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Abstract This paper consists of two independent, but related parts. In the first part we show
how to use symbolic computation to derive explicit expressions for the first few moments of the
number of implicants that a random Boolean function has, or equivalently the number of fixed-
dimensional subcubes contained in a random subset of the n-dimensional cube. These explicit
expressions suggest, but do not prove, that these random variables are always asymptotically
normal.

The second part presents a full, human-generated proof, of this asymptotic normality, first
proved by Urszula Konieczna.

Accompanied by Maple package SMCboole.txt, available from
http://www.math.rutgers.edu/∼zeilberg/mamarim/mamarimhtml/subcubes.html

1 Introduction

1.1 Motivation

Recall that an implicant of a Boolean function in n variables, f(x1, . . . , xn) is a pure disjunction

xa1
i1
∧ xa2

i2
∧ · · · ∧ xarir , (1.1)

that implies it. Here 1 ≤ i1 < . . . ir ≤ n, a1, . . . , ar ∈ {0, 1}, z1 = z, and z0 = z̄ (the negation
of z).

Fix r and let n vary. We are interested in the statistical distribution of the random variable
number of implicants of length n− r in a uniformly-at-random Boolean function of n variables.
Clearly, when r = 0 it is nothing but the good old (fair) binomial distribution with 2n fair
coin-tosses, B( 1

2 , 2
n).

Equivalently, for a random subset of the n-dimensional cube, we are interested in the statis-
tical distribution of the number of r-dimensional subcubes properly contained in it.

We would like to have explicit expressions, in n, for the kth moment of this random variable,
for as many as possible r and k. This turns out to be a challenging symbolic-computational
problem that we will address in the first part of this paper.

In the second part we consider asymptotics as n→∞. It was proved by Urszula Konieczna
[3] that for each fixed r, this distribution is asymptotically normal. We will reprove this by a
somewhat different method which leads to a simple proof.

1.2 Our Random Variables

The sample space is the set of subsets of {0, 1}n, that has cardinality 22n

.
Let’s define our random variables formally. For a (uniformly-at-) random subset S, of

{0, 1}n, and fixed r, define the random variable

Xr(S) := number of r-dimensional subcubes of S. (1.2)

For example, if n = 3 and

S = {000, 001, 010, 011, 100, 111}, (1.3)

http://www.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/subcubes.html
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we have

X0(S) = 6, X1(S) = 6, X2(S) = 1, X3(S) = 0. (1.4)

We would like to get, for as many pairs (k, r) as possible, explicit expressions in n, for the
k-th moment of Xr, i.e. for

fkr(n) := E[Xr
k](n). (1.5)

2 Explicit Expressions for Moments of the Number of Low-Dimensional
Subcubes in a Random Subest of the n-dimensional cube

2.1 The Expectation and Variance

The first moment, aka expectation, aka mean, aka average, is easy, using linearity of expecta-
tion.

For any specific subcube C of {0, 1}n, define the atomic random variable, XC , on subsets, S,
of {0, 1}n as follows.

XC(S) =

{
1, if C ⊂ S;
0, otherwise.

(2.1)

Let C(n, r) be the set of all (nr)2
n−r r-dimensional subcubes of {0, 1}n. Then, of course,

Xr(S) =
∑

C∈C(n,r)

XC(S). (2.2)

Applying the expectation functional and using the linearity of expectation, we get that the
average, let’s call it µr(n), is

µr(n) = E[Xr] = E

 ∑
C∈C(n,r)

XC

 =
∑

C∈C(n,r)

E[XC ]. (2.3)

Now the probability that a random subset of {0, 1}n contains an r-dimensional subcube C is( 1
2

)2r

, since for each of its vertices, the chance of it belonging to S is 1
2 , and by independence

the probability that all its 2r vertices belong to S is indeed 1
22r . The probability that XC(S) = 0

is of course 1−
( 1

2

)2r

, hence

E[XC ] = 1 ·
(

1
2

)2r

+ 0 ·

(
1−

(
1
2

)2r)
=

(
1
2

)2r

. (2.4)

Going back to equation (2.3) we have

µr(n) =
∑

C∈C(n,r)

E[XC ] =
∑

C∈C(n,r)

1
22r = |C(n, r)| · 1

22r =
(nr)2

n−r

22r . (2.5)

In a beautiful paper, Thanatipanonda [5] derived an explicit expression for the general second
moment, for every r-dimensional cube.

