
Automated Generation of Generating Functions Related to Generalized Stern’s Diatomic Arrays

in the footsteps of Richard Stanley

Shalosh B. EKHAD and Doron ZEILBERGER

Abstract: Using Symbolic Dynamic Programming we describe algorithms, fully implemented in

Maple, for automatically generating generating functions introduced by Richard Stanley in his

study of generalized Stern arrays, generalized even further, to arrays defined in terms of general

sequences satisfying linear recurrences with constant coefficients, rather than just the Fibonacci

and k-bonacci sequences.

Appetizer: A Computational Challenge

Mathematics is so sensitive to ‘initial conditions’. In other words the function

Mathematical Question → Difficulty of Finding The Answer to that question

is very ‘chaotic’. Just ‘tweaking’ an easy question by a proverbial ε may change it from tractable

(and sometimes trivial) to (very likely) intractable (but proving the intractability for sure may also

be intractable!).

Here are a few of our favorite examples.

• We all know how to prove that there are infinitely many primes, but just insert the word twin in

front of ‘primes’ and no one (yet) can prove it.

• We all know how to compute the number of 10000-step simple walks in the two dimensional

square lattice (410000), but stick self-avoiding in front of walks and we are all stumped.

• We all know, since Levi Ben Gerson, (exactly!) 700 years ago, to compute the number of

permutations of size 10000, namely 10000!, a certain 35660-digit integer that Maple can compute

(and display!) in 0.002 seconds. Now stick the phrase 1234-avoiding in front of permutations and it

would not take much longer, (using the well-known second-order linear recurrence). Now transpose

the 2 and the 3 in “1234-avoiding”, and we are all stumped on computing exactly the integer that

counts the number of 1324-avoiding permutations of length 10000.

• The proof of the five-color theorem is half-page long, but the proof of the four-color theorem is

several-thousands-page long.

And we can come up with lots of other illustrations of the sensitivity of the “difficulty” function.

1



Here is yet another example.

Easy Problem

Let

Fn(x) :=
n−1∏
i=0

(
1 + x2

i

+ x2
i+1
)

,

and write

Fn(x) =
∑
k≥0

a(n, k)xk .

Now let

v(n) :=
∑
k≥0

a(n, k)2 .

Find v(10000).

Note that it is hopeless to compute this number from the definition. The degree, and hence the size,

of the polynomials Fn(x) grow exponentially (in fact, it is 2(2n − 1)). Naively using the definition,

we would have to add the squares of 210001 − 1 numbers.

Using [S1], to be reviewed and extended later in this article, Maple can find v(10000), a certain

6591-digit number, in a split second.

Now comes our tweak

Hard Problem (at least for us)

Let

Gn(x) :=

n−1∏
i=0

(
1 + x2

i+1 + x2
i+1+1

)
,

and write

Gn(x) =
∑
k≥0

b(n, k)xk .

Let

w(n) :=
∑
k≥0

b(n, k)2 .

Find the exact value of w(10000).

One of us (DZ) is pledging a donation of 100 US dollars to the OEIS (On-Line Encyclopedia of

Integer Sequences) in honor of the first (correct) solver of this very concrete problem.

2



Using the definition, Maple can compute the first 21 values, starting at n = 0:

1, 3, 13, 55, 249, 1121, 5025, 22607, 101931, 460877, 2088687, 9482763, 43109307, 196163983,

893222041, 4069162197, 18543631161, 84525140297, 385343891847, 1756959373157, 8011450183181 .

Unlike the previous problem, of computing v(10000), for which it is easy to detect a simple “pattern”

(see below) (and also easy to prove it rigorously, also see below), and then easily deduce the 10000-th

term, the modified problem, of computing w(10000), seems much harder.

At any rate, the algorithms described later in the present article, that can handle everything in

[S1] and [S2], and much more, fail miserably on this innocent problem. Of course, it is possible

that there exists another algorithm that would make computing w(10000) possible, but we have

no clue, and would love to know!

Added June 17, 2025: Congratulations to Jinlong Tang and Guoce Xin for Solving this hard

problem.

See https://arxiv.org/pdf/2506.13375 .

