On the Statistics of the Number of Fixed-Dimensional Subcubes in a Random Subset of the n-Dimensional Discrete Unit Cube

Svante JANSON, Blair SEIDLER, and Doron ZEILBERGER

Abstract

This paper consists of two independent, but related parts. In the first part we show how to use symbolic computation to derive explicit expressions for the first few moments of the number of implicants that a random Boolean function has, or equivalently the number of fixed-dimensional subcubes contained in a random subset of the n-dimensional unit cube. These explicit expressions suggest, but do not prove, that these random variables are always asymptotically normal. The second part is a full, human-generated proof, of this asymptotic normality.

Motivation

Recall that an implicant of a Boolean function in n variables, $f\left(x_{1}, \ldots, x_{n}\right)$ is a pure disjunction

$$
x_{i_{1}}^{a_{1}} \wedge x_{i_{2}}^{a_{2}} \wedge \ldots \wedge x_{i_{r}}^{a_{r}},
$$

that implies it. Here $1 \leq i_{1}<\ldots i_{r} \leq n, a_{1}, \ldots, a_{r} \in\{0,1\}$ and $z^{1}=z$, and $z^{0}=\bar{z}$ (the negation of z).

Fix r and let n vary, We are interested in the statistical distribution of the random variable number of implicants of length $n-r$ in a uniformly-at-random Boolean function of n variables. Clearly, when $r=0$ it is nothing but the good old (fair) binomial distribution with 2^{n} fair coin-tosses, $B\left(\frac{1}{2}, 2^{n}\right)$

Equivalently, for a random subset of the n-dimensional cube, we are interested in statistical distribution of the number of r-dimensional subcubes properly contained in it.

We would like to have explicit expressions, in n, for the $k^{\text {th }}$ moment of this random variable, for as many as possible r and k. This turns out to be a challenging symbolic-computational problem that we will address in the first part of this paper.

In the second part we will prove, using purely human reasoning, that for each r, this distribution is asymptotically normal.

Our Random Variables

The sample space is the set of subsets of $\{0,1\}^{n}$, that has cardinality $2^{2^{n}}$.
Let's define our random variables formally.
For a (uniformly-at-) random subset S, of $\{0,1\}^{n}$, and fixed r, define the random variable
$X_{r}(S):=$ number of r-dimensional subcubes of S.

For example, if $n=3$ and

$$
S=\{000,001,010,011,100,111\}
$$

we have

$$
X_{0}(S)=6 \quad, \quad X_{1}(S)=6 \quad, \quad X_{2}(S)=1 \quad, \quad X_{3}(S)=0
$$

We would like to get, for as many pairs (k, r) as possible, explicit expressions in n, for the k-th moment of X_{r}, i.e. for

$$
f_{k r}(n):=E\left[X_{r}{ }^{k}\right](n) .
$$

The Expectation and Variance

The first moment, aka expectation, aka mean, aka average, is easy, using linearity of expectation.
For any specific subcube C of $\{0,1\}^{n}$, define the atomic random variable, X_{C}, on subsets, S, of $\{0,1\}^{n}$ as follows.

$$
X_{C}(S)= \begin{cases}1, \text { if } & C \subset S ; \\ 0, & \text { otherwise. }\end{cases}
$$

Let $\mathcal{C}(n, r)$ be the set of all $\binom{n}{r} 2^{n-r} r$-dimensional subcubes of $\{0,1\}^{n}$, then, of course

$$
X_{r}(S)=\sum_{C \in \mathcal{C}(n, r)} X_{C}(S)
$$

Applying the expectation functional, and using the linearity of expectation, we get, that the average, let's call it $\mu_{r}(n)$, is

$$
\mu_{r}(n)=E\left[X_{r}\right]=E\left[\sum_{C \in \mathcal{C}(n, r)} X_{C}\right]=\sum_{C \in \mathcal{C}(n, r)} E\left[X_{C}\right] .
$$