Thanatipanoda’s General Formula for the Second Moment:

E[X2
r ] =

r∑
i=0

n!2n−i

i!(r − i)!2(n− 2r + i)!22r+1 · (22i

− 1) +
[(nr)2

n−r]2

22r+1 , (2.6)

from which immediately follows, using [E(Xr − µr(n))2] = E[X2
r ]− µr(n)2, the following for-

mula.
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Thanatipanoda’s General Formula for the Variance:

Var(Xr) =
r∑
i=0

n!2n−i

i!(r − i)!2(n− 2r + i)!22r+1 · (22i

− 1). (2.7)

Note that the variance is a polynomial in (n, 2n) of degree 2r in n and degree 1 in 2n.

2.2 Higher Moments

Edges

Thanatipanonda was unable to get such a general formula for higher moments, but did get E[X3
1 ],

from which he immediately deduced that the third central moment (or third-moment-about-the-
mean) of X1 is

E[(X1 − µ1(n))
3] =

3n32n

64
. (2.8)

Using the symbolic-computational algorithms to be described in the next section, we man-
aged to derive the following explicit formulas

E[(X1 − µ1(n))
4] =

n2n

1024
(
12n32n + 12n22n + 40n3

+ 3n2n − 48n2 + 12n− 16
)
, (2.9)

E[(X1 − µ1(n))
5] =

5n32n

1024
(
6n22n + 3n2n + 4n2 − 24n+ 8

)
, (2.10)

E[(X1−µ1(n))
6] =

n2n

32768
·
(
120n5 (2n)2

+ 180n4 (2n)2
+ 1920n52n + 90n3 (2n)2

− 840n42n − 1792n5 + 15n2 (2n)2 − 360n32n − 5280n4

− 300n22n + 3840n3 − 240n2n + 3840n2 − 6720n+ 4864
)
. (2.11)

It follows that the scaled moments about the mean for the third, fourth, fifth, and sixth mo-
ments, converge, as n → ∞, to 0, 3, 0, 15 respectively, the respective moments of the normal
distribution, indicating that the random variable X1 (the number of edges contained in S) is
probably asymptotically normal. To fully prove asymptotic normality, of course, we need to
prove it for all moments, not just for the first six.

Squares

We only managed to get explicit expressions for the third and fourth moments for X2.

E[(X2 − µ2(n))
3] =

2nn (n− 1)
32768

(
9n4 + 6n3 + 21n2 − 16n− 34

)
, (2.12)

E[(X2 − µ2(n))
4] =

2nn (n− 1)
4194304

·
(
12n62n + 12n52n + 520n6 + 24n42n − 24n5 − 12n32n + 1272n4

− 9n22n − 840n3 − 27n2n − 5232n2 − 2768n+ 240
)
. (2.13)
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3-dimensional cubes

We only managed to get an explicit expression for the third moment for X3.

E[(X3 − µ3(n))
3] =

2nn (n− 1) (n− 2)
2415919104

(
14n6 + 24n5 + 479n4 + 2046n3

+ 6779n2 + 15444n− 23112
)
. (2.14)

2.3 Our Method

Obviously we did not derive these formulas by hand. We had to teach our computer how to find
them. It also uses linearity of expectation, but with higher moments things get very complicated.
Recall that

Xr(S) =
∑

C∈C(n,r)

XC(S). (2.15)

Hence, the k-th moment is

E
[
(Xr)

k
]
= E

[( ∑
C∈C(n,r)

XC(S)
)k]

=
∑

[C1,...,Ck]∈C(n,r)k
E[XC1XC2 · · ·XCk

]. (2.16)

So we sum over all ((nr)2
n−r)k members of C(n, r)k. Since the productXC1(S)XC2(S) · · ·XCk

(S) =
1 if each ofC1, C2, . . . , Ck is properly included in S (i.e. if each vertex inC1∪C2∪. . . Ck belongs
to S), and 0 otherwise, the contribution, or weight, due to each such term is

Weight([C1, C2, . . . , Ck]) = E [XC1XC2 · · ·XCk ] =
1

2|C1∪C2∪...Ck|
. (2.17)

Data Structure

Every r-dimensional subcube of {0, 1}n has the form

C = {(x1, . . . , xn) ∈ {0, 1}n |xi1 = αi1 , . . . , xin−r = αin−r}, (2.18)

for some 1 ≤ i1 < i2 < · · · < in−r ≤ n and (αi1 , . . . αin−r
) ∈ {0, 1}n−r. A good way

to represent it on a computer is as a row-vector of length n, in the alphabet {0, 1, ∗}, where
the entries corresponding to i1, i2, . . . , in−r have αi1 , . . . .αin−r

respectively and the remaining r
entries are filled with wild cards, denoted by ∗.

