
SYMBOLIC COMPUTATION TO THE AID OF STATISTICAL MECHANICS

MANUEL KAUERS 1 AND DORON ZEILBERGER

Abstract. We suggest that symbolic computation is a powerful tool in theoretical physics, that
is currently not as widely used as it should be. We illustrate it by a bit of “alternative history”,

how the celebrated and extremely complicated Onsager solution could (at least in principle, but
probably also in pratice) could have been conjectured, using symbolic computation. Hopefully,

the same methodology would be helpful to make progress on till open problems, like the 2D

Ising model with a magnetic field, and the 3D Ising model.

1. Prologue

Until about thirty years ago, physics consisted of two parts: theoretical and experimental. Then
a new kid came to the block, computational physics, that used a computer to ‘pretend’ that it is
nature, and perform many experiments that would be too expensive, and usually impossible to
perform in the real world. Alas, computational physics, with a few pioneering exceptions, used
numerical computations (mostly simulations). We believe that there is room for yet another ‘kid’,
symbolic computations. Very impressive applications of Symbolic Computation to high energy
physics are described, for example, in [