We were so impressed that we donated twice the promised amount to the OEIS, in other words we

donated 200 dollars

The original Stern Diatomic Array

In the delightful article [S1], Richard Stanley’s starting point was the double sequence a(n, k)

defined by

Fn(x) =
∑
k≥0

a(n, k)xk =

n−1∏
i=0

(
1 + x2

i

+ x2
i+1
)

,

and he was interested in the sequences (for positive integers r)

ur(n) :=
∑
k≥0

a(n, k)r .

More generally for α = (α0, . . . , αm−1) (where the αi are non-negative integers), the sequences

uα(n) :=
∑
k≥0

a(n, k)α0 a(n, k + 1)α1 . . . a(n, k +m− 1)αm−1 .

He proved that all these sequences are C-finite, i.e., satisfy a linear recurrence equation with constant

coefficients, or equivalently ([Z],[KP]) that their generating function

Fα(x) :=

∞∑
n=0

uα(n)xn ,

3



is a rational function of x.

In order to illustrate the general theory, he humanly proved that

F2(x) =
1− 2x

1− 5x+ 2x2
.

We will now redo, in excruciating detail, his proof, our way, in order to motivate the algorithm

that will come later. Our notation is a little different than the one in [S1], but the bottom line is

the same.

Since

Fn(x) =
(

1 + x2
n−1

+ x2·2
n−1
)
Fn−1(x) ,

we have the recurrence that relates the entries in the n-row of Stern’s array to those of the previous

one.

a(n, k) = a(n− 1 , k) + a(n− 1 , k − 2n−1) + a(n− 1 , k − 2 · 2n−1) .

For reasons to be made clear later on, let’s call u2(n), f0(n)

Incorporating this in the definition of u2(n) (alias f0(n)) we have

f0(n) =
∑
k≥0

a(n, k)2 =

∑
k≥0(

a(n− 1 , k) + a(n− 1 , k − 2n−1) + a(n− 1 , k − 2 · 2n−1)
)
·(

a(n− 1 , k) + a(n− 1 , k − 2n−1) + a(n− 1 , k − 2 · 2n−1)
)

=
∑
k≥0

a(n− 1, k) · a(n− 1, k) (1.1)

+
∑
k≥0

a(n− 1, k) · a(n− 1, k − 2n−1) (1.2)

+
∑
k≥0

a(n− 1, k) · a(n− 1, k − 2 · 2n−1) (1.3)

+
∑
k≥0

a(n− 1, k − 2n−1) · a(n− 1, k) (1.4)

+
∑
k≥0

a(n− 1, k − 2n−1) · a(n− 1, k − 2n−1) (1.5)

+
∑
k≥0

a(n− 1, k − 2n−1) · a(n− 1, k − 2 · 2n−1) (1.6)

4



+
∑
k≥0

a(n− 1, k − 2 · 2n−1) · a(n− 1, k) (1.7)

+
∑
k≥0

a(n− 1, k − 2 · 2n−1) · a(n− 1, k − 2n−1) (1.8)

+
∑
k≥0

a(n− 1, k − 2 · 2n−1) · a(n− 1, k − 2 · 2n−1) . (1.9)

Note that since the degree of Fn−1(x) is 2(2n−1 − 1), (1.3) and (1.7) are 0. Also note that by

a ‘shift of the discrete variable k’, (1.1), (1.5) and (1.9) are the same. By the commutativity of

multiplication, (1.2) and (1.4) are identical, as are (1.6) and (1.8), and by shifting the variable of

summation, we see that these two pairs are identical to each other. Hence

f0(n) = 3
∑
k≥0

a(n− 1 , k)2 + 4
∑
k≥0

a(n− 1 , k) a(n− 1 , k − 2n−1) .

The first sum is f0(n− 1) , but the second sum is a new creature, let’s call if f1(n− 1), where

f1(n) :=
∑
k≥0

a(n , k) a(n , k − 2n) .

So far we have

f0(n) = 3f0(n− 1) + 4f1(n− 1) .

We are forced to consider f1(n).

