
Automated part of the Allouche-Zeilberger paper

Note: This is a Plain TeX draft that will be incorporated in the main paper written

in LaTex. Only for the use of J. -P. Allouche

Automated proofs of Specific Finite Trigonometric Identities

Given a multivariable polynomial P , any identity of the form,

P (sin(
π

n
) , sin(

2π

n
), . . . , sin(

(n− 1)π

n
)) = 0 , (1)

for a specific, positive integer n, is routinely provable by Maple, and (probably) any other computer

algebra system. In Maple the command is simplify.

For example the original ‘Morrie’s law’[4], that Richard Feynman never forgot (also see [1])

cos(20o) cos(40o) cos(80o) =
1

8
,

can be automatically done (exactly!) by Maple. Just type

simplify(cos(Pi/9)*cos(2*Pi/9)*cos(4*Pi/9));

and you will get right away 1/8.

Nowadays you don’t have to be a Gauss to (rigorously!) prove Gauss’ identity at the beginning of

this article, just enter, in Maple

simplify((-1+sqrt(17)+sqrt(34-2*sqrt(17))+2*sqrt(17+3*sqrt(17)-sqrt(170+38*sqrt(17))))/16-

cos(2*Pi/17));

and in one nano-second you would get 0.

To take another example, to prove the second identity on page 1, type

sin(3/7*Pi)**2/sin(2/7*Pi) - sin(2/7*Pi)**2/sin(1/7*Pi) + sin(1/7*Pi)**2/sin(3/7*Pi):

simplify(%); ,

and you would immediately get 0.

The way Maple does it is to use Euler’s formula

sinx =
eix − e−ix

2i
.
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Then in (1) everything is a polynomial in z := eiπ/n, getting, upon expansion, a polynomial in z

and making sure that it is divisible by zn+1. So numeric computations turn into routine, symbolic,

‘high-school algebra’ calculations that computer algebra systems excel at.

Nine such identities are proved, by ‘advanced’ methods in [2]. See the output file

http://www.math.rutgers.edu/~zeilberg/tokhniot/oTrigSums14.txt ,

for automatic, elementary (high-school algebra) proofs of all of them.

Automated Proofs of Infinite Families of Finite Trigonometric Sums

More interesting are “infinite families” of finite trigonometric sums. We will describe how to

automatically derive explicit polynomial expressions to the following eight families.

Below n and k are arbitrary positive integers.

Type Top
n∑
j=1

sin2k(
j π

2n+ 1
) .

Type Ton
n∑
j=1

csc2k(
j π

2n+ 1
) .

Type Tep
n∑
j=1

sin2k(
(2j − 1)π

4n
) .

Type Ten
n∑
j=1

csc2k(
(2j − 1)π

4n
) .

Type Uop
n−1∑
j=1

sin2k(
j π

2n
) .

Type Uon
n−1∑
j=1

csc2k(
j π

2n
) .

Type Uep
n∑
j=1

sin2k(
(2j − 1)π

4n+ 2
) .
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Type Uen
n∑
j=1

csc2k(
(2j − 1)π

4n+ 2
) .

It turns out that to get closed-form expressions for general n and k for the four types Top,Tep,Uop,

Uep, (i.e. for sums of positive even powers of the sines), one does not need computers. These are

easy human exercises. Let’s just illustrate it with type Top.

Define z := e
iπ

2n+1 . Note that z2n+1 = −1. Then sin( j π
2n+1 ) = (zj − z−j)/(2i). We have:

n∑
j=1

sin2k(
j π

2n+ 1
) =

n∑
j=1

(
(zj − z−j)/(2i)

)2k
=

(−1)k

4k

n∑
j=1

(zj − z−j)2k .

By the binomial theorem, this equals

(−1)k

4k

n∑
j=1

2k∑
r=0

(−1)r
(2k)!

r!(2k − r)!
z−jr+j(2k−r) =

(−1)k

4k

n∑
j=1

2k∑
r=0

(−1)r
(2k)!

r!(2k − r)!
z2j(k−r)

=
(−1)k

4k
· n · (−1)k

(2k)!

k!2
+

(−1)k

4k

n∑
j=1

k−1∑
r=0

(−1)r
(2k)!

r!(2k − r)!
(z2j(k−r) + z−2j(k−r))

=
n

4k
(2k)!

k!2
+

(−1)k

4k

k−1∑
r=0

(−1)r
(2k)!

r!(2k − r)!

n∑
j=1

(z2j(k−r) + z−2j(k−r)) .

Note that, by summing the geometric series and using z2(2n+1) = 1, we have:

n∑
j=1

(z2j(k−r) + z−2j(k−r)) =

n∑
j=−n

(z2(k−r))j − 1 = 0− 1 = −1 .

Going back to the above, we have that our desired sum equals

=
n

4k
(2k)!

k!2
+

(−1)k+1

4k

k−1∑
r=0

(−1)r
(2k)!

r!(2k − r)!
.

