
Automatic CounTilings

Doron ZEILBERGER1

I Have a Dream

One day it would be possible to write in English, or in an English-like super-high-level programming
language, the following command:

Write a Maple program that inputs an arbitrary positive integer k, a symbol n, and

an arbitrary set T of tiles, as well as a symbol t, and outputs the rational func-

tion of t whose Maclaurin series’s coefficient of tn is the number of different tilings

of a k by n rectangle by the tiles of T.

But Yesterday’s Dream Came To Pass

This day hasn’t arrived yet, so I had to spend a few weeks writing such a program myself. This is
the human-generated Maple package TILINGS accompanying this article.

But, this is already a great step forward. Once I wrote the program, my beloved servant, Shalosh
B. Ekhad, can solve (potentially) infinitely many enumeration problems, completely rigorously, for
enumerating tilings of rectangles of arbitrary width and using an arbitrary set of tiles (the tiles even
do not have to be connected).

Traditionally, a human would have had to tackle each specific width (k) and each specific set of tiles
(T ), (even the set consisting of the two dimers, the vertical and horizontal 1 by 2 rectangles) one
at a time. He or she would have had to figure out the combinatorics of the situation, establish a
“structure theorem”, then deduce from this a set of equations, and finally, solve this set of equations
(this very last part, starting in the seventies, was possibly aided by Maple or Mathematica). Of
course, the human will only be able to do it for very small k, and very simple sets of tiles, since very
soon the structure theorem, and consequently the set of equations, would be too hard to derive by
hand, let alone solve.

Once the meta-program above would be realized, I would become superfluous. But even at the
present level, the human-made Maple program TILINGS can generate, in principle, infinitely many
articles, and Ph.D. theses, proving general, rigorous and interesting results. Except for very simple
cases, of course, the complexity of the proofs and results are beyond mere humans.

The Simplest Not-Completely-Trivial Example

Let a(n) be the number of ways of tiling a 2×n rectangle using the horizontal and vertical dominoes,
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i.e. the set of tiles is:
XX ,

X
X

.

Let A(n) be the set of tilings of a 2 × n rectangular board by the above two tiles. Of course, if
n = 0, then A(n) consists of one tiling only: the empty tiling, but if n > 0 then there are two
cases to consider, regarding the bottom-left cell.

Case I: It participates in the vertical tile, in which case the board looks like

10000 . . . 0
10000 . . . 0 ,

where 1 means an occupied cell and 0 means a still-untiled cell.

Case II: It participates in the horizontal tile, in which case the board looks like

00000 . . . 0
11000 . . . 0 .

Now the first case is clearly “isomorphic” to A(n− 1), and the isomorphism is obtained by “chop
the 1’s” (i.e. remove the vertical tile), reducing the problem to that of tiling a 2 × (n − 1) board.
But Case II requires us to introduce a new auxiliary set, let’s call it B(n), that of tiling a “jagged”
rectangle with the two leftmost cells of the bottom row removed.

So now we forget about the original problem, and try to find a “structure theorem” for B(n).
Of course, if n = 0, 1, then B(n) is the empty set, but if n ≥ 2 then, we consider the leftmost
unoccupied cell of the top row. Now there is only one case to consider: it is tiled by a horizontal
tile, getting a board of the form

11000 . . . 0
11000 . . . 0 ,

which is trivially “isomorphic” to A(n− 2).

We now have two “structure theorems”:

A(n) ≡ A(n− 1) ∪B(n) (n > 0) ,

B(n) ≡ A(n− 2) . (MarkovianScheme)

Now taking cardinalities, calling a(n) := |A(n)|, b(n) := |B(n)|, we have the system of linear
recurrences

a(n) = a(n− 1) + b(n) (n > 0) ,

b(n) = a(n− 2) ,

with the obvious initial conditions a(−2) = 0, a(−1) = 0, a(0) = 1.
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Doing the usual generatingfunctionology, we get the generating functions

f(t) :=
∞∑
n=0

a(n)tn =
1

1− t− t2
,

g(t) :=
∞∑
n=0

b(n)tn =
t2

1− t− t2
.

Equivalently, we can use Polya’s Picture Writing[P] and use weight-enumerators to deduce
the system

f(t) = 1 + tf(t) + g(t) ,

g(t) = t2f(t) ,

and solve the system of two linear equations in the two unknowns f(t), g(t). But we can
do better still: keep track of the number of occurrences of each tile. Introducing the variables
h and v for a horizontal and vertical tile respectively, and defining the weight of a tiling to be
h#horizontal tilesv#vertical tilestn, where n is its length, and defining F (t, h, v) to be the sum of all
the weights of all tilings, and analogously G(t, h, v) for the set B, we get the system

F (t, h, v) = 1 + tvF (t,H, V ) + hG(t,H, V ) ,

G(t, h, v) = t2hF (t, T, V ) ,

and solving this system gives:

F (t, h, v) :=
1

1− vt− h2t2
,

G(t, h, v) :=
t2h

1− vt− h2t2
.