We have

f1(n) =
∑
k≥0

a(n , k) a(n , k − 2n) =

=
∑
k≥0

(
a(n− 1 , k) + a(n− 1, k − 2n−1) + a(n− 1, k − 2 · 2n−1

)
·

(
a(n− 1 , k − 2 · 2n−1) + a(n− 1, k − 3 · 2n−1) + a(n− 1, k − 4 · 2n−1)

)
=
∑
k≥0

a(n− 1, k) · a(n− 1, k − 2 · 2n−1) (2.1)

+
∑
k≥0

a(n− 1, k) · a(n− 1, k − 3 · 2n−1) (2.2)

+
∑
k≥0

a(n− 1, k) · a(n− 1, k − 4 · 2n−1) (2.3)

5



+
∑
k≥0

a(n− 1, k − 2n−1) · a(n− 1, k − 2 · 2n−1) (2.4)

+
∑
k≥0

a(n− 1, k − 2n−1) · a(n− 1, k − 3 · 2n−1) (2.5)

+
∑
k≥0

a(n− 1, k − 2n−1) · a(n− 1, k − 4 · 2n−1) (2.6)

+
∑
k≥0

a(n− 1, k − 2 · 2n−1) · a(n− 1, k − 2 · 2n−1) (2.7)

+
∑
k≥0

a(n− 1, k − 2 · 2n−1) · a(n− 1, k − 3 · 2n−1) (2.8)

+
∑
k≥0

a(n− 1, k − 2 · 2n−1) · a(n− 1, k − 4 · 2n−1) . (2.9)

Once again since the degree of Fn−1(x) is 2(2n−1 − 1), (2.1), (2.2), (2.3), (2.5), (2.6) and (2.9)

vanish. By shifting the summation variable k, both (2.4) and (2.8) equal f1(n − 1) while (2.7) is

our old friend f0(n− 1).

Hence we get, in addition to the previous equation, the following one:

f1(n) = f0(n− 1) + 2f1(n− 1) .

Yea! We did not encounter any new ‘uninvited guests’. Defining the generating functions

F0(x) =

∞∑
n=0

f0(n)xn ,

F1(x) =

∞∑
n=0

f1(n)xn ,

the above two recurrences translate to a system of two linear equations in the two unknowns

(also using the initial conditions f0(0) = 1, f1(0) = 0)

F0(x) = 1 + x(3F0(x) + 4F1(x)) , F1(x) = 0 + x(F0(x) + 2F1(x)) .

Of course, any seventh-grader can solve this system, but why not use Maple?

Typing

latex(solve({ F0=1+x*(3*F0+4*F1), F1=x*(F0+2*F1) },{ F0,F1 } )); we get{
F0 = − 2x− 1

2x2 − 5x+ 1
,F1 =

x

2x2 − 5x+ 1

}
.

6



Confirming that indeed
∑
n≥0 u2(n)xn equals 1−2x

1−5x+2x2 as claimed in [S1]. (Two lines below equa-

tion (3) there).

Let’s try and understand what is going on here. We started with an object of desire, f0(n), and

we were hoping to relate it to f0(n−1). Alas, we were forced to consider an uninvited guest, f1(n).

Analyzing f1(n), we were able to express it in terms of f1(n− 1) and f0(n− 1), and luckily, there

were no new ‘uninvited guests’. Taking the z-transforms, we got a system of two equations and two

unknowns and solving them, gave us the generating function of f0(n), that we called F0(x), as well

as the generating function of f1(n), that we called F1(x). Of course we can ungratefully disregard

F1(x) at the end, if we wish, but we needed it in order to computer F0(x).

Let’s now consider the general problem. Suppose that you have arbitrary positive integers

0 ≤ c1 ≤ c2 ≤ . . . ≤ cr .

We need the sequence ∑
k≥0

a(n, k + c1) a(n, k + c2) · · · a(n, k + cr) .

(Note that one can always take c1 = 0.)

Using the recurrence

a(n, k) = a(n− 1, k) + a(n− 1, k − 2n−1) + a(n− 1, k − 2 · 2n−1) ,

above, this sum can be written as a sum of 3r sums, each of them having the form

f [d1, . . . , dr;β1, . . . , βr](n− 1) =∑
k≥0

a(n− 1, k + d1 − β12n−1) a(n− 1, k + d2 − β22n−1) · · · a(n− 1, k + dr − βr2n−1) .

Here (d1, . . . , dr) is a permutation of (c1, . . . , cr) and β1, . . . , βr are non-negative integers.

This forces us to consider f [d1, . . . , dr;β1, . . . , βr](n) in general, not just the initial case of β1 =

0, . . . , βr = 0.