But (you prove it!)
k−1∑
r=0

(−1)r
(2k)!

r!(2k − r)!
=

1

2
(−1)k+1 (2k)!

k!2
.

We have just proved, sans ordinateurs, the general identity.

Theorem Top:

n∑
j=1

sin2k(
j π

2n+ 1
) =

1

4k
(2k)!

k!2

(
n+

1

2

)
.
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Similar things can be done with the other three positive families, and they are left to the reader.

Theorem Tep:
n∑
j=1

sin2k(
(2j − 1)π

4n
) =

n

22k−1
(2k − 1)!

(k − 1)!k!
.

Theorem Uop:
n−1∑
j=1

sin2k(
j π

2n
) =

n

4k
(2k)!

k!2
− 1

2
.

Theorem Uep:
n∑
j=1

sin2k(
(2j − 1)π

4n+ 2
) =

n

4k
(2k)!

k!2
+

1

4k
(2k − 1)!

k!(k − 1)!
− 1

2
.

Note that in the above four theorems we have closed-form expressions for general n and general

k.

Much more interesting is to derive expressions for the sum of the even powers of the cosecants

(i.e. reciprocals of the sines). In this case there does not seem to be a general formula for n and

k, but for each specific k, one can get an explicit expression, as a polynomial in n of degree 2k, for

any desired k. We went as far as k ≤ 60, but readers are welcome to use our accompanying Maple

package TrigSums.txt, available from the front of this article

https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/trig.html ,

to get as far as one wishes.

We will illustrate it with the family of type Ton.

Recall that the Chebyshev polynomial of the first kind, Tn(x) may be defined by

Tn(cos t) = cos(nt) .

It is well-known and easy to see [3], that

Tn(x) =
n

2

bn2 c∑
k=0

(−1)k2n−2k(n− k − 1)!

k!(n− 2k)!
xn−2k .

Hence
T2n+1(x)

x
= (2n+ 1)

n∑
k=0

(−1)k4n−k(2n− k)!

k!(2n+ 1− 2k)!
(x2)n−k .

Define the degree n polynomial

En(x) :=
T2n+1(

√
x)√

x
.
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Then

En(x) = (2n+ 1)

n∑
k=0

(−1)k4n−k(2n− k)!

k!(2n+ 1− 2k)!
xn−k .

Note that the n roots of En(x) are sin2( j π
2n+1 ), for j = 1, . . . , n.

Define the reciprocal polynomial Ēn(x) := xnEn(x−1). Then we have

Ēn(x) = (−1)n (2n+ 1)

n∑
k=0

(−1)k4k(n+ k)!

(n− k)!(2k + 1)!
xn−k .

Note that the n roots of Ēn(x) are csc2( j π
2n+1 ).

It follows immediately that, denoting, as usual, the degree k elementary symmetric function of of

α1, . . . , αn by ek(α1, . . . , αn), that

Lemma Top:

ek({sin2(j π/(2n+ 1), j = 1 . . . n)}) =
4−k (2n− k)! (2n+ 1)

k! (2n− 2k + 1)!

Lemma Ton:

ek({csc2(j π/(2n+ 1)), j = 1 . . . n)}) =
(n+ k)!4k

(n− k)! (2k + 1)!
.

Now we use Newton’s identities [5] (see [6] for a lovely combinatorial proof). Let

pk(α1, . . . , αn) :=

n∑
j=1

αkj

be the power-sum functions, then

kek(α1, . . . , αn)) =

k∑
i=1

(−1)i−1ek−i(α1, . . . , αn)pi(α1, . . . , αn) .

This enables us (and our computers) to recursively find explicit expressions for the power sums

of both {sin2(j π/(2n + 1)), j = 1 . . . n)} and {csc2(j π/(2n + 1)), j = 1 . . . n)}. Of course, for the
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former case we don’t need it, since we have Theorem Top above but it is still nice to know that it

agrees up to k = 60.

For types Tep and Ten, the underlying polynomial is T2n(
√
x) whose roots are

{sin2((2j + 1)π/(4n)), j = 1 . . . n)} ,

and we have, analogously

Lemma Tep:

ek({sin2((2j + 1)π/(4n)), j = 1 . . . n}) =
2n 4−k (2n− k − 1)!

k! (2n− 2k)!
.

Lemma Ten:

ek({csc2((2j + 1)π/(4n)), j = 1 . . . n}) =
n (n+ k − 1)!4k

(n− k)! (2k)!
.

For types Uop and Uon, the underlying polynomial is U2n−1(
√
x)/
√
x whose roots are

{sin2(jπ/(2n)), j = 1 . . . n− 1)}

and we have, analogously

Lemma Uop:

ek({sin2(j π/(2n)), j = 1 . . . n− 1}) =
4−k (2n− k − 1)!

(2n− 2k − 1)!k!
.

Lemma Uon:

ek({csc2(j π/(2n)), j = 1 . . . n− 1}) =
4k (n+ k)! (n− 1)!

(2k + 1)! (n− k − 1)!n!
.

