ENUMERATION SMOOTH LEGO TOWERS

ABSTRACT
1. Introduction

In the following, we use the definitions from [1]. Recall that "Lego" is a construction toy of interlocking plastic building blocks. For our purpose, we will consider them as rectangular tiles of dimensions $1 \times a(a \in \mathbb{N})$. A polyomino can be realized in terms of a Lego tower as follows: Assume that we have an infinite supply of Lego pieces of dimensions $1 \times a$. Then every floor of the tower contains a finite (horizontal) sequence of pieces separated by gaps. A vertical sequence of floors constitutes a polyomino if the resulting configuration is connected. All the Lego towers depicted in Figure 1 are polyominoes.

Figure 1. Examples of Lego towers.
Definition 1.1. A k-Lego tower is a Lego tower with a finite number of floors, where each floor contains exactly one Lego piece of size $1 \times a$ with $1 \leq a \leq k$.

For k-Lego towers, we introduce some more terminology. Given a k-Lego tower of two Lego pieces as described in Figure 2, we call $\ell \in \mathbb{Z}$ the left overhang and $\ell^{\prime} \in \mathbb{Z}$ the right overhang of the second floor with respect to the first floor; note that both overhangs can be positive or negative (in Figure $2, \ell<0$ and $\ell^{\prime}>0$).

Figure 2. Lego tower with two Lego pieces with $b-\ell^{\prime}-\ell=a$.
A Lego tower or k-lego tower is called double side smooth if the left overhang ℓ and the right overhang ℓ^{\prime} satisfy $\ell, \ell^{\prime} \in\{-1,1,0\}$, and is called left side smooth (respectively, right side smooth) if the left overhang ℓ (respectively, the right overhang ℓ^{\prime}) satisfy $\ell \in\{-1,1,0\}$ (respectively, $\ell^{\prime} \in\{-1,1,0\}$).

2. Enumeration of left side smooth Lego tower adn k-Lego tower

References

[1] D. Zeilberger, Automated counting of LEGO towers, J. Differ. Equations Appl. 5 (1999), 323-333.

