
Tutorial on Expectation and Variance

Doron ZEILBERGER

IMPORTANT REMINDER (Probability)

If you have a finite number of scenarios, say two, tossing a coin, where there are only two outcomes,
Heads (H) and Tail (T), we say that the set of scenarios is the sample space. If it is a fair coin,
then Heads is supposed, in the long run to come up roughly as often as Tails (in real life it is hardly
ever exact), so we say that the probability of Heads and Probability of Tails are both 1

2 .

In this case the sample space is {H,T} and

P (H) =
1
2

, P (T ) =
1
2

,

But if the coin is loaded, say in the long run, Heads only shows up 1 in ten times, then

P (H) =
1
10

, P (T ) =
9
10

If you roll a die, the sample space is:

{1, 2, 3, 4, 5, 6} .

The individual scenarios (namely, landing on 1, landing on 2, etc.) are called atomic events. If it
is a fair coin then all the probabilities are the same, and hence

P (1) =
1
6

, P (2) =
1
6

, P (3) =
1
6

, P (4) =
1
6

, P (5) =
1
6

, P (6) =
1
6

.

But if it is a loaded coin, then the probabilities may be different. For example

P (1) =
1
12

, P (2) =
1
4

, P (3) =
1
20

, P (4) =
17
60

, P (5) =
1
18

, P (6) =
5
18

.

Important Check: The sum of all the probabilities of the atomic events must be 1.

An event is any subset of the set of atomic scenarios, including that nothing happened, the empty
set, ∅ whose probability is 0 and the Universal Set, whose probability is 1.

To compute the probability of an event, you simply add up the probabilities of its atoms.

Example I: With the above loaded coin, find

(a) The probability of the event {1, 3, 6}
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(b) The probability of the event {2, 6}

(c) The probability that it landed on an even face.

(d) The probability that it landed on an odd face.

Solution to Example I:

(a) P ({1, 3, 6}) = P (1) + P (3) + P (6) = 1
12 + 1

20 + 5
18 = 37

90

(b) P ({2, 6}) = P (2) + P (6) = 1
4 + 5

18 = 19
36

(c) The even faces are {2, 4, 6}, so

P (EvenFace) = P ({2, 4, 6} = P (2) + P (4) + P (6) = 1
4 + 17

60 + 5
18 = 73

90

(d) The long way is to do the same for {1, 3, 5}, but since the complement of the event “odd” is
“even” we can just do

P (OddFace) = 1− P (EvenFace) = 1− 73
90 = 17

90 .

Do Right Now

Exercise 1:

A certain tetrahedral die (with four faces) labeled 1, 2, 3, 4, has the following probabilities for the
atomic events

P (1) =
1
8

, P (2) =
3
8

, P (3) =
1
16

, P (4) =
7
16

.

Find

(a) The probability of the event {1, 4}

(b) The probability of the event {1, 3, 4}

(c) The probability that it landed on an even face.

(d) The probability that it landed on an odd face.

Important Concept: Random Variable

Given our “universal set” of all atomic events, a random variable (a stupid name) is really an
assigning of a value to any atomic scenario. For example if we have a coin and you are promised
that if it lands Heads you get $10 dollars, and if lands Tails you lose $5 dollars, then the “random
variable” is “gain”, and we have

X(Heads) = 10 , X(Tail) = −5 .
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Another example, in our family, the random variable is height (in inches) then

X(Doron) = 71 , X(Jane) = 63 , X(Celia) = 63 , X(Tamar) = 64 , X(Hadas) = 69 .

Example II: In a six-faced die, labeled {1, 2, 3, 4, 5, 6}, if you are promised 20 − i2 dollars if it
lands on a face with i dots, spell out the random variable, let’s call it X, for all possible scenarios.

Solution to Example II:

X(1) = 20−12 = 19 , X(2) = 20−22 = 16 , X(3) = 20−32 = 11 , X(4) = 20−42 = 4 ,

X(5) = 20− 52 = −5 , X(6) = 20− 62 = −16 , .

Do Right Now!