Note that f(t), g(t), and F (t, h, v), G(t, h, v) are rational functions. In particular, taking the
partial-fraction decomposition of f(t), over the reals one easily gets the asymptotics for a(n),
namely (

√
5/φ) · φn, where φ is the Golden Ratio. Also by differentiating w.r.t. h and v and

then plugging-in h = 1 and v = 1 one gets the generating function for “the total number of
horizontal tiles” and “the total number of vertical tiles” respectively, from which once again, we can
deduce asymptotics and get the asymptotic averages by dividing by the already-known asymptotic
“number of tilings”. Ditto for the higher moments and correlation (of course in this toy problem
the correlation is tautologically −1).

But there is more! Now that we have quick ways for computing a(n) and b(n), up to very large
n, either via the generating function or directly by (MarkovianScheme), we can use the latter,
with the help of Wilf’s methodology[W] to do sequencing, ranking, and random selection.
Let’s just consider the last, that of generating uniformly at random, such a tiling of the 2 × n
rectangular board. Use a loaded coin, with probabilities a(n − 1)/a(n) and b(n)/a(n) to decide
whether to cover the leftmost-bottommost cell with a vertical or horizontal tile respectively. In
the former case, continue recursively. In the latter case, use a very biased coin with probabilities
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b(n)/a(n− 2) = 1 and 0 to decide whether to tile the leftmost 0 at the top row, with a horizontal
tile or vertical tile respectively, and then continue recursively.

The General Case

The same reasoning applies to an arbitrary (but fixed, i.e. numeric) width k and an arbitrary
(but of course finite) set of (finite) “tiles”. Here a tile is any finite set of lattice points, that does
not need to be connected, and a tiling is a covering by translations of the tiles.

The logic is the same as above, but instead of only one ‘auxiliary’ set B(n) (that was trivially
isomorphic to A(n− 2)) we get many more such ‘stepping-stones’. These auxiliary sets are tilings
of jagged rectangular boards that can be represented as, for example, (here the width, k, is 4) :

0101 . . . 0
1001 . . . 0
0000 . . . 0
1110 . . . 0

,

where . . . stands for 0’s (i.e. still unoccupied cells). We can code such jagged boards on the computer
just as above as matrices of 0’s and 1’s leaving the . . . implicit, and making it right-justified (in
addition to left-justified), and hence there should be at least one 1 in the rightmost column. We
also assume that the leftmost column has at least one 0, or else it is equivalent to a smaller board
with that leftmost column removed (giving the removed column its due weight by multiplying by
t when we do the equations). For each such jagged board we (or rather the computer) locates the
fundamental free cell which is the lowest 0 in the leftmost column. We then consider which of
the tiles in the set of tiles can cover that cell, and in what relative position of the considered tile.
For each such scenario, the computer places that tile, getting a different jagged board, that may
be a previously-encountered one or a brand-new one. For each new board, we do it again. The
computer checks at each stage whether each and every jagged-board encountered so-far already has
a structure theorem expressing it a a union of isomorphic copies of other jagged boards, and if not,
keeps creating new structure theorems, that in turn usually bring in new kinds of jagged boards.
Eventually there won’t be any new ones (pigeonhole!) and then the process halts.

Next, to get generating functions, the computer (all by itself) takes weight-enumerators, getting a
(usually very large) system of linear equations for the set of unknown weight-enumerators for these
jagged boards, that includes, in its midst, the original, non-jagged rectangular board. Then, Maple
solves this system, giving in particular the generating function for the original set, the rational
function, (in t, or in t as well as in the tile-variables) whose Maclaurin series’s coefficient of tn is
the number of (or weight-enumerating polynomial for) tilings of a k × n rectangular board by the
given set of tiles.

Once the generating function is known, we can process it, using Maple’s built-in partial-fraction
(over the reals) (parfrac) and differentiation, diff, to get asymptotic size, and asymptotic aver-
ages, variance, covariance, and higher moments for the random variables “number of occurrences
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of a given tile-type”.

Disclaimer: This last part involves floating-point calculations and may not be entirely rigorous. In
principle, of course, one can stay within algebraic numbers, but the output would not be insightful
to human eyes.

The Maple Package TILINGS

All this (and more!) is implemented in the Maple package TILINGS, that can be downloaded from

http://www.math.rutgers.edu/~zeilberg/tokhniot/TILINGS .

Once you downloaded it into a directory in your computer, calling it TILINGS (and not TILINGS.txt),
go into Maple, and type:

read TILINGS:

and then follow the instructions given there. In particular, for a list of the main functions, type
ezra(); and for help with a specific function, type ezra(FunctionName);.

Also available is a precursor Maple package RecTILINGS that only handles rectangular tiles. It can
be downloaded from:

http://www.math.rutgers.edu/~zeilberg/tokhniot/RecTILINGS .

A Very Quick Overview

Full details are given on-line, but for the benefit of the lazy reader who does not use Maple, let me
just mention that the main functions are:

GFt(k,Tiles,t) and GFtH(k,Tiles,t,H) .