For types Uep and Uen, the underlying polynomial is U2n(
√
x) whose roots are

{sin2((2j − 1)π/(4n+ 2), j = 1 . . . n)} ,

and we have, analogously

Lemma Uep:
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ek({sin2((2j − 1)π/(4n+ 2)), j = 1 . . . n}) =
4−k (2n− k)!

(2n− 2k)!k!
,

Lemma Uen:

ek({csc2((2j − 1)π/(4n+ 2)), j = 1 . . . n}) =
(n+ k)!4k

(2k)! (n− k)!
.

From these, combined with Netwon’s identities one can find as many sum-of-powers as one wishes.

Appendix by Shalosh B. Ekhad

Type Ton

Proposition Ton[1]
n∑
j=1

csc2(
πj

2n+ 1
) =

2 (n+ 1)n

3
.

Proposition Ton[2]
n∑
j=1

csc4(
πj

2n+ 1
) =

8 (n+ 1)n
(
n2 + n+ 3

)
45

Proposition Ton[3]

n∑
j=1

csc6(
πj

2n+ 1
) =

8 (n+ 1)n
(
8n4 + 16n3 + 35n2 + 27n+ 54

)
945

.

Proposition Ton[4]

n∑
j=1

csc8(
πj

2n+ 1
) =

128 (n+ 1)n
(
n2 + n+ 3

) (
3n4 + 6n3 + 7n2 + 4n+ 15

)
14175

.

Proposition Ton[5]

n∑
j=1

csc10(
πj

2n+ 1
) =

64 (n+ 1)n
(
16n8 + 64n7 + 182n6 + 322n5 + 493n4 + 524n3 + 579n2 + 360n+ 540

)
93555

.

For Propositions Ton[k] for 6 ≤ k ≤ 50, see the output file

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oTrigSums1.txt .
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Type Ten

Proposition Ten[1]
n∑
j=1

csc2(
π(2j − 1)

4n
) = 2n2 .

Proposition Ten[2]
n∑
j=1

csc4(
π(2j − 1)

4n
) =

4n2
(
2n2 + 1

)
3

.

Proposition Ten[3]
n∑
j=1

csc6(
π(2j − 1)

4n
) =

8n2
(
8n4 + 5n2 + 2

)
15

.

Proposition Ten[4]

n∑
j=1

csc8(
π(2j − 1)

4n
) =

16n2
(
136n6 + 112n4 + 49n2 + 18

)
315

.

Proposition Ten[5]

n∑
j=1

csc10(
π(2j − 1)

4n
) =

32n2
(
992n8 + 1020n6 + 546n4 + 205n2 + 72

)
2835

.

For Propositions Ten[k] for 6 ≤ k ≤ 50, see the output file

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oTrigSums5.txt .

Type Uon

Proposition Uon[1]
n−1∑
j=1

csc2(
j π

2n
) =

2 (n+ 1) (n− 1)

3
.

Proposition Uon[2]

n−1∑
j=1

csc4(
j π

2n
) =

4 (n+ 1) (n− 1)
(
2n2 + 7

)
45

.

Proposition Uon[3]

n−1∑
j=1

csc6(
j π

2n
) =

8 (n+ 1) (n− 1)
(
8n4 + 29n2 + 71

)
945

.
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Proposition Uon[4]

n−1∑
j=1

csc8(
j π

2n
) =

16 (n+ 1) (n− 1)
(
24n6 + 104n4 + 251n2 + 521

)
14175

.

Proposition Uon[5]

n−1∑
j=1

csc10(
j π

2n
) =

32 (n+ 1) (n− 1)
(
32n8 + 164n6 + 450n4 + 901n2 + 1693

)
93555

.

For Propositions Uon[k] for 6 ≤ k ≤ 50, see the output file

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oTrigSums9.txt .

Type Uen

Proposition Uen[1]
n∑
j=1

csc2(
(2j − 1)π

4n+ 2
) = 2 (n+ 1)n .

Proposition Uen[2]

n∑
j=1

csc4(
(2j − 1)π

4n+ 2
) =

8 (n+ 1)n
(
n2 + n+ 1

)
3

.

Proposition Uen[3]

n∑
j=1

csc6(
(2j − 1)π

4n+ 2
) =

8 (n+ 1)n
(
8n4 + 16n3 + 19n2 + 11n+ 6

)
15

.

Proposition Uen[4]

n∑
j=1

csc8(
(2j − 1)π

4n+ 2
) =

128 (n+ 1)n
(
n2 + n+ 1

) (
17n4 + 34n3 + 31n2 + 14n+ 9

)
315

.

Proposition Uen[5]
n∑
j=1

csc10(
(2j − 1)π

4n+ 2
)

=
64 (n+ 1)n

(
496n8 + 1984n7 + 4106n6 + 5374n5 + 4979n4 + 3316n3 + 1669n2 + 576n+ 180

)
2835

.

For Propositions Uen[k] for 6 ≤ k ≤ 50, see the output file

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oTrigSums12.txt .
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