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Abstract: This paper consists of two independent, but related parts. In the first part we show how

to use symbolic computation to derive explicit expressions for the first few moments of the number

of implicants that a random Boolean function has, or equivalently the number of fixed-dimensional

subcubes contained in a random subset of the n-dimensional unit cube. These explicit expressions

suggest, but do not prove, that these random variables are always asymptotically normal. The

second part is a full, human-generated proof, of this asymptotic normality.

Motivation

Recall that an implicant of a Boolean function in n variables, f(x1, . . . , xn) is a pure disjunction

xa1
i1
∧ xa2

i2
∧ . . . ∧ xar

ir
,

that implies it. Here 1 ≤ i1 < . . . ir ≤ n, a1, . . . , ar ∈ {0, 1} and z1 = z, and z0 = z̄ (the negation

of z).

Fix r and let n vary, We are interested in the statistical distribution of the random variable number

of implicants of length n − r in a uniformly-at-random Boolean function of n variables. Clearly,

when r = 0 it is nothing but the good old (fair) binomial distribution with 2n fair coin-tosses,

B( 1
2 , 2

n)

Equivalently, for a random subset of the n-dimensional cube, we are interested in statistical distri-

bution of the number of r-dimensional subcubes properly contained in it.

We would like to have explicit expressions, in n, for the kth moment of this random variable, for

as many as possible r and k. This turns out to be a challenging symbolic-computational problem

that we will address in the first part of this paper.

In the second part we will prove, using purely human reasoning, that for each r, this distribution

is asymptotically normal.

Our Random Variables

The sample space is the set of subsets of {0, 1}n, that has cardinality 22
n

.

Let’s define our random variables formally.

For a (uniformly-at-) random subset S, of {0, 1}n, and fixed r, define the random variable

Xr(S) := number of r-dimensional subcubes of S.
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For example, if n = 3 and

S = {000, 001, 010, 011, 100, 111} ,

we have

X0(S) = 6 , X1(S) = 6 , X2(S) = 1 , X3(S) = 0 .

We would like to get, for as many pairs (k, r) as possible, explicit expressions in n, for the k-th

moment of Xr, i.e. for

fkr(n) := E[Xr
k](n) .

The Expectation and Variance

The first moment, aka expectation, aka mean, aka average, is easy, using linearity of expectation.

For any specific subcube C of {0, 1}n, define the atomic random variable, XC , on subsets, S, of

{0, 1}n as follows.

XC(S) =

{
1, if C ⊂ S;
0, otherwise.

Let C(n, r) be the set of all
(
n
r

)
2n−r r-dimensional subcubes of {0, 1}n, then, of course

Xr(S) =
∑

C∈C(n,r)

XC(S) .

Applying the expectation functional, and using the linearity of expectation, we get, that the

average, let’s call it µr(n), is

µr(n) = E[Xr] = E[
∑

C∈C(n,r)

XC ] =
∑

C∈C(n,r)

E[XC ] .

Now the probability that a random subset of {0, 1}n contains an r-dimensional subcube C is

( 1
2 )2

r

, since for each of its vertices, the chance of it belonging to S is 1
2 , and by independence the

probability that all its 2r vertices belong to S is indeed 1
22r

. The probability that XC(S) = 0 is of

course 1− ( 1
2 )2

r

, hence

E[XC ] = 1 · (1

2
)2

r

+ 0 · (1− (
1

2
)2

r

) = (
1

2
)2

r

.

Going back above we have

µr(n) =
∑

C∈C(n,r)

E[XC ] =
∑

C∈C(n,r)

1

22r
= |C(n, r)| · 1

22r
=

(
n
r

)
2n−r

22r
.

In a beautiful paper, Thanatipanonda [T] derived an explicit expression for the general second

moment, for every r-dimensional cube.

2



Thanatipanoda’s General Formula for the Second Moment:

E[X2
r ] =

r∑
i=0

n!2n−i

i!(r − i)!2(n− 2r + i)!22r+1 · (22
i

− 1) +
[
(
n
r

)
2n−r]2

22r+1 ,

from which immediately follows, using [E(Xr − µr(n))2] = E[X2
r ]− µr(n)2, the following formula.

Thanatipanoda’s General Formula for the Variance:

V ar(Xr) =

r∑
i=0

n!2n−i

i!(r − i)!2(n− 2r + i)!22r+1 · (22
i

− 1) .

Note that the variance is a polynomial in (n, 2n) of degree 2r in n and degree 1 in 2n.

Higher Moments

Edges

Thanatipanonda was unable to get such a general formula for higher moments, but did get E[X3
1 ],

from which he immediately deduced that the third-moment-about-the-mean of X1 is

E[(X1 − µ1(n))3] =
3n32n

64
.

Using the symbolic-computational algorithms to be described in the next section, we managed to

derive the following explicit formulas

E[(X1 − µ1(n))4] =
n2n

(
12 2nn3 + 12 2nn2 + 40n3 + 3n2n − 48n2 + 12n− 16

)
1024

.