Now the probability that a random subset of $\{0,1\}^{n}$ contains an r-dimensional subcube C is $\left(\frac{1}{2}\right)^{2^{r}}$, since for each of its vertices, the chance of it belonging to S is $\frac{1}{2}$, and by independence the probability that all its 2^{r} vertices belong to S is indeed $\frac{1}{2^{2^{r}}}$. The probability that $X_{C}(S)=0$ is of course $1-\left(\frac{1}{2}\right)^{2^{r}}$, hence

$$
E\left[X_{C}\right]=1 \cdot\left(\frac{1}{2}\right)^{2^{r}}+0 \cdot\left(1-\left(\frac{1}{2}\right)^{2^{r}}\right)=\left(\frac{1}{2}\right)^{2^{r}} .
$$

Going back above we have

$$
\mu_{r}(n)=\sum_{C \in \mathcal{C}(n, r)} E\left[X_{C}\right]=\sum_{C \in \mathcal{C}(n, r)} \frac{1}{2^{2^{r}}}=|\mathcal{C}(n, r)| \cdot \frac{1}{2^{2^{r}}}=\frac{\binom{n}{r} 2^{n-r}}{2^{2^{r}}} .
$$

In a beautiful paper, Thanatipanonda [T] derived an explicit expression for the general second moment, for every r-dimensional cube.

Thanatipanoda's General Formula for the Second Moment:

$$
E\left[X_{r}^{2}\right]=\sum_{i=0}^{r} \frac{n!2^{n-i}}{i!(r-i)!^{2}(n-2 r+i)!2^{2^{r+1}}} \cdot\left(2^{2^{i}}-1\right)+\frac{\left[\binom{n}{r} 2^{n-r}\right]^{2}}{2^{2 r+1}},
$$

from which immediately follows, using $\left[E\left(X_{r}-\mu_{r}(n)\right)^{2}\right]=E\left[X_{r}^{2}\right]-\mu_{r}(n)^{2}$, the following formula.

Thanatipanoda's General Formula for the Variance:

$$
\operatorname{Var}\left(X_{r}\right)=\sum_{i=0}^{r} \frac{n!2^{n-i}}{i!(r-i)!^{2}(n-2 r+i)!2^{2^{r+1}}} \cdot\left(2^{2^{i}}-1\right) .
$$

Note that the variance is a polynomial in $\left(n, 2^{n}\right)$ of degree $2 r$ in n and degree 1 in 2^{n}.

Higher Moments

Edges

Thanatipanonda was unable to get such a general formula for higher moments, but did get $E\left[X_{1}^{3}\right]$, from which he immediately deduced that the third-moment-about-the-mean of X_{1} is

$$
E\left[\left(X_{1}-\mu_{1}(n)\right)^{3}\right]=\frac{3 n^{3} 2^{n}}{64}
$$

Using the symbolic-computational algorithms to be described in the next section, we managed to derive the following explicit formulas

$$
\begin{gathered}
E\left[\left(X_{1}-\mu_{1}(n)\right)^{4}\right]=\frac{n 2^{n}\left(122^{n} n^{3}+122^{n} n^{2}+40 n^{3}+3 n 2^{n}-48 n^{2}+12 n-16\right)}{1024} . \\
E\left[\left(X_{1}-\mu_{1}(n)\right)^{5}\right]=\frac{52^{n} n^{3}\left(62^{n} n^{2}+3 n 2^{n}+4 n^{2}-24 n+8\right)}{1024} \\
E\left[\left(X_{1}-\mu_{1}(n)\right)^{6}\right]= \\
\frac{n 2^{n}}{32768} \cdot\left(120\left(2^{n}\right)^{2} n^{5}+180 n^{4}\left(2^{n}\right)^{2}+19202^{n} n^{5}+90 n^{3}\left(2^{n}\right)^{2}-840 n^{4} 2^{n}-1792 n^{5}+15 n^{2}\left(2^{n}\right)^{2}\right. \\
\left.-3602^{n} n^{3}-5280 n^{4}-3002^{n} n^{2}+3840 n^{3}-240 n 2^{n}+3840 n^{2}-6720 n+4864\right) .
\end{gathered}
$$

It follows that the scaled moments about the mean for the third, fourth, fifth, and sixth moments, converge, as $n \rightarrow \infty$, to $0,3,0,15$ respectively, the respective moments of the normal distribution, indicating that the random variable X_{1} (the number of edges contained in S) is probably asymptotically normal. To fully prove asymptotic normality, of course, we need to prove it for all moments, not just for the first six.

