Tutorial on Summation and \#1 of DeNardo's assignment on Least Squares

Doron ZEILBERGER

Reminder about simple average

If X_{1}, \ldots, X_{n} are n numbers their average denoted by \bar{X} is defined by

$$
\bar{X}=\frac{X_{1}+\ldots+X_{n}}{n}
$$

and in fancy sigma notation

$$
\bar{X}=\frac{\sum_{i=1}^{n} X_{i}}{n}
$$

An important consequence is that

$$
\sum_{i=1}^{n} X_{i}=n \bar{X}
$$

For the special case $n=2$, we have

$$
X_{1}+X_{2}=2 \bar{X}
$$

and for the special case $n=3$, we have

$$
X_{1}+X_{2}+X_{3}=3 \bar{X}
$$

Reminder on Summation

Given n numbers, $a_{1}, a_{2}, \ldots a_{n}$, their sum, $a_{1}+a_{2}+\ldots+a_{n}$ is abbreviated as

$$
\sum_{i=1}^{n} a_{i}
$$

There are simple rules on handling \sum expressions. If c is any number, then

$$
\begin{equation*}
\sum_{i=1}^{n} c a_{i}=c\left(\sum_{i=1}^{n} a_{i}\right) \tag{Rule1}
\end{equation*}
$$

Indeed, when $n=2$, for example, the left side is

$$
c a_{1}+c a_{2}
$$

simplifying, we get that this is

$$
c\left(a_{1}+a_{2}\right)
$$

which is the same as the right side for $n=2$.

Again, for $n=3$. The right side is

$$
c a_{1}+c a_{2}+c a_{3}
$$

simplifying, we get that this is

$$
c\left(a_{1}+a_{2}+a_{3}\right)
$$

which is the same as the right side for $n=3$.
Another obvious rule (in fact a special case) is

$$
\begin{equation*}
\sum_{i=1}^{n} c=c n \tag{Rule}
\end{equation*}
$$

Since

$$
\sum_{i=1}^{n} c=\sum_{i=1}^{n} c \cdot 1=c\left(\sum_{i=1}^{n} 1\right)=c n
$$

since $\sum_{i=1}^{n} 1=1+1+\ldots+1(n$ times $)$ and this equals n.
Now I will spell-out Problem 1 for $n=2$ and $n=3$, but you would have to do it for general n using \sum notation.

When $\mathbf{n}=\mathbf{2}$ we have

$$
w_{1}=\frac{X_{1}-\bar{X}}{\left(X_{1}-\bar{X}\right)^{2}+\left(X_{2}-\bar{X}\right)^{2}} \quad, \quad w_{2}=\frac{X_{2}-\bar{X}}{\left(X_{1}-\bar{X}\right)^{2}+\left(X_{2}-\bar{X}\right)^{2}}
$$

For the sake of simplicity let's call the denominator (that is some number, and it is the same for w_{1} and $\left.w_{2}\right), D$. In other words

$$
D=\left(X_{1}-\bar{X}\right)^{2}+\left(X_{2}-\bar{X}\right)^{2}
$$

So abbreviating

$$
w_{1}=\frac{X_{1}-\bar{X}}{D} \quad, \quad w_{2}=\frac{X_{2}-\bar{X}}{D}
$$

When $n=2$ the three assertions spell-out to be

$$
\begin{gather*}
w_{1}+w_{2}=0 \tag{Assertion1}\\
w_{1} x_{1}+w_{2} x_{2}=1 \tag{Assertion2}\\
w_{1}^{2}+w_{2}^{2}=\frac{1}{D}
\end{gather*}
$$

(Assertion3)

As for (Assertion 1)

$$
w_{1}+w_{2}=\frac{X_{1}-\bar{X}}{D}+\frac{X_{2}-\bar{X}}{D}=\frac{X_{1}-\bar{X}+X_{2}-\bar{X}}{D}=\frac{X_{1}+X_{2}-2 \bar{X}}{D}=\frac{0}{D}=0
$$

since, as we said above (for $n=2$) $X_{1}+X_{2}=2 \bar{X}$, so $X_{1}+X_{2}-2 \bar{X}=0$.
For $($ Assertion 2$)$, it is better to use x_{i}, (rather than X_{i}), so we have, from the definition

$$
w_{1}=\frac{x_{1}}{D} \quad, \quad w_{2}=\frac{x_{2}}{D} .
$$

So

$$
\sum_{i=1}^{2} x_{i} w_{i}=x_{1} w_{1}+x_{2} w_{2}=x_{1} \frac{x_{1}}{D}+x_{2} \frac{x_{2}}{D}=\frac{x_{1}^{2}}{D}+\frac{x_{2}^{2}}{D}=\frac{x_{1}^{2}+x_{2}^{2}}{D}=1
$$

since by definition, $D=x_{1}^{2}+x_{2}^{2}$.
For (Assertion3), it is also better to use x_{i}

$$
\sum_{i=1}^{2} w_{i}^{2}=w_{1}^{2}+w_{2}^{2}=\left(\frac{x_{1}}{D}\right)^{2}+\left(\frac{x_{2}}{D}\right)^{2}=\frac{x_{1}^{2}}{D^{2}}+\frac{x_{2}^{2}}{D^{2}}=\frac{x_{1}^{2}+x_{2}^{2}}{D^{2}}
$$