For example, if n = 7 and r = 3, the 3-dimensional cube

{(x1, . . . , x7) ∈ {0, 1}7 |x2 = 1, x4 = 1, x5 = 0, x7 = 1}, (2.19)

is represented by

∗1 ∗ 10 ∗ 1. (2.20)

We are trying to find a weighted count of ordered k-tuples of r-dimensional subcubes. The
natural data structure for these is the set of k by nmatrices in the ‘alphabet’ {0, 1, ∗}where every
row has exactly r ‘wildcards’, *.

Let’s call this set of matrices, that correspond to C(n, r)k, C(n, r, k).
For any specific, numeric n, there are ‘only’ (2n−r(nr))

k of these matrices, and for each and
every one of them one can find the cardinality of the union of the corresponding subcubes, let’s
call it v, and add to the running sum 1

2v . But we want to do it for symbolic n, i.e. for ‘all’ n.
We will soon see how, for each specific (numeric) r and k this can be done in principle, but only
for relatively small r and k in practice. But let’s try and push it as far we can. An interesting
consequence of our algorithm is the precise degree in n and 2n of the expression for E[Xk

r ](n).
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The Kernel

A key object in our approach is the kernel. Given a k × n matrix M in the alphabet {0, 1, ∗}
let’s call a column active if it contains at least one ‘∗’. Note that the matrix has exactly k · r ‘∗’s,
hence the number of active columns, let’s call it a, is between r and k · r. 1 The kernel of M is
the submatrix of M consisting of its active columns.

Let Ca(n, r, k) be the subset of C(n, r, k) matrices with exactly a active columns. We will call
such a matrix in canonical form if the active columns are occupied by the a leftmost columns
(i.e. its kernel is contiguous starting in the first column). Let’s denote by Ca(n, r, k) the set of
such matrices in canonical form. Obviously, there are (na) ways to choose which of the n columns
are active and hence

Weight(C(n, r, k)) =
rk∑
a=r

Weight(Ca(n, r, k))

=
rk∑
a=r

(
n

a

)
Weight(Ca(n, r, k)). (2.21)

For any set, S, Weight(S) is the sum of the weights of its members. Note that this has degree rk
in n.

It remains to do a weighted-count, where every matrix gets ‘credit’ 1/2v, where v is the
cardinality of the union of the corresponding subcubes represented by the k rows, for the set
Ca(n, r, k), of matrices in canonical form. Note that there are only finitely many choices for
the a leftmost columns, i.e. the set of k × a matrices in the alphabet {0, 1, ∗} with the property
that every column has at least one ‘∗’, and every row has exactly r ‘∗’s. These can be divided
into equivalence classes obtained by permuting rows and columns and transposing 0 and 1 in
any given column. Once these are sorted into equivalence classes, one needs only examine one
representative, and then multiply the weight by the cardinality of the class.

But what about the n − a rightmost columns? There are 2k(n−a) possible submatrices; the
alphabet here is {0, 1}. Almost all of these have distinct rows, more precisely,(

2n−a

k

)
k! (2.22)

of them, and these will produce the smallest possible weight in conjunction with any kernel. The
other extreme is that all the rows of the submatrix consisting of the n− a rightmost columns are
identical, and then there are only 2n−a choices to fill them in.

In general, every such member of Ca(n, r, k), determines a set partition of the set of rows
{1, . . . , k}, where two rows are roomates if they have the same last n − a entries. If that set-
partition has m members 1 ≤ m ≤ k, then the number of choices of assigning different 0 − 1
vectors of length n− a to each of the parts of the set-partition is(

2n−a

m

)
m!. (2.23)

Now for each a and for each set-partition, we let the computer generate the finite set of
k × a matrices in the alphabet {0, 1, ∗}. Each of the members of the set partition has its own
submatrix, and we ask our computer to kindly find the number of vertices in the corresponding
union of subcubes corresponding to each member of the examined set partition. Since they are
disjoint, we add them up, getting v for that particular pair (matrix, set-partition), giving credit
1/2v.