So we need to be able to express the general quantity

f [d1, . . . , dr ; β1, . . . , βr](n) :=∑
k≥0

a(n, k + d1 − β12n) a(n, k + d2 − β22n) · · · a(n, k + dr − βr2n) ,

corresponding to the “state” [d1, . . . , dr ; β1, . . . , βr] in terms of other such “states”.

7



We have to teach the computer:

• How to decide whether such a state is dead on arrival, i.e. identically zero (like (1.3), (1.7), (2.1,

(2.2), (2.3), (2.5),(2.6), and (2.9) in the example above).

• How to automatically express each of these in terms of other such creatures.

Luckily, computer algebra comes to the rescue! Using the commutativity of multiplication, we can

get a canonical form of each state, by sorting the list of pairs

[d1, β1; d2, β2; . . . ; dr, βr] ,

such that β1 ≤ β2 ≤ . . . ≤ βr and β1 = 0. Of course as the βi change places, they must bring with

them their corresponding di.

To each such state we assign the monomial

xd11 · · ·xdrr X
β1

1 · · ·Xβr
r .

First one has to replace Xi by X2
i , since k + d− β2n−1 in the n− 1 level becomes k + d− β2n =

k + d− (2β)2n−1 at the n level.

We let Maple multiply this (converted) monomial by

r∏
i=1

(1 +Xi +X2
i ) ,

and expand it, thereby expressing it as a sum of similar-looking monomials. We replace each

monomial by its canonical form (sorting the powers of Xi and permuting the corresponding xi to

move-along with their corresponding Xi, see Maple source-code). Finally if the power of X1 in the

converted monomial is larger than 0 we subtract it from all the powers of Xi (in other words if the

power of X1 is, e, we divide the monomial by Xe
1 · · ·Xe

r ). This corresponds to shifting the variable

k in the sum corresponding to the given state.

Now each of these converted monomials corresponds to a state.

It is easy to see that there are only finitely many states (by the upper bound for the degree of

Fn(x)), so this process is guaranteed to terminate, and then Maple automatically sets up a system

of linear equations, that it can solve all by itself.

This approach works not just for the original Stern array, but for the more general scenario (intro-

duced in [S1])

Fn(x) = P (x)

n−1∏
i=0

Q(xb
i

) ,

8



for any polynomial P (x) (before P (x) was 1), and any polynomial Q(X), (before Q(x) was 1 +

X + X2) and for any integer b ≥ 2 (before b was 2). The computer finds the equation for each

‘still-to-do’ state, by forming its corresponding monomial, then replacing each Xi by Xb
i (due to

the transition from the n level to the n− 1 level), and then multiplying the resulting monomial by

r∏
i=1

Q(Xi) ,

expanding, taking the canonical forms, and discarding the monomials that are ‘dead-on-arrival’.

This is fully implemented in procedure RS in the Maple package StanleyStern.txt available from

the front of this article

https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/stern.html ,

or directly from

https://sites.math.rutgers.edu/~zeilberg/tokhniot/StanleyStern.txt .

The function-call is

RS(P,Q,b,A,x,t) ,

where P,Q,b are as above and A is [α0, . . . , αm−1] featuring in Stanley’s definition of uα(n) men-

tioned above.

For example, to get the generating function of what Stanley [S1] calls u5(n), in the variable t (rather

than the variable x that he is using), type

latex(RS(1+x+x**2,1,2,[5],x,t)); ,

immediately getting

20 t2 + 11 t− 1

47 t2 + 14 t− 1
.

Procedure RS dynamically collects all the needed quantities and by repeatedly invoking procedure

Eq dynamically generates a system of linear equations, until it does not encounter any new guys.

Of course, we know, a priori (as proved in [S1] and also follows from our algorithm) that this must

terminate, but even if we did not know that fact, we could have set an upper limit to the number

of equations that we are willing to solve, and return FAIL if it got exceeded.

Since we have a theoretical guarantee that a rational function exists, and we can bound the degree

of the denominator, we can use an empirical approach, and collect enough data (as Stanley [S1] did

in simple cases) and then fit it into the generating function (using something similar to Maple’s

gfun[listtorec], but we prefer our own home-made version). This is implemented in procedure

9



RSe(p,q,b,A,N,x,t) ,

where N is the number of data points used. Note that while for small cases, where the order of the

recurrences is expected to be relatively low, this is much faster, but as noted in the above appetizer,

this can’t go very far, since the polynomials Fn(x) have exponential-size degree.