But, by definition (when $n=2$), $D=x_{1}^{2}+x_{2}^{2}$, so this is

$$
\frac{D}{D^{2}}=\frac{1}{D}=\frac{1}{\left(X_{1}-\bar{X}\right)^{2}+\left(X_{2}-\bar{X}\right)^{2}}
$$

This concludes the case $n=2$.
Now let's do the same for $n=3$.

$$
\begin{aligned}
& w_{1}=\frac{X_{1}-\bar{X}}{\left(X_{1}-\bar{X}\right)^{2}+\left(X_{2}-\bar{X}\right)^{2}++\left(X_{3}-\bar{X}\right)^{2}} \\
& w_{2}=\frac{X_{2}-\bar{X}}{\left(X_{1}-\bar{X}\right)^{2}+\left(X_{2}-\bar{X}\right)^{2}++\left(X_{3}-\bar{X}\right)^{2}} \\
& w_{3}=\frac{X_{2}-\bar{X}}{\left(X_{1}-\bar{X}\right)^{2}+\left(X_{2}-\bar{X}\right)^{2}++\left(X_{3}-\bar{X}\right)^{2}}
\end{aligned}
$$

For the sake of simplicity let's call the denominator (that is some number, and it is the same for w_{1}, w_{2} and $\left.w_{3}\right), D$. In other words

$$
D=\left(X_{1}-\bar{X}\right)^{2}+\left(X_{2}-\bar{X}\right)^{2}++\left(X_{3}-\bar{X}\right)^{2}
$$

So abbreviating

$$
w_{1}=\frac{X_{1}-\bar{X}}{D} \quad, \quad w_{2}=\frac{X_{2}-\bar{X}}{D} \quad, \quad w_{3}=\frac{X_{3}-\bar{X}}{D}
$$

In terms of x_{i} rather than X_{i}, we have

$$
w_{1}=\frac{x_{1}}{D} \quad, \quad w_{2}=\frac{x_{2}}{D} \quad, \quad w_{3}=\frac{x_{3}}{D}
$$

When $n=3$ the three assertions spell-out to be

$$
\begin{gather*}
w_{1}+w_{2}+x_{3}=0 \tag{Assertion1}\\
w_{1} x_{1}+w_{2} x_{2}+w_{3} x_{3}=1 \tag{Assertion2}\\
w_{1}^{2}+w_{2}^{2}+w_{3}^{2}=\frac{1}{D} \tag{Assertion3}
\end{gather*}
$$

As for (Assertion 1)

$$
w_{1}+w_{2}+w_{3}=\frac{X_{1}-\bar{X}}{D}+\frac{X_{2}-\bar{X}}{D}+\frac{X_{3}-\bar{X}}{D}=\frac{X_{1}+X_{2}+X_{3}-3 \bar{X}}{D}=\frac{0}{D}=0
$$

since, as we said above (for $n=3$) $X_{1}+X_{2}+X_{3}=3 \bar{X}$, so $X_{1}+X_{2}+X_{3}-3 \bar{X}=0$.
For $($ Assertion 2$)$, it is better to use $x_{i},\left(\right.$ rather than $\left.X_{i}\right)$, so we have, from the definition

$$
w_{1}=\frac{x_{1}}{D} \quad, \quad w_{2}=\frac{x_{2}}{D} \quad, \quad w_{3}=\frac{x_{3}}{D}
$$

So

$$
\sum_{i=1}^{3} x_{i} w_{i}=x_{1} w_{1}+x_{2} w_{2}+x_{3} w_{3}=x_{1} \frac{x_{1}}{D}+x_{2} \frac{x_{2}}{D}+x_{3} \frac{x_{3}}{D}=\frac{x_{1}^{2}}{D}+\frac{x_{2}^{2}}{D}+\frac{x_{3}^{2}}{D}=\frac{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}{D}=1
$$

since by definition $D=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$.
For (Assertion3), it is also better to use x_{i}

$$
\begin{aligned}
\sum_{i=1}^{3} w_{i}^{2} & =w_{1}^{2}+w_{2}^{2}+w_{3}^{2}=\left(\frac{x_{1}}{D}\right)^{2}+\left(\frac{x_{2}}{D}\right)^{2}+\left(\frac{x_{3}}{D}\right)^{2} \\
& =\frac{x_{1}^{2}}{D^{2}}+\frac{x_{2}^{2}}{D^{2}}+\frac{x_{3}^{2}}{D^{2}}=\frac{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}{D^{2}}
\end{aligned}
$$

But, by definition (when $n=3$), $D=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$, so this is

$$
\frac{D}{D^{2}}=\frac{1}{D}=\frac{1}{\left(X_{1}-\bar{X}\right)^{2}+\left(X_{2}-\bar{X}\right)^{2}+\left(X_{3}-\bar{X}\right)^{2}}
$$

Now it is your job to do it for general n using \sum notation!

Email: zeilberg at math dot rutgers dot edu .