Implementation

All this is implemented in the Maple package SMCboole.txt, available from:
https://sites.math.rutgers.edu/˜zeilberg/tokhniot/SMCboole.txt

1More generally, if we want to find an expression for the mixed moment E[Xr1 · · ·Xrk ] the number of active columns is
between max(r1, . . . , rk) and r1 + · · · + rk .

https://sites.math.rutgers.edu/~zeilberg/tokhniot/SMCboole.txt
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In particular ‘Moms(A,n);’, for any list of non-negative integers A = [r1, . . . rk] gives you
the mixed moment E[Xr1 · · ·Xrk ]. For example, to get the third moment of the number of edges
(i.e. 1-dimensional subcubes) type Moms([1,1,1],n); , which very quickly returns:

2nn2
(
(2n)2

n+ 12 2nn+ 6 2n + 24n
)

512
. (2.24)

To get the third moment of the number of squares (i.e. 2-dimensional subcubes), type
Moms([2,2,2],n); , getting

2nn (n− 1)
2097152

·
(
(2n)2

n4 − 2 (2n)2
n3 + 48 2nn4 + (2n)2

n2

+ 576n4 + 24 2nn2 + 384n3 − 72 2nn

+ 1344n2 − 1024n− 2176
)
. (2.25)

The third moment of the number of 3-dimensional cubes takes a bit longer, and we were
unable to compute the fourth moment of the number of 3-dimensional cubes; it took too much
time and too much space.

More informative for statistical purposes are the central moments, E[(Xr − µr(n))k], that
Maple easily derives, using linearity of expectation from the pure moments. The function call
for this is MOMrk(r,k,n); where r and k are numeric but n is a symbol denoting the dimension
of the ambient cube.

To get the explicit expression given above for the third through sixth moments for the number
of edges, the third and fourth moments for the number of squares, and the third moment for the
number of 3-dimensional subcube (all about the mean) we typed:

MOMrk(1,3,n); , MOMrk(1,4,n); , MOMrk(1,5,n); , MOMrk(1,6,n); ,
MOMrk(2,3,n); , MOMrk(2,4,n); ,
MOMrk(3,3,n);
respectively. To our chagrin, ‘MOMrk(3,4,n);’ took too long.

Consequence of the algorithm

: The k-th moment of Xr is a bivariate polynomial in (n, 2n) of degree k r in n and degree k in
2n .

This raises the theoretical possibility (in God’s computer) of finding these expressions by
pure brute force. The generic polynomial in (n, 2n) of degree kr in n and degree k in 2n has
(1+ kr)(1+ k) ‘degrees of freedom’. So using undetermined coefficients we need to generate a
table of E[Xk

r ](n) for 1 ≤ n ≤ (1+ kr) · (1+ k). After gathering the data, we use linear algebra
to solve a system of (1 + kr) · (1 + k) equations with that many unknowns. For each specific
n = n1 there are ‘only’ 22n1 subsets, and for each of them we can ask how many r-dimensional
subcubes do they contain, raise it to the k-th power and take the average. Alas, 225

is already big
enough, so only God’s computer, with practically infinite time and space, can carry this brute
force approach.

3 Asymptotic Normality

As said in the introduction, asymptotic normality of Xr was proved by Urszula Konieczna [3].
The random variable Xr depends on n, and for emphasis, we denote it in the sequel by Xn,r. We
may then state the result as follows, where N(0, 1) denotes the standard normal distribution.

Theorem 3.1 ([3]). For every fixed r ≥ 0, we have as n→∞

Xn,r − µr(n)√
Var(Xn,r)

d−→ N(0, 1) (3.1)

with convergence in distribution and of all moments.
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As already noted at the very beginning of this paper, the case r = 0 is well known, since then
the variables XC are independent and this becomes an instance of the central limit theorem for
binomial variables, known since a pamphlet by de Moivre in 1733. (This case can be used as a
sanity check in the arguments below.)

The proof in [3] is based on the method of moments. We will in this section survey how a
variation of this method, based on cumulants and dependency graphs leads to a quick proof
with almost no calculations.