E[(X1 − µ1(n))5] =
5 2nn3

(
6 2nn2 + 3n2n + 4n2 − 24n+ 8

)
1024

.

E[(X1 − µ1(n))6] =

n2n

32768
· (120 (2n)

2
n5 + 180n4 (2n)

2
+ 1920 2nn5 + 90n3 (2n)

2 − 840n42n − 1792n5 + 15n2 (2n)
2

−360 2nn3 − 5280n4 − 300 2nn2 + 3840n3 − 240n2n + 3840n2 − 6720n+ 4864) .

It follows that the scaled moments about the mean for the third, fourth, fifth, and sixth

moments, converge, as n → ∞, to 0, 3, 0, 15 respectively, the respective moments of the normal

distribution, indicating that the random variable X1 (the number of edges contained in S) is

probably asymptotically normal. To fully prove asymptotic normality, of course, we need to prove

it for all moments, not just for the first six.

Squares

We only managed to get explicit expressions for the third and fourth moments for X2.

E[(X2 − µ2(n))3] =
2nn (n− 1)

(
9n4 + 6n3 + 21n2 − 16n− 34

)
32768

.
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E[(X2 − µ2(n))4] =
2nn (n− 1)

4194304
·

(12n62n+12 2nn5+520n6+24n42n−24n5−12 2nn3+1272n4−9 2nn2−840n3−27n2n−5232n2−2768n+240) .

3-dimensional cubes

We only managed to get an explicit expression for the third moment for X3.

E[(X3−µ3(n))3] =
2nn (n− 1) (n− 2)

(
14n6 + 24n5 + 479n4 + 2046n3 + 6779n2 + 15444n− 23112

)
2415919104

Our Method

Obviously we did not derive these formulas by hand. We had to teach our computer how to find

them. It also uses linearity of expectation, but with higher moments, things get very complicated.

Recall that

Xr(S) =
∑

C∈C(n,r)

XC(S) .

Hence, the k-th moment is

E[(Xr)k] = E[(
∑

C∈C(n,r)

XC(S))k] =

∑
[C1,...,Ck]∈C(n,r)k

E[XC1XC2 · · ·XCk
]

So we sum over all (
(
n
r

)
2n−r)k members of C(n, r)k. Since XC1

(S)XC2
(S) · · ·XCk

(S) = 1 if each

of C1, C2, . . . , Ck is properly included in S, and 0 otherwise, i.e. if each vertex in C1 ∪ C2 ∪ . . . Ck

belongs to S, the contribution due to each such term is

E[XC1XC2 · · ·XCk
] =

1

2|C1∪C2∪...Ck|
.

Data Structure

Every r-dimensional subcube of {0, 1}n has the form

C = {(x1, . . . , xn) ∈ {0, 1}n |xi1 = αi1 , . . . , xin−r = αin−r} ,

for some 1 ≤ i1 < i2 < . . . < in−r ≤ n and (αi1 , . . . αin−r ) ∈ {0, 1}n−r. A good way to represent it

on a computer is as a row-vector of length n, in the alphabet {0, 1, ∗}, where the entries corresponding

to i1, i2, . . . , in−r have αi1 , . . . .αin−r
respectively and the remaining r entries are filled with wild

cards, denoted by ∗.

For example, if n = 7 and r = 3, the 3-dimensional cube

{(x1, . . . , x7) ∈ {0, 1}7 |x2 = 1, x4 = 1, x5 = 0, x7 = 1} ,
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is represented by

∗1 ∗ 10 ∗ 1 .

We are trying to find a weighted count of ordered k-tuples of r-dimensional subcubes. The natural

data structure for these is the set of k by n matrices in the ‘alphabet’ {0, 1, ∗} where every row has

exactly r ‘wildcards’, *.

Let’s call this set of matrices, that correspond to C(n, r)k, C(n, k, r).

For any specific, numeric n, there are ‘only’ (2n−r
(
n
r

)
)k of these matrices, and for each and every

one of them one can find the cardinality of the union of the corresponding subcubes, let’s call it v,

and add to the running sum 1
2v . But we want to do it for symbolic n, i.e. for ‘all’ n. We will soon

see how, for each specific (numeric) r and k this can be done, in principle, but only for relatively

small r and k in practice. But let’s try and push it as far we can. An interesting consequence of

our algorithm is the precise degree in n and 2n of the expression for E[Xk
r ](n).

The Kernel

A key object in our approach is the kernel. Given a k×n matrix in the alphabet {0, 1, ∗} let’s call

a column active if it contains at least one ‘∗’. Note that the matrix has exactly k · r ‘∗’s, hence

the number of active columns, let’s call it a, is between r and k · r.

[More generally, of we want to find an expression for the mixed moment E[Xr1 · · ·Xrk ] the number of active

columns is between max(r1, . . . , rk) and r1 + . . .+ rk.]