Squares

We only managed to get explicit expressions for the third and fourth moments for X_{2}.

$$
E\left[\left(X_{2}-\mu_{2}(n)\right)^{3}\right]=\frac{2^{n} n(n-1)\left(9 n^{4}+6 n^{3}+21 n^{2}-16 n-34\right)}{32768} .
$$

$$
\begin{gathered}
E\left[\left(X_{2}-\mu_{2}(n)\right)^{4}\right]=\frac{2^{n} n(n-1)}{4194304} . \\
\left(12 n^{6} 2^{n}+122^{n} n^{5}+520 n^{6}+24 n^{4} 2^{n}-24 n^{5}-122^{n} n^{3}+1272 n^{4}-92^{n} n^{2}-840 n^{3}-27 n 2^{n}-5232 n^{2}-2768 n+240\right) .
\end{gathered}
$$

3-dimensional cubes

We only managed to get an explicit expression for the third moment for X_{3}.
$E\left[\left(X_{3}-\mu_{3}(n)\right)^{3}\right]=\frac{2^{n} n(n-1)(n-2)\left(14 n^{6}+24 n^{5}+479 n^{4}+2046 n^{3}+6779 n^{2}+15444 n-23112\right)}{2415919104}$

Our Method

Obviously we did not derive these formulas by hand. We had to teach our computer how to find them. It also uses linearity of expectation, but with higher moments, things get very complicated. Recall that

$$
X_{r}(S)=\sum_{C \in \mathcal{C}(n, r)} X_{C}(S)
$$

Hence, the k-th moment is

$$
\begin{gathered}
E\left[\left(X_{r}\right)^{k}\right]=E\left[\left(\sum_{C \in \mathcal{C}(n, r)} X_{C}(S)\right)^{k}\right]= \\
\sum_{\left[C_{1}, \ldots, C_{k}\right] \in \mathcal{C}(n, r)^{k}} E\left[X_{C_{1}} X_{C_{2}} \cdots X_{C_{k}}\right]
\end{gathered}
$$

So we sum over all $\left.\binom{n}{r} 2^{n-r}\right)^{k}$ members of $\mathcal{C}(n, r)^{k}$. Since $X_{C_{1}}(S) X_{C_{2}}(S) \cdots X_{C_{k}}(S)=1$ if each of $C_{1}, C_{2}, \ldots, C_{k}$ is properly included in S, and 0 otherwise, i.e. if each vertex in $C_{1} \cup C_{2} \cup \ldots C_{k}$ belongs to S, the contribution due to each such term is

$$
E\left[X_{C_{1}} X_{C_{2}} \cdots X_{C_{k}}\right]=\frac{1}{2^{\left|C_{1} \cup C_{2} \cup \ldots C_{k}\right|}} .
$$

Data Structure

Every r-dimensional subcube of $\{0,1\}^{n}$ has the form

$$
C=\left\{\left(x_{1}, \ldots, x_{n}\right) \in\{0,1\}^{n} \mid x_{i_{1}}=\alpha_{i_{1}}, \ldots, x_{i_{n-r}}=\alpha_{i_{n-r}}\right\},
$$

for some $1 \leq i_{1}<i_{2}<\ldots<i_{n-r} \leq n$ and $\left(\alpha_{i_{1}}, \ldots \alpha_{i_{n-r}}\right) \in\{0,1\}^{n-r}$. A good way to represent it on a computer is as a row-vector of length n, in the alphabet $\{0,1, *\}$, where the entries corresponding to $i_{1}, i_{2}, \ldots, i_{n-r}$ have $\alpha_{i_{1}}, \ldots \alpha_{i_{n-r}}$ respectively and the remaining r entries are filled with wild cards, denoted by $*$.

For example, if $n=7$ and $r=3$, the 3-dimensional cube

$$
\left\{\left(x_{1}, \ldots, x_{7}\right) \in\{0,1\}^{7} \mid x_{2}=1, x_{4}=1, x_{5}=0, x_{7}=1\right\}
$$

is represented by

$$
* 1 * 10 * 1 .
$$

We are trying to find a weighted count of ordered k-tuples of r-dimensional subcubes. The natural data structure for these is the set of k by n matrices in the 'alphabet' $\{0,1, *\}$ where every row has exactly r 'wildcards', *.