Remark 3.2. Urszula Konieczna [3] considered a more general case where each subcube appears
with probability p ∈ (0, 1), where p = p(n) may depend on n, and showed asymptotic normality
for a large range of p(n). A special case, not including the case p = 1

2 treated here, was earlier
shown by Karl Weber [6]. This extension can also be treated by the method below, but for
simplicity we continue to consider only the case p = 1

2 discussed in Section 2.

The aim is thus to show that the leading terms in the expressions for the central moments
E[(Xn,r−µr(n))k] are what we would expect from a normal distribution, or, more formally, that
the scaled central moments

E

(Xn,r − µr(n)√
Var(Xn,r)

)k (3.2)

converge as n→∞ to the corresponding moment E[Zk] of a standard normal random variable
Z, for every fixed r ≥ 0 and k ≥ 1. Then, the random variables Xn,r are asymptotically normal
by the method of moments.

We thus want to find the leading term of the moment (3.2). In Section 2, we computed
the central moments from the pure moments. This involves massive cancellation of high-order
terms, and is less suitable for a (human) proof for general k.

As a first step, we may modify (2.16) and instead expand the central moment as

E
[
(Xn,r − µr(n))k

]
=

∑
[C1,...,Ck]∈C(n,r)k

E
[
(XC1 − µ) · · · (XCk

− µ)
]
, (3.3)

where µ = E[XC ] is given by (2.4). Note that two variables XC1 and XC2 are independent if
C1 ∩ C2 = ∅. In particular, for k = 2, all such terms in the sum in (3.3) vanish; this leaves only
Θ(n2r2n) terms of the Θ

(
n2r22n

)
terms in the full sum, or in (2.16), which is reflected in the

leading terms in (2.6) and (2.7).
For higher moments, we can obtain a further reduction by considering cumulants (also called

semiinvariants) instead of moments. We describe this briefly, referring to e.g. [4] or [2, pp. 145–
149] for details. In general, if Y is a random variable with moments mk := E[Y k] and moment
generating function

∑∞
k=0 mkt

k/k!, then the cumulants κk = κk(Y ) are the coefficients of the
generating function

∞∑
k=1

κk
tk

k!
:= log

( ∞∑
k=0

mk
tk

k!

)
. (3.4)

(The generating functions can be regarded as formal power series.) Moreover, this generalizes to
mixed cumulants κk(Y1, . . . , Yk) of several random variables. This means that there are algebraic
relations: each cumulant κk is a polynomial in the moments m` of order ` ≤ k, and conversely,
and this generalizes to mixed cumulants and moments. For example, κ1 = m1 = EY , and
κ2 = m2 − m2

1 = Var(Y ), and the mixed cumulant κ(Y1, Y2) = E[Y1Y2] − E[Y1]E[Y2], the
covariance of Y1 and Y2.

A convenient property of cumulants is that a normal distribution N(µ, σ2) has moment gen-
erating function exp

(
µt+ σ2

2 t
2
)
, and thus by (3.4) cumulants κk = 0 for k ≥ 3. Consequently,

to show that a normalized sequence of random variables is asymptotically normal, it suffice to
show that each cumulant κk with k ≥ 3 converges to 0.

The mixed cumulants are multilinear, and thus we have an analog of (2.16) and (3.3):

κk
(
Xn,r

)
= κ

(
Xn,r, . . . , Xn,r

)
=

∑
[C1,...,Ck]∈C(n,r)k

κ
(
XC1 , . . . , XCk

)
. (3.5)
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We can here reduce the number of terms in the sum by a general property of cumulants: If there
is a partition {1, . . . , k} = I∪J into two non-empty sets I and J such the two families of random
variables (Yi | i ∈ I) and (Yj | j ∈ J) are independent of each other, then the mixed cumulant
κ(Y1, . . . , Yk) = 0. (Informally, this means that the kth cumulant κk(Xn,r) can be seen as some
kind of measure of kth order dependencies in the sum (2.2), with lower order dependencies
removed.)

As noticed above, each of our variables XC is independent of most of the others. We need
to keep track of not just pairwise independence, but also independence between families of such
variables; it is then convenient to use the notion of dependency graphs.

Definition 3.3. Let (Yα)α∈A be a family of random variables, with some arbitrary index set A.
A dependency graph for this family is a graph Γ with vertex set A, such that if I and J are two
disjoint subsets of A such that there is no edge in Γ with one endpoint in I and the other in J ,
then the two families (Yα | α ∈ I) and (Yβ | β ∈ J) are independent of each other.