Nevertheless to compute generating functions for what Stanley calls ur(n) in [S1], for small r it

works very fast. For example, to get the generating function of u10(n), type:

latex(RSe(1+x+x**2,1,2,[10],15,x,t));

getting, in 0.16 seconds

− 4 t4 + 1852 t3 + 7945 t2 + 96 t− 1

(t+ 1) (4 t4 − 200 t3 − 9601 t2 − 100 t+ 1)
.

Using the non-guessing approach (using the algorithm outlined above), i.e. typing

latex(RS(1+x+x**2,1,2,[10],x,t)); ,

gives that same thing, but in 18.26 seconds.

On the other hand, for the generating function of what is called u11111(n) in [S1], in other words,

the generating function of the sequence∑
k≥0

a(n, k)a(n, k + 1)a(n, k + 2)a(n, k + 3)a(n, k + 4) ,

typing (using the non-guessing approach)

latex(RS(1+x+x**2,1,2,[1,1,1,1,1],x,t)); ,

yields, in 4.3 seconds

−4

(
4 t4 − 55 t3 − 69 t2 − 21 t− 3

)
t2

(t− 1)
3

(47 t2 + 14 t− 1)
,

while using the guessing approach, typing

latex(RSe(1+x+x**2,1,2,[1,1,1,1,1],20,x,t)); ,

yields the same thing in twice as long.

Eventually, the ‘guessing approach’ will explode of course (as already mentioned before).

Sample Output files for the Maple package StanleyStern.txt

10



For the generating functions of [S1]’s ur(n) for r ≤ 25, using the guessing (yet rigorous) approach

see the output file

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oStanleyStern1eA.txt .

For the generating functions of [S1]’s u1r (n), in other words of the sequences∑
k≥0

a(n, k) a(n, k + 1) · · · a(n, k + r − 1) ,

for r ≤ 9, using the guessing (yet rigorous) and non-guessing approaches respectively, see the output

files

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oStanleyStern2e.txt ,

and

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oStanleyStern2.txt .

Note that the latter took quite a big longer.

Extension to Generalized Stern Arrays Induced by C-finite sequences

In [S2], Richard Stanley extended his study to analogs where instead of xb
i

that feature in the

definition of Fn(x) above one has powers of the form xFi , and more generally, xF
(k)
i where Fi are

the Fibonacci numbers, and F
(k)
i are the k-bonacci numbers defined by

F
(k)
i+1 = F

(k)
i + F

(k)
i−1 + . . . + F

(k)
i−k+1 ,

with initial conditions

F
(k)
1 = F

(k)
2 = . . . = F

(k)
k = 1 .

The sequences {bi}, can be defined as a solution of the first-order recurrence

f(i) = b f(i− 1) , f(0) = 1 ,

and Fi, and F
(k)
i are specific examples of C-finite sequences.

Let’s first formally define a C-finite sequence.

Definition: A C-finite sequence f(i) (no relation to the Fibonacci numbers) of order L, is a

sequence defined by a recurrence of the form,

f(i) = c1f(i− 1) + c2f(i− 2) + . . . + cLf(i− L) ,

where c1, . . . cL are constants, subject to some initial conditions

f(0) = d0 , f(1) = d1 , . . . , f(L− 1) = dL−1 ,

11



for some (other) constants d0, . . . dL−1.

We denote a C-finite sequence by the pair [[d0, . . . , dL−1] ; [c1, . . . , cL]] and in this paper assume

that the d′s and c′s are integers, so the sequence {f(i)}∞i=0 is an integer sequence.

So in this notation, the sequence {2i}∞i=0 featuring in the original definition of the Stern array is

denoted by [[1], [2]] and more generally {bi}∞i=0 is denoted by [[1], [b]], while the Fibonacci sequence

is [[0, 1], [1, 1]] and the k-bonacci sequence is [[0, 1k−1], [1k]].

Before going on, we need an important observation.

Observation: Given a C-finite sequence f(i) of order L, any linear combination of the form

M2∑
i=M1

aif(n+ i) ,

where M1 < M2 are arbitrary integers, can be rewritten in the canonical form

L−1∑
i=0

aif(n+ i) ,

where the new ai are of course different.

Proof: f(n+L) is a linear combination of f(n), . . . , f(n+L− 1). Let’s prove, by induction on J ,

that f(n+ J) is a linear combination of f(n), . . . , f(n+L− 1), for all J ≥ L. It is true for J = L.

Assuming that f(n+ J) is a linear combination of f(n), . . . , f(n+L− 1), we get that f(n+ J + 1)

is a linear combination of f(n + 1), . . . , f(n + L), and since f(n + L) is a linear combination of

f(n), . . . , f(n+ L− 1), it too is.

Now things are much more complicated, and we welcome the reader to study the source code of

procedure RS in the other Maple package accompanying this article, SternCF.txt, available from

https://sites.math.rutgers.edu/~zeilberg/tokhniot/SternCF.txt .

The approach is similar, and let us describe it briefly.

We will consider the general problem of trying to find generating functions for the quantities uα(n)

but now the array a(n, k) is defined by an expression of the form

Fn(x) = P (x)

n−1∏
i=0

c0 +
M∑
j=1

cjx
e[0,j]f(i)+e[1,j]f(i+1)+...+ e[L−1,j]f(i+L−1)

 .

Writing as before Fn(x) =
∑
k≥0 a(n, k)xk, we are interested in computing the generating function,

if possible, of the quantity∑
k≥0

a(n, k + d1) a(n, k + d2) · · · a(n, k + dr) .

12



Note that a(n, k) satisfies the recurrence

a(n, k) = c0a(n−1, k) +
M∑
j=1

cja
(
n− 1, k − (e[0,j]f(n− 1) + e[1,j]f(n) + . . . + e[L−1,j]f(n+ L− 2))

)
.

A typical ‘state’ corresponds to the quantity∑
k≥0

a(n, k + d1 − β1,0f(n)− β1,1f(n+ 1)− . . .− β1,L−1f(n+ L− 1)) ·

a(n, k + d2 − β2,0f(n)− β2,1f(n+ 1)− . . .− β2,L−1f(n+ L− 1)) . . .

a(n, k + dr − βr,0f(n)− βr,1f(n+ 1)− . . .− βr,L−1f(n+ L− 1)) .

We denote this state by

[[d1; [β1,0, β1,1, . . . , β1,L−1]] ,

[[d2; [β2,0, β2,1, . . . , β1,L−1]] ,

. . .

[[dr; [βr,0, βr,1, . . . , βr,L−1]] .

Now, in addition to the variables x1, . . . xr we have r L variables

Xi,j , 1 ≤ i ≤ r , 0 ≤ j ≤ L− 1 .

The above state corresponds to the monomial

xd11 · · ·xdrr ·
r∏
i=1

L−1∏
j=0

X
βi,j

i,j .

Before doing the ‘evolution’ we must convert this monomial by translating from the n level to the

n− 1 level, (analogously to replacing Xi by Xb
i before). Now things are more complicated but the

computer does not mind (see procedure ROp).

The evolution equation is obtained by multiplying this (adjusted) monomial by the polynomial

r∏
i=1

c0 +

M∑
j=1

cjX
e[0,j]
i,0 X

e[1,j]
i,1 · · ·Xe[L−1,j]

i,L−1

 ,

and expanding it, and then converting each of the monomials to its canonical form.

13



As before we build the system of equations dynamically, except that we are no longer guaranteed to

terminate, and indeed for many cases the process goes for ever. Hence we have another argument,

LIMIT1, telling us to declare failure if the number of states (i.e. equations) exceeds it.

For the Fibonacci and k-bonacci cases considered in [S2], it always terminated, in the many cases

we tried out, as well as for many other cases. But not for all C-finite sequences!

For the C-finite sequence

[[2, 3], [3,−2]] ,

alias f(i) = {2i + 1}∞i=0 and

Fn(x) =

n−1∏
i=0

(
1 + xf(i) + xf(i+1)

)
,

even for A=[2], it seems to never terminate.

For example entering

RSmat([[1,1],[3,-2]],[[1,[0,0]], [1,[1,0]],[1,[0,1]] ],1,x,[2],10000);

shows that 10000 does not suffice, and it is clear, that the set of states is infinite. Hence the

computational challenge at the start of this article.

On the other hand for the Fibonacci and k-bonacci cases considered in [S2], it does seem to always

terminate.

What makes them special?

Recall that a PV number (Pisot-Vijayaghavan number) is a positive algebraic number that is

larger than 1 and such that all its conjugates have absolute value less than 1. We will call a

C-finite sequence

[[d0, . . . dL−1] , [c1, . . . , cL]]

a PV -sequence if the largest root of the characteristic equation

XL − c1xL−1 − . . .− cL−1x− cL = 0 ,

(the Golden ratio in the Fibonacci case) is a PV number.

We believe that a careful study of our algorithm will be able to prove the following conjecture.

Conjecture: Algorithm RS of the Maple package SternCF.txt (and its matrix version RSmat)

terminates for all inputs A, (i.e. for computing the generating function of uα(n)), if and only if

the C-finite sequence considered is a PV sequence.

14



It is easy to see that not only the Fibonacci sequence, but the k-bonacci sequences are PV . That

explains why we were able to get answers for all the cases considered in [S2]. Of course, the system

can get very large, that’s why we have a matrix version of RS, called RSmat, that does not attempt

to find the generating function but only outputs the huge matrix M , and the vector v, such that

the desired generating function is (I − tM)−1v, and it terminates in all the cases that we tried, as

well as many other PV -sequences.

But the sequence {2i + 1} that is ‘almost’ PV , but not quite, seems to fail, hence this approach

most probably can not prove that it is a rational generating function. This does not exclude the

possibility that another approach would prove that the sequence that we called w(n), in the above

challenge, happens to be C-finite, but we strongly doubt it. At any rate, if it is C-finite its order

must exceed 10, while the order of the recurrence for what we called v(n) above, is only two.

The Maple package SternCF.txt produced quite a few output files, widely extending the compu-

tations in [S2].

For example, for generating functions for the sequences∑
k≥0

a(n, k)r ,

where ∑
k≥0

a(n, k)xk =

n∏
i=1

(
1 + xFi+1 + xFi+2

)
,

for 1 ≤ r ≤ 6 can be found in

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oSternCF1.txt .

The case r = 1 is trivially 1
1−3t , and the case r = 2 confirms the generating function on the top of

p.16 of [S2] that Stanley probably got by the guessing approach. The degree of the denominator

for the r = 3 is already 35 which means that for the guessing approach we would need to collect

data up to n = 72 which makes guessing impractical.

For the case r = 6, the degree of the denominator (and numerator) of the generating function is

405, that means that we would need several ‘big bangs’ to derive it by guessing.

Still with the same a(n, k), but for the generating functions of∑
k≥0

a(n, k)a(n, k+1) ,
∑
k≥0

a(n, k)a(n, k+1)a(n, k+2) ,
∑
k≥0

a(n, k)a(n, k+1)a(n, k+2)a(n, k+3) ,

see the ouptput file

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oSternCF2.txt .

This took much longer, even though the degree was ‘only’ 108 for the last sequence (but the number

of states was much larger).

15



Moving right along to the Tribonacci sequence Ti (alias F
(3)
i ), and defining in analogy

∑
k≥0

a(n, k)xk =

n∏
i=1

(1 + xTi+1 + xTi+2 + xTi+3) ,

the generating functions for
∑
k≥0 a(n, k)r for r = 2 and r = 3 can be found here:

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oSternCF3.txt .

(the degree of the r = 3 case is 567).

The case r = 4 is too big for us, but the ‘matrix version’, RSmat, that finds the matrix of coefficients

of the system, and enables computing many terms of the sequence, for
∑
k≥0 a(n, k)4 can be found

here:

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oSternCF3mat.txt .

The matrix in question has dimension 7245.

Still with the same a(n, k) (from the Tribonacci sequence), the generating function for
∑
k≥0 a(n, k)a(n, k+

1) can be found here:

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oSternCF4.txt .

The generating function for
∑
k≥0 a(n, k)a(n, k + 1)a(n, k + 2) is too big (the system has 5004

equations) but we found the matrix that enabled us to compute the first 30 terms, see here:

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oSternCF4mat.txt .

For the Quadonaci sequence, Qi, (alias F
(4)
i ), and defining in analogy

∑
k≥0

a(n, k)xk =

n∏
i=1

(
1 + xQi+1 + xQi+2 + xQi+3 + xQi+4

)
,

we only bothered to find the generating function of
∑
k≥0 a(n, k)2 that happens to have degree 504.

See here:

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oSternCF5.txt .

For the generating function of
∑
k≥0 a(n, k)a(n, k+ 1) that happens to have degree 1024. See here:

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oSternCF6.txt .

For the analog of
∑
k≥0 a(n, k)2 for the F

(5)
i case we decided to only find the 12751-dimensional

matrix, see

16



https://sites.math.rutgers.edu/~zeilberg/tokhniot/oSternCF7mat.txt .

We also computed the quantities J
(k)
r (t, x) considered in section 5 of [S2] for quite a few k and r.

(See [S2] for its definition.)

We believe that Conjecture 5.4 of [S2] is wrong as stated. Instead we have the

Corrected Conjecture 5.4 of [S2]:

J
(k)
3 (t, x) =

−t3 k−3x2 kt6 +
(
tk−1

)2
xkt3 + tk−1xkt3 + 2 t3 k−3x2 kt3 +

(
tk−1

)2
xk + tk−1xk − t3 k−3x2 k − 1

D
(k)
3 (t, x)

,

where

D
(k)
3 (t, x) = t3 k−3x2 k+1t9 −

(
tk−1

)2
xk+1t6 − tk−1xk+1t6 − t3 k−3x2 kt6 − t3 k−3x2 k+1t6

+
(
tk−1

)2
xkt3 +

(
tk−1

)2
xk+1t3 + tk−1xkt3 + tk−1xk+1t3 + 2 t3 k−3x2 kt3 − t3 k−3x2 k+1t3 + t3x

+
(
tk−1

)2
xk −

(
tk−1

)2
xk+1 + tk−1xk − tk−1xk+1 − t3 k−3x2 k + t3 k−3x2 k+1 + x− 1 ,

and verified it for k ≤ 5.

For the correct values of J
(k)
r (t, x) for 2 ≤ r ≤ 10, and 2 ≤ k ≤ 4 see the output file

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oSternCF9.txt .

For the conjectured values of J
(k)
r (1, x) for 2 ≤ r ≤ 20, for symbolic (general) k, that match the

expressions given in [S2] for r ≤ 7, see

https://sites.math.rutgers.edu/~zeilberg/tokhniot/oSternCF10.txt .

Please note that these are still conjectures, but they were proved for k ≤ 6 so they must be right.

Finally, Conjecture 5.6 of [S2] is obviously wrong as stated, but if one replaces ai(t) by ai(t, t
k−1)

it is probably possible to restate it correctly.

References

[KP] Manuel Kauers and Peter Paule, “The Concrete Tetrahedron”, Springer, 2011.

[S1] Richard P. Stanley, Some linear recurrences motivated by Stern’s Diatomic Array, arXiv:1901.04647v1

[math.CO], 15 January 2019. https://arxiv.org/abs/1901.04647 .

Also in: Amer. Math. Monthly 127 (2020), 99-111.

[S2] Richard P. Stanley, Theorems and conjectures on some rational generating functions, arXiv:2101.02131v2

[math.CO], 11 January 2021. https://arxiv.org/abs/2101.02131 .

17



[Z] Doron Zeilberger, The C-finite Ansatz, Ramanujan Journal 31 (2013), 23-32.

https://sites.math.rutgers.edu/~zeilberg/mamarim/mamarimhtml/cfinite.html .

Shalosh B. Ekhad and Doron Zeilberger, Department of Mathematics, Rutgers University (New

Brunswick), Hill Center-Busch Campus, 110 Frelinghuysen Rd., Piscataway, NJ 08854-8019, USA.

Email: [ShaloshBEkhad, DoronZeil] at gmail dot com .

Exclusively published in the Personal Journal of Shalosh B. Ekhad and Doron Zeil-

berger and arxiv.org

Originally Written: March 23, 2021.

Previous version: Oct. 20, 2024 [Correcting the values at the top 3, (pointed out by Guoce Xin,

whom we thank)]

This version: July 8, 2025 [linking to the brilliant solution of the challenge problem by Jinlong

Tang and Guoce Xin]

18