Let's call this set of matrices, that correspond to $\mathcal{C}(n, r)^{k}, \mathcal{C}(n, k, r)$.
For any specific, numeric n, there are 'only' $\left(2^{n-r}\binom{n}{r}\right)^{k}$ of these matrices, and for each and every one of them one can find the cardinality of the union of the corresponding subcubes, let's call it v, and add to the running sum $\frac{1}{2^{v}}$. But we want to do it for symbolic n, i.e. for 'all' n. We will soon see how, for each specific (numeric) r and k this can be done, in principle, but only for relatively small r and k in practice. But let's try and push it as far we can. An interesting consequence of our algorithm is the precise degree in n and 2^{n} of the expression for $E\left[X_{r}^{k}\right](n)$.

The Kernel

A key object in our approach is the kernel. Given a $k \times n$ matrix in the alphabet $\{0,1, *\}$ let's call a column active if it contains at least one ' $*$ '. Note that the matrix has exactly $k \cdot r$ ' $*$'s, hence the number of active columns, let's call it a, is between r and $k \cdot r$.
[More generally, of we want to find an expression for the mixed moment $E\left[X_{r_{1}} \cdots X_{r_{k}}\right]$ the number of active columns is between $\max \left(r_{1}, \ldots, r_{k}\right)$ and $r_{1}+\ldots+r_{k}$.]

Let $\mathcal{C}_{a}(n, r, k)$ be the subset of $\mathcal{C}(n, r, k)$ matrices with exactly a active columns. We will call such a matrix in canonical form if the active columns are occupied by the a leftmost columns. Let's denote by $\overline{\mathcal{C}}_{a}(n, r, k)$ the set of such matrices in canonical form. Obviously, there are $\binom{n}{a}$ ways to choose which of the n columns are active and hence

$$
W \operatorname{eight}(\mathcal{C}(n, k, r))=\sum_{a=r}^{r k} W \operatorname{eight}\left(\mathcal{C}_{a}(n, k, r)\right)=\sum_{a=r}^{r k}\binom{n}{a} W \operatorname{eight}\left(\overline{\mathcal{C}}_{a}(n, k, r)\right)
$$

(For any set, $S, W \operatorname{eight}(S)$ is the sum of the weights of its members)

Note that this has degree $r k$ in n.
It remains to do a weighted-count (where every matrix gets 'credit' $1 / 2^{v}$, where v is the cardinality of the union of the corresponding subcubes represented by the k rows, for the set $\overline{\mathcal{C}}_{a}(n, k, r)$, of matrices in canonical form. Note that there are only finitely many choices for the a leftmost columns, i.e. the set of $k \times a$ matrices in the alphabet $\{0,1, *\}$ with the property that every column has at least one ' $*$ ', and every row has exactly r ' $*$'s. These can be divided into equivalence classes obtained by permuting rows and columns and transposing 0 and 1 in any given column. Once these are sorted into equivalence classes, one needs only examime one representative, and then multiply the weight by the cardinality of the class.

But what about the $n-a$ rightmost columns? Generically they are all distinct, so a good coarse estimate (and upper bound) would be

$$
\binom{2^{n-a}}{k} k!
$$

The other extreme is that all the rows of the submatrix consisting of the $n-a$ rightmost columns are identical, and then there are only 2^{n-a} choices to fill them in.

In general, every such member of $\overline{\mathcal{C}}_{a}(n, k, r)$, determines a set partition of the set of rows $\{1, \ldots, k\}$, if that set-partition has m members $1 \leq m \leq k$, then the number of choices of assigning different $0-1$ vectors of length $n-a$ to each of the parts of the set-partition is

$$
\binom{2^{n-a}}{m} m!
$$

Now for each a and for each set-partition, we let the computer generate the finite set of $k \times a$ matrices in the alphabet $\{0,1, *\}$. Each of the members of the set partition has its own submatrix, and we ask our computer to kindly find the number of vertices in the corresponding union of subcubes corresponding to each member of the examined set partition. Since they are disjoint, we add them up, getting v for that particular pair (matrix, set-partition), giving credit $1 / 2^{v}$.

Implementation

All this is implemented in the Maple package SMCboole.txt, available from:
https://sites.math.rutgers.edu/~zeilberg/tokhniot/SMCboole.txt .
In particular 'Moms (A,n);', for any list of non-negative integers $A=\left[r_{1}, \ldots r_{k}\right]$ gives you the mixed moment $E\left[X_{r_{1}} \cdots X_{r_{k}}\right]$. For example, to get the third moment of the number of edges (i.e. 1dimensional subcubes) type
$\operatorname{Moms}([1,1,1], \mathrm{n}) ; \quad$,
getting, very fast:

$$
\frac{2^{n} n^{2}\left(\left(2^{n}\right)^{2} n+122^{n} n+62^{n}+24 n\right)}{512}
$$

To get the third moment of the number of squares (i.e. 2-dimensional subcubes), type
$\operatorname{Moms}([2,2,2], \mathrm{n}) ; \quad$,
getting

$$
\begin{gathered}
\frac{2^{n} n(n-1)}{2097152} . \\
\left(\left(2^{n}\right)^{2} n^{4}-2\left(2^{n}\right)^{2} n^{3}+482^{n} n^{4}+\left(2^{n}\right)^{2} n^{2}+576 n^{4}+242^{n} n^{2}+384 n^{3}-722^{n} n+1344 n^{2}-1024 n-2176\right)
\end{gathered} .
$$

The third moment of the number of 3-dimensional cubes takes a bit longer, and we were unable to compute the fourth moment of the number of 3-dimensional cubes, it took too much time and too much space.

More informative for statistical purposes are the moments about the mean, $E\left[\left(X_{r}-\mu_{r}(n)\right)^{k}\right]$, that Maple easily derives, using linearity of expectation from the pure moments. The function call for this is

MOMrk(r,k,n); ,
where r and k are numeric but n is a symbol denoting the dimension of the ambient cube. To get the explicit expression given above for the third-through-the six moments of the number of edges, the third and fourth for the number of squares, and the third moment for the number of 3-dimensional subcube (all about the mean) we typed:
$\operatorname{MOMrk}(1,3, n) ; \quad, \operatorname{MOMrk}(1,4, n) ; \quad, \operatorname{MOMrk}(1,5, n) ; \quad, \operatorname{MOMrk}(1,6, n) ; \quad$,
$\operatorname{MOMrk}(2,3, n) ; \quad, \operatorname{MOMrk}(2,4, n) ; \quad$,
$\operatorname{MOMrk}(3,3, n) ; \quad$,
respectively. To our chagrin, ' ${ }^{\prime} \operatorname{OMrk}(3,4, n)$;' took too long.
Consequence of the algorithm: The k-th moment of X_{r} is a bivariate polynomial in $\left(n, 2^{n}\right)$ of degree $k r$ in n and degree k in 2^{n}.

This raises the theoretical possibility (in God's computer) of finding these expressions by pure brute force. The generic polynomial in $\left(n, 2^{n}\right)$ of degree $k r$ in n and degree k in 2^{n} has $(1+$ $k r)(1+k)$ 'degrees of freedom'. So using undetermined coefficients we need to generate a table of $E\left[X_{r}^{k}\right](n)$ for $1 \leq n \leq(1+k r) \cdot(1+k)$. After gathering the data, we use linear algebra to solve a system of $(1+k r) \cdot(1+k)$ equations with that many unknowns. For each specific $n=n_{1}$ there are 'only' $2^{2^{n_{1}}}$ subsets, and for each of them we can ask how many r-dimensional subcubes do they contain, raise it to the k-th power and take the average. Alas $2^{2^{5}}$ is already big enough, so only God's computer, with practically infinite time and space, can carry this brute force approach.

References

[T] Thotsaporn Aek Thanatipanonda, Reviews of Symbolic Moment Calculus, arXiv:2003.11749. https://arxiv.org/abs/2003.11749

Svante Janson, Department of Mathematics, Uppsala University, PO Box 480, SE-751 06 Uppsala, Sweden. svante.janson@math.uu.se

Blair Seidler and Doron Zeilberger, Department of Mathematics, Rutgers University (New Brunswick),

Hill Center-Busch Campus, 110 Frelinghuysen Rd., Piscataway, NJ 08854-8019, USA.
Email: blair.seidler@math.rutgers.edu , DoronZeil@gmail.com

Written: Feb. 10, 2023.