Exercise 2: In a four-faced die, labeled {1, 2, 3, 4} if you are promised 10 − 3i dollars if it lands
on a face with i dots, spell out the random variable, let’s call it X for all possible scenarios.

Important note: Once you have a random variable X defined on your sample space, you get
many new ones 2X, 3X + 2, X2, X3 etc.

Example III: In a six-faced die, labeled {1, 2, 3, 4, 5, 6} if you are promised 20 − i2 dollars if it
lands on a face with i dots, let’s call it X. Spell out the random variables (a)2X (b) X2 (c) X3

Solution to Example III:

(a)

(2X)(1) = 2 · 19 = 38 , (2X)(2) = 2 · 16 = 32 , (2X)(3) = 2 · 11 = 22 ,

(2X)(4) = 2 · 4 = 8 , (2X)(5) = 2 · (−5) = −10 , (2X)(6) = 2 · (−16) = −32 , .

(b)
X2(1) = 192 = 361 , X2(2) = 162 = 256 , X2(3) = 112 = 121 ,

X2(4) = 42 , X2(5) = (−5)2 = 25 , X2(6) = (−16)2 = 256 , .

(c)

X3(1) = 193 = 6859 , X3(2) = 163 = 4096 , X3(3) = 113 = 1331 ,

X3(4) = 43 = 64 , X3(5) = (−5)3 = −125 , X3(6) = (−16)3 = −4096 , .
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Exercise 3: In a four-faced die, labeled {1, 2, 3, 4} if you are promised 10 − 3i dollars if it lands
on a face with i dots, let’s call the random variable describing the gain X. Spell out the random
variables (a)2X (b) X2 (c) X3.

Important Concept: Expectation of random variable

Suppose that the sample space is {H,T} and it is a fair coin, P (H) = 1
2 and P (T ) = 1

2 . You are
promised $100 every time it lands on Heads and nothing if it lands on Tails. How much would you
expect to gain in the long-run per toss? Since in the long-run it would, roughly lands Heads every
other time, your expected gain (per toss) is $50, which is 100 · 1

2 = 50.

If it is a loaded coin, with P (H) = 1
10 and P (T ) = 9

10 , then you would only get $100 one-tenth of
the time, so he would get, roughly, in the long-run, 100 · 1

10 = 10 dollars.

If it is a loaded coin, with P (H) = 1
10 and P (T ) = 9

10 , but now you have to pay 10 dollars if it lands
Tails then you would only get $100 one-tenth of the time, but have to pay 10 dollars, nine-tenth of
the time, so in the long-run you should expect, per toss, 100 · 1

10 − 10 · 9
10 = 10− 9 = 1 dollars.

This motivates the following

VERY IMPORTANT DEFINITION (FORMULA)

If X is a random variable on a sample space whose atomic events are {x1, x2, . . . , xn}, with respec-
tive probabilities P (x1), . . . , P (xn), and X is any random variable, then the expectation of X,
denoted by E(X), (often also by µ) is given by (in sigma notation)

E(X) =
n∑

i=1

P (xi)X(xi)

In more concrete . . . notation

E(X) = P (x1)X(x1) + P (x2)X(x2) + . . .+ P (xn)X(xn) .

Example IV: Using the same probability distribution as Example I, namely

P (1) =
1
12

, P (2) =
1
4

, P (3) =
1
20

, P (4) =
17
60

, P (5) =
1
18

, P (6) =
5
18

and the same random variable,X, as in Example II, compute E(X)

Solution to Example IV:

E(X) =
1
12
· 19 +

1
4
· 16 +

1
20
· 11+

17
60
· 4 +

1
18
· (−5) +

5
18
· (−16) = 229/90 = 2.544 . . . .
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Answer to Example IV: The expectation E(X), is 229/90 = 2.544 . . . .

Do Right Now

Exercise 4: Using the same probability distribution as Exercise 1, namely

P (1) =
1
8

, P (2) =
3
8
, P (3) =

1
16

, P (4) =
7
16

and the same random variable,X, as in Exercise 2, namely

if you are promised 10− 3i dollars if it lands on a face with i dots, compute the expectation E(X).

Example IV’: Using the same probability distribution as in Example I, namely

P (1) =
1
12

, P (2) =
1
4

, P (3) =
1
20

, P (4) =
17
60

, P (5) =
1
18

, P (6) =
5
18

,

and the same random variable,X, as in Example II, compute the expectation of X2, namely E(X2)

Solution to Example IV’:

E(X) =
1
12
· (19)2 +

1
4
· (16)2 +

1
20
· (11)2+

17
60
· 42 +

1
18
· (−5)2 +

5
18
· (−16)2 =

1063
6

= 177.16667 . . . .

Answer to Example IV’: The expectation of X2, E(X2), is 1063
6 = 177.16667 . . .

Do Right Now

Exercise 4’: Using the same probability distribution as Exercise 1, namely

P (1) =
1
8

, P (2) =
3
8
, P (3) =

1
16

, P (4) =
7
16

and the same random variable,X, as in Exercise 2, namely

if you are promised 10− 3i dollars if it lands on a face with i dots,

compute the expectation of X2, E(X2).

Important Concept: Variance

The Variance of a random variable, denoted by V ar(X) (often also σ2) is the expectation of the
square of the “deviation from expectation”, namely, calling E(X) = µ

E((X − µ)2) .

There are two ways to compute it, the first way is to first figure out, explicitly, the values of the
new random variable (X−µ)2 on each of the atomic events, and then take the expectation of that,
but a better way is via the
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Important Formula
V ar(X) = E(X2)− E(X)2 .

(alias E(X2)− µ2)

Note: E(X2) is NOT the same as E(X)2, so the difference is not 0! In E(X2) you first square
X getting a brand-new random variable, X2 (like we did above), and in E(X)2, you first find the
expectation E(X) (alias µ) and then square it.

In the extreme case where X is the same on every member of our sample space, the expectation
equals to that common value, and then the variance is 0.

Proof of the Important Formula

V ar(X) = E((X − µ)2) = E(X2 − 2Xµ+ µ2) = E(X2)− E(2Xµ) + E(µ2) =

E(X2)− 2µE(X) + µ2E(1) = E(X2)− 2µ2 + µ21̇ = E(X2)− µ2 .

Example IV”: Using the same probability distribution as Example I, namely

P (1) =
1
12

, P (2) =
1
4

, P (3) =
1
20

, P (4) =
17
60

, P (5) =
1
18

, P (6) =
5
18

,

and the same random variable,X, as in Example II, compute the variance of X, namely V ar(X)

Solution to Example IV”: From Example IV, and Example IV’

E(X) = 229/90 , E(X2) =
1063

6

Hence

V ar(X) = E(X2)− E(X)2 =
1063

6
− (

229
90

)2 =
1382609

8100
= 170.6924691 . . .

Answer to Example IV”: The variance of X, V ar(X), is 1382609
8100 = 170.6924691 . . . .

Do Right Now

Exercise 4”: Using the same probability distribution as Exercise 1, namely

P (1) =
1
8

, P (2) =
3
8
, P (3) =

1
16

, P (4) =
7
16

and the same random variable,X, as in Exercise 2, namely

if you are promised 10− 3i dollars if it lands on a face with i dots,

compute the variance of X, V ar(X).

6



Note: You may use the answers that you got for Exercises 4 and 4’.

Do Right Now

Exercise 5:

In our family, consider the random variable, X, height (in inches) then

X(Celia) = 63 , X(Tamar) = 64 , X(Hadas) = 69 .

If you pick a girl uniformly at random (each with probability 1
3 ) find the expectation and variance

of the Zeilberger girls.

Exercise 5’:

In our family, consider the random variable, X, height (in inches) then

X(Celia) = 63 , X(Tamar) = 64 , X(Hadas) = 69 .

If I pick Celia with probability 0.1, Tamar with probability 0.4 and Hadas with probability .5, find
the expectation and variance of the height with this probability distribution.

Doron Zeilberger, Department of Mathematics, Rutgers University (New Brunswick), Hill Center-
Busch Campus, 110 Frelinghuysen Rd., Piscataway, NJ 08854-8019, USA.
Email: zeilberg at math dot rutgers dot edu .
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