The former computes the generating function (in t only) and the latter the weight-enumerator (in
t and in the variables H[tile], one for each tile).

Rt(a, b) is the package’s shorthand for a b × a rectangular tile. For example, the toy problem we
did above by hand is reproduced by:

GFt(2,[Rt(1,2),Rt(2,1)],t); and

GFtH(2,[Rt(1,2),Rt(2,1)],t,H); .

Sidra(k,ListOfTiles,N); gives you the first N + 1 terms of the enumerating sequence (that can
automatically be sent to Sloane’s database), while SidraW(k,H,ListOfTiles,N); gives you the
first N + 1 terms in the sequence of weight-enumerators, that are polynomials in H[tile]’s.

Astat(k,ListOfTiles,n); gives you the asymptotic statistics: average number of occurrences for
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each tile, the variance, and the asymptotic covariance matrix for these random variables (in the
order of appearance in the list ListOfTiles). AstatV is a verbose version of Astat.

Finally, RandTiling(ListOfTiles,k0,n0); gives you a (uniformly) random tiling of a k0 × n0
rectangular board, using the given tiles (e.g. try: RandTiling([Rt(1,2),Rt(2,1)],4,10);), and

RandTilingNice(ListOfTiles,k0,n0); gives you the same in nice, matrix form.

BuildTree and BuildTreeH actually gives you the Markovian Enumeration Scheme, complete with
generating functions, and Sipur and SipurArokh tells you everything you always wanted to know
about the tilings.

Sample Input and Output

the webpage of this article,

http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/tilings.html ,

contains several sample input and output files for SipurArokh. Readers can generate their own
output for their favorite set of tiles and for their favorite width.

An “Almost” Automatic Proof of Kasteleyn’s Formula

In the very special case of two dimer tiles (1 × 2 and 2 × 1), Kasteleyn and Fisher&Temperley
([K][FT], see [AS] for a beautiful recent survey) gave their deservedly celebrated beautiful formula
for the weight-enumerator of an m × n rectangle for arbitrary (i.e. symbolic) m and n. To wit, if
m and n are both even positive integers, and z and z′ the variables for the horizontal and vertical
dimers respectively (what we called H and V above), then

Zm,n(z, z′) = 2mn/2
m/2∏
r=1

n/2∏
s=1

[
z2 cos2 rπ

m+ 1
+ z′2 cos2 sπ

n+ 1

]
, (K)

with a similar formula when n is odd. At this time of writing, computers can’t prove this formula
in general. But for any specific m (but general(!) n), it is now a routine verification, thanks to our
Maple package TILINGS. Of course, in practice, it can only be done for small values of m (m ≤ 10
on our computer), but with bigger and future computers, one would be able to go further. The
proof is a beautiful example of (rigorous!) generalization from finitely many cases, combined with
‘general-nonsense’ linear algebra handwaving, that is nevertheless fully rigorous.

Let’s call the right side of (K) Wm,n(z, z′). We have to prove, for our given m, that Wm,n(z, z′) =
Zm,n(z, z′) for all n. For a fixed even m it is readily seen that Wm,n(z, z′) is expressible as a product
of m/2 different dilations of Un(z), the Tchebycheff polynomials of the second kind. It is well-known
(and easily seen) that Un(z) satisfies a (homogeneous) linear recurrence equation with constant (i.e.
not depending on n) coefficients of order 2, and hence do does any of its dilations Um(βz), and the
product of m/2 of these creatures consequently satisfies a linear recurrence equation with constant
coefficients of order 2m/2. Hence its generating function, in t, is rational function whose denominator
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has degree 2m/2 and numerator degree < 2m/2. We have to prove that this generating function
coincides with the ‘real thing’, the rational function outputted by procedure GFtH of TILINGS, that
also turns out to have the same degrees. But to prove that two rational functions whose numerator
degree is p and denominator degree is q are identical, we only have to check, by elementary linear
algebra, that the first p+ q+ 2 terms in their Maclaurin series coincide, and this is a routine check,
done in our package TILINGS by typing ProveKasteleyn(m);, for the general case (with z and z′),
and ProveKasteleyn1(m);, for the straight-enumeration case ( z = z′ = 1).

By hindsight, Kasteleyn and Fisher&Temperley were extremely lucky, since in the very special
case of the two dimer tiles, they were able to use graph theory and Pfaffians. The general case
seems, at present, out of reach. Even the monomer-dimer problem is still wide open, let alone an
“explicit” expression for the weight-enumerators for tilings of an m×n rectangle using other sets of
tiles. Our Maple package TILINGS is a research tool that can automatically discover and rigorously
prove results for specific m but general n. Let’s hope that the human can use it to discover new
ansatzes by which to conjecture and hopefully prove some “explicit” form for the monomer-dimer
and more general sets of tiles, where both m and n are symbolic. From this, one should be able
to extract, at least, an “explicit” expression for the so-called thermodynamic limit, or at the very
least, determine rigorously the critical exponent.

I hope to explore these speculations in a subsequent article.
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