Lemma 3.4. Let Γ(n, r) be the graph with vertex set C(n, r) and an edge between two distinct
cubes C,C ′ ∈ C(n, r) iff C ∩ C ′ 6= ∅. Then Γ(n, r) is a dependency graph for the family
(XC | C ∈ C(n, r)).

Proof. Let I and J be disjoint subsets of C(n, r) with no edge between I and J . Then VI :=⋃
C∈I C and VJ :=

⋃
C∈J C are two disjoint subsets of {0, 1}n. Thus the two random sets S∩VI

and S∩VJ are independent. Since the random variables (XC | C ∈ I) only depend on S∩VI , and
similarly for J , it follows that the families (XC | C ∈ I) and (XC | C ∈ J) are independent.

We can now use the dependency graphs Γ(n, r) and the machinery above to estimate cumu-
lants of Xn,r and show that κk

(
Xn,r

)
= o

(
(VarXn,r)k/2

)
as n→∞ for every fixed r ≥ 0 and

k ≥ 3. However, we do not have to do these calculations, since they already have been done un-
der general hypotheses, leading to convergence theorems that are easy to apply in situations like
ours where there is a rather sparse dependency graph. We use here the following theorem, taken
(with minor changes in notation) from [1, Theorem 2, with moment convergence by its proof
and Theorem 1]. See e.g. [2, Theorems 6.18 and 6.20] for some related theorems (proved by the
same cumulant method) that also can be used to show Theorem 3.1, and [2, Theorem 6.33] for
another related theorem (proved by a different method) that also yields the asymptotic normality
in Theorem 3.1 (but not immediately moment convergence).

Theorem 3.5 ([1]). Suppose that, for each n, (Yn,α | α ∈ An) is a family of bounded random
variables: |Yn,α| ≤ An. Let Nn := |An|. Suppose further that Γn is a dependency graph for
this family, and let Mn be the maximal degree of Γn (assuming this is not 0, in which case we let
Mn := 1). Let Wn =

∑
i∈Ai

Yn,i and σ2
n := Var(Wn). If there exists a positive integer m such

that

(Nn/Mn)
1/mMnAn/σn → 0 as n→∞, (3.6)

then (
Wn − EWn

)
/σn

d−→ N(0, 1) as n→∞, (3.7)

with convergence in distribution and with all moments.

Proof of Theorem 3.1. Fix r ≥ 0. We let c1, c2, c3 denote unimportant positive constants that
may depend on r, but not on n.

We use Theorem 3.5, with Yn,C := XC for C ∈ An := C(n, r), so Wn = Xn,r. We use
Lemma 3.4 and take the dependency graph Γn = Γ(n, r). Then

Nn = |C(n, r)| =
(
n

r

)
2n−r ≤ nr2n, (3.8)

and, by (2.7) (where i = 0 yields the leading term),

σ2
n := Var(Xn,r) ≥ c1n

2r2n. (3.9)
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Furthermore, we may take

An := 1. (3.10)

Moreover, from the definition of the graph Γ(n, r) follows that it is regular, with degree

Mn ≤ 2r
(
n

r

)
≤ c2n

r. (3.11)

We choose m = 3 in Theorem 3.5. (This is the standard case, which corresponds to the method
of moment without extra arguments, see the proof in [1].) Then (3.8)–(3.11) yield

(Nn/Mn)
1/mMnAn/σn = N1/3

n M2/3
n An/σn ≤ c3

nr2n/3

nr2n/2 → 0 (3.12)

as n→∞, so (3.6) holds. Consequently, Theorem 3.5 applies and shows Theorem 3.1.

4 Conclusion

In the first part, we demonstrated the power of computers to automatically derive complicated
explicit expressions, all polynomials in n and 2n, for low moments of the random variable num-
ber of fixed-size implicants of a Boolean function of n variable, or equivalently, the number
of fixed-dimensional subcubes of a random subset of the n-dimensional unit cube. These im-
plied that the scaled first few moments for low-dimensional subcubes tend, as n goes to infinity,
to those of the Normal Distribution, suggesting, but by no means proving, that for each fixed
dimension, this random variable is asymptotically normal.

In the second part, we demonstrated the power of human ingenuity, and the traditional lore
of probability and statistics, by presenting a simple proof of asymptotic normality, first proved
in [3].
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