)(X-3))$
(b) $E(X(X+2)(X-3))$

Solution to Example II
(a):

Using highschool algebra

$$
(X+2)(X-3)=X^{2}+2 X-3 X-6=X^{2}-X-6
$$

Applying the expecation operation, E, to both sides, we get

$$
E((X+2)(X-3))=E\left(X^{2}-X-6\right)
$$

Using the linearity of expectation, we get that the above equals

$$
E\left(X^{2}\right)-E(X)-6 E(1)
$$

From the data of the problem (see problem above), $E\left(X^{2}\right)=1, E(X)=3$, and of course (always!) $E(1)=1$, so this equals

$$
1-3-6=-8
$$

Answer to II(a): -8 .
(Note: For this part, $E\left(X^{3}\right)$ was not needed).
(b):

Using highschool algebra

$$
X(X+2)(X-3)=X\left(X^{2}+2 X-3 X-6\right)=X\left(X^{2}-X-6\right)=X^{3}-X^{2}-6 X
$$

Applying the expecation operation, E, to both sides, we get

$$
E(X(X+2)(X-3))=E\left(X^{3}-X^{2}-6 X\right)
$$

Using the linearity of expectation, we get that the above equals

$$
E\left(X^{3}\right)-E\left(X^{2}\right)-6 E(X)
$$

From the data of the problem (see problem above),
$E\left(X^{3}\right)=-1, E\left(X^{2}\right)=1, E(X)=3$,
so this equals

$$
(-1)-(1)-6 \cdot(3)=-1-1-18=-20
$$

Answer to II(b): -20 .

Example III: If $E(X)=3$ and $\operatorname{Var}(X)=2$, find
(a) $E((2 X+1)(X-2))$
(b) $\operatorname{Var}(-11+5 X)$

Solution to Example III(a):

This is a multi-step problem. Before starting, we must find $E\left(X^{2}\right)$, and then we can proceed as in Example II.

By the famous formula

$$
\operatorname{Var}(X)=E\left(X^{2}\right)-E(X)^{2}
$$

we get the equivalent statement (also worth memorizing)

$$
E\left(X^{2}\right)=\operatorname{Var}(X)+E(X)^{2}
$$

Hence, in this problem

$$
E\left(X^{2}\right)=\operatorname{Var}(X)+E(X)^{2}=2+3^{2}=2+9=11 .
$$

Now that we have both $E(X)=3$, and $E\left(X^{2}\right)=11$, we can proceed to answer III(a).
Using highschool algebra

$$
(2 X+1)(X-2)=2 X^{2}+X-4 X-2=2 X^{2}-3 X-2 .
$$

Hence, applying the E operation to both sides, and using the linearity of expectation, and taking out constants rules

$$
\begin{gathered}
E((2 X+1)(X-2))=E\left(2 X^{2}-3 X-2\right)=2 E\left(X^{2}\right)-3 E(X)-2 E(1)= \\
=2 \cdot 11-3 \cdot 3-2 \cdot 1=22-9-2=11
\end{gathered}
$$

Answer to III(a): 11.

Solution to III(b):

$$
\operatorname{Var}(-11+5 X)=\operatorname{Var}(5 X)=5^{2} \operatorname{Var}(X)=25 \cdot 2=50 .
$$

Answer to III(b): 50 .
Note: Part (b) is much easier and does not depend on part (a).

Do Right Now: Problem 2 of Homework 5-PolySci 200A.
Note on Problem 3 of Homework 5-PolySci 200A: This is a very wordy, multi-step problem, but you have all the technical know-how to tackle it. Please do your best to do it all by yourself!

Example IV:

Verify, directly, that

$$
E(X+Y)=E(X)+E(Y)
$$

if X can only take the values 2 and 5 , and Y can only take the values -1 and 4 , and it is given that

$$
\begin{gathered}
P(X=2 \quad A N D \quad Y=-1)=\frac{1}{8} \\
P(X=2 \quad \text { AND } \quad Y=4)=\frac{1}{4} \\
P(X=5 \quad \text { AND } \quad Y=-1)=\frac{1}{8} \\
P(X=5 \quad \text { AND } \quad Y=4)=\frac{1}{2}
\end{gathered}
$$

Solution to Example IV:

Let's figure out the probability distribution for the new random variable $X+Y$

$$
\begin{gathered}
P(X+Y=1)=\frac{1}{8} \\
P(X+Y=6)=\frac{1}{4} \\
P(X+Y=4)=\frac{1}{8}, \\
P(X+Y=9)=\frac{1}{2}
\end{gathered}
$$

Hence

$$
\begin{gathered}
E(X+Y)=P(X+Y=1) \cdot 1+P(X+Y=6) \cdot 6+P(X+Y=4) \cdot 4+P(X+Y=9) \cdot 9 \\
=\frac{1}{8} \cdot 1+\frac{1}{4} \cdot 6+\frac{1}{8} \cdot 4+\frac{1}{2} \cdot 9=\frac{53}{8}
\end{gathered}
$$

So, by doing it directly, we got $E(X+Y)=\frac{53}{8}$.
Now let's find $E(X)$ and $E(Y)$. Using the above data:

$$
P(X=2)=P(X=2 \quad A N D \quad Y=-1)+P(X=2 \quad A N D \quad Y=4)=\frac{1}{8}+\frac{1}{4}=\frac{3}{8}
$$

$$
P(X=5)=P(X=5 \quad \text { AND } \quad Y=-1)+P(X=5 \quad \text { AND } \quad Y=4)=\frac{1}{8}+\frac{1}{2}=\frac{5}{8} .
$$

Hence

$$
E(X)=P(X=2) \cdot 2+P(X=5) \cdot 5=\frac{3}{8} \cdot 2+\frac{5}{8} \cdot 5=\frac{31}{8}
$$

Similarly

$$
\begin{gathered}
P(Y=-1)=P(X=2 \quad \text { AND } \quad Y=-1)+P(X=5 \quad, \quad \text { AND } \quad Y=-1)=\frac{1}{8}+\frac{1}{8}=\frac{1}{4} \\
P(Y=4)=P(X=2 \quad \text { AND } \quad Y=4)+P(X=5 \quad \text { AND } \quad Y=4)=\frac{2}{8}+\frac{1}{2}=\frac{3}{4}
\end{gathered}
$$

Hence

$$
E(Y)=P(Y=-1) \cdot(-1)+P(Y=4) \cdot 4=\frac{1}{4} \cdot(-1)+\frac{3}{4} \cdot 4=\frac{11}{4}
$$

Hence

$$
E(X)+E(Y)=\frac{31}{8}+\frac{11}{4}=\frac{53}{8}
$$

The same as $E(X+Y)$ computed above!
YEA!: We verified the theorem $E(X+Y)=E(X)+E(Y)$ for this particular special case.
Warning: The example below is very advanced and abstract.

Example V:

Prove that

$$
E(X+Y)=E(X)+E(Y)
$$

for the special case where X and Y can each only take two different values.

Solution to Example V:

Let the two values that X can take be x_{1} and x_{2}, and let the two values that Y can take be y_{1} and y_{2}.

Also, let us denote the following:

$$
\left.\begin{array}{l}
P\left(X=x_{1} \quad A N D \quad Y=y_{1}\right)=p_{11} \\
P\left(X=x_{1} \quad A N D \quad Y=y_{2}\right)=p_{12}, \\
P\left(X=x_{2} \quad A N D \quad Y=y_{1}\right)=p_{21}, \\
P\left(X=x_{2}\right.
\end{array} \quad \text { AND } \quad Y=y_{2}\right)=p_{22},
$$

where of course, $p_{11}+p_{12}+p 21+p_{22}=1$ (they must add-up to 1 , since this covers all possibilities), and they are each between 0 and 1 (inclusive), as probabilities should be.

Let's figure out the probability distribution for the new random variable $X+Y$

$$
\begin{gathered}
P\left(X+Y=x_{1}+y_{1}\right)=p_{11} \\
P\left(X+Y=x_{1}+y_{2}\right)=p_{12} \\
P\left(X+Y=x_{2}+y_{1}\right)=p_{21} \\
P\left(X+Y=x_{2}+y_{2}\right)=p_{22}
\end{gathered}
$$

Hence

$$
\begin{gathered}
E(X+Y)=P\left(X+Y=x_{1}+y_{1}\right) \cdot\left(x_{1}+y_{1}\right)+P\left(X+Y=x_{1}+y_{2}\right) \cdot\left(x_{1}+y_{2}\right) \\
+P\left(X+Y=x_{2}+y_{1}\right) \cdot\left(x_{2}+y_{1}\right)+P\left(X+Y=x_{2}+y_{2}\right) \cdot\left(x_{2}+y_{2}\right) \\
=p_{11}\left(x_{1}+y_{1}\right)+p_{12}\left(x_{1}+y_{1}\right)+p_{21}\left(x_{2}+y_{1}\right)+p_{22}\left(x_{2}+y_{2}\right) .
\end{gathered}
$$

Now let's find $E(X)$ and $E(Y)$.
Using the above data:

$$
\begin{aligned}
& P\left(X=x_{1}\right)=P\left(X=x_{1} \quad \text { AND } \quad Y=y_{1}\right)+P\left(X=x_{1} \quad A N D \quad Y=y_{2}\right)=p_{11}+p_{12} \\
& P\left(X=x_{2}\right)=P\left(X=x_{2} \quad \text { AND } \quad Y=y_{1}\right)+P\left(X=x_{2} \quad \text { AND } \quad Y=y_{2}\right)=p_{21}+p_{22}
\end{aligned}
$$

Hence

$$
E(X)=P\left(X=x_{1}\right) \cdot x_{1}+P\left(X=x_{2}\right) \cdot x_{2}=\left(p_{11}+p_{12}\right) x_{1}+\left(p_{21}+p_{22}\right) x_{2}
$$

Similarly,

$$
\begin{aligned}
& P\left(Y=y_{1}\right)=P\left(X=x_{1} \quad \text { AND } \quad Y=y_{1}\right)+P\left(X=x_{2} \quad \text { AND } \quad Y=y_{1}\right)=p_{11}+p_{21} \\
& P\left(Y=y_{2}\right)=P\left(X=x_{1} \quad \text { AND } \quad Y=y_{2}\right)+P\left(X=x_{2} \quad \text { AND } \quad Y=y_{2}\right)=p_{12}+p_{22}
\end{aligned}
$$

Hence

$$
E(Y)=P\left(Y=y_{1}\right) \cdot y_{1}+P\left(Y=y_{2}\right) \cdot y_{2}=\left(p_{11}+p_{21}\right) y_{1}+\left(p_{12}+p_{22}\right) y_{2}
$$

Adding up, we get:

$$
E(X)+E(Y)=\left(p_{11}+p_{12}\right) x_{1}+\left(p_{21}+p_{22}\right) x_{2}+\left(p_{11}+p_{21}\right) y_{1}+\left(p_{12}+p_{22}\right) y_{2}
$$

and this the same as $E(X+Y)$ computed above! (check the algebra!) QED.

Note: This is a more general version of Problem 4 in Homework 5. There it is assumed that the two random variables are independent.

There the inputs are
$P\left(X=x_{1}\right)$ (and $P\left(X=x_{2}\right)$, that is necessarily $1-P\left(X=x_{1}\right)$, since there are only two possibilities for the values of $X)$,
and
$P\left(Y=y_{1}\right)$ (and $P\left(Y=y_{2}\right)$, that is necessarily $1-P\left(Y=y_{1}\right)$, since there are only two possibilities for the values of $Y)$.

Calling $P\left(X=x_{1}\right)=\alpha$ and $P\left(Y=y_{1}\right)=\beta$, to do Probelm 4 of Homework 5, you do the above, but with the simplifying values

$$
\begin{aligned}
p_{11}=\alpha \beta \quad, \quad p_{12}=\alpha(1-\beta) \\
p_{21}=(1-\alpha) \beta \quad, \quad p_{22}=(1-\alpha)(1-\beta) \quad,
\end{aligned}
$$

Example VI: Let X be a random variable with expected value μ and variance σ^{2}. Find the expected values of the following functions of X
$Y=\frac{3 X-5 \mu}{7 \sigma}$

Solution to Example VI:

$$
E(Y)=E\left(\frac{3 X-5 \mu}{7 \sigma}\right)=\frac{3 E(X)-5 \mu}{7 \sigma}=\frac{3 \mu-5 \mu}{7 \sigma}=-\frac{2 \mu}{7 \sigma}
$$

Do right now: Problem 5 of Homework 5 .

Email: zeilberg at math dot rutgers dot edu .