Let Ca(n, r, k) be the subset of C(n, r, k) matrices with exactly a active columns. We will call such

a matrix in canonical form if the active columns are occupied by the a leftmost columns. Let’s

denote by Ca(n, r, k) the set of such matrices in canonical form. Obviously, there are
(
n
a

)
ways to

choose which of the n columns are active and hence

Weight(C(n, k, r)) =

rk∑
a=r

Weight(Ca(n, k, r)) =

rk∑
a=r

(
n

a

)
Weight(Ca(n, k, r)) .

(For any set, S, Weight(S) is the sum of the weights of its members)

Note that this has degree rk in n.

It remains to do a weighted-count (where every matrix gets ‘credit’ 1/2v, where v is the cardinality

of the union of the corresponding subcubes represented by the k rows, for the set Ca(n, k, r), of

matrices in canonical form. Note that there are only finitely many choices for the a leftmost

columns, i.e. the set of k×a matrices in the alphabet {0, 1, ∗} with the property that every column

has at least one ‘∗’, and every row has exactly r ‘∗’s. These can be divided into equivalence classes

obtained by permuting rows and columns and transposing 0 and 1 in any given column. Once these

are sorted into equivalence classes, one needs only examime one representative, and then multiply

the weight by the cardinality of the class.
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But what about the n − a rightmost columns? Generically they are all distinct, so a good coarse

estimate (and upper bound) would be (
2n−a

k

)
k! .

The other extreme is that all the rows of the submatrix consisting of the n− a rightmost columns

are identical, and then there are only 2n−a choices to fill them in.

In general, every such member of Ca(n, k, r), determines a set partition of the set of rows

{1, . . . , k}, if that set-partition has m members 1 ≤ m ≤ k, then the number of choices of as-

signing different 0− 1 vectors of length n− a to each of the parts of the set-partition is(
2n−a

m

)
m! .

Now for each a and for each set-partition, we let the computer generate the finite set of k × a
matrices in the alphabet {0, 1, ∗}. Each of the members of the set partition has its own submatrix,

and we ask our computer to kindly find the number of vertices in the corresponding union of

subcubes corresponding to each member of the examined set partition. Since they are disjoint, we

add them up, getting v for that particular pair (matrix, set-partition), giving credit 1/2v.

Implementation

All this is implemented in the Maple package SMCboole.txt, available from:

https://sites.math.rutgers.edu/~zeilberg/tokhniot/SMCboole.txt .

In particular ‘Moms(A,n);’, for any list of non-negative integers A = [r1, . . . rk] gives you the mixed

moment E[Xr1 · · ·Xrk ]. For example, to get the third moment of the number of edges (i.e. 1-

dimensional subcubes) type

Moms([1,1,1],n); ,

getting, very fast:

2nn2
(

(2n)
2
n+ 12 2nn+ 6 2n + 24n

)
512

.

To get the third moment of the number of squares (i.e. 2-dimensional subcubes), type

Moms([2,2,2],n); ,

getting
2nn (n− 1)

2097152
·

((2n)
2
n4−2 (2n)

2
n3+48 2nn4+(2n)

2
n2+576n4+24 2nn2+384n3−72 2nn+1344n2−1024n−2176) .
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The third moment of the number of 3-dimensional cubes takes a bit longer, and we were unable to

compute the fourth moment of the number of 3-dimensional cubes, it took too much time and too

much space.

More informative for statistical purposes are the moments about the mean, E[(Xr − µr(n))k],

that Maple easily derives, using linearity of expectation from the pure moments. The function call

for this is

MOMrk(r,k,n); ,

where r and k are numeric but n is a symbol denoting the dimension of the ambient cube. To

get the explicit expression given above for the third-through-the six moments of the number of

edges, the third and fourth for the number of squares, and the third moment for the number of

3-dimensional subcube (all about the mean) we typed:

MOMrk(1,3,n); , MOMrk(1,4,n); , MOMrk(1,5,n); , MOMrk(1,6,n); ,

MOMrk(2,3,n); , MOMrk(2,4,n); ,

MOMrk(3,3,n); ,

respectively. To our chagrin, ‘MOMrk(3,4,n);’ took too long.

Consequence of the algorithm: The k-th moment of Xr is a bivariate polynomial in (n, 2n) of

degree k r in n and degree k in 2n .

This raises the theoretical possibility (in God’s computer) of finding these expressions by pure

brute force. The generic polynomial in (n, 2n) of degree kr in n and degree k in 2n has (1 +

kr)(1 + k) ‘degrees of freedom’. So using undetermined coefficients we need to generate a table of

E[Xk
r ](n) for 1 ≤ n ≤ (1 + kr) · (1 + k). After gathering the data, we use linear algebra to solve

a system of (1 + kr) · (1 + k) equations with that many unknowns. For each specific n = n1 there

are ‘only’ 22
n1

subsets, and for each of them we can ask how many r-dimensional subcubes do they

contain, raise it to the k-th power and take the average. Alas 22
5

is already big enough, so only

God’s computer, with practically infinite time and space, can carry this brute force approach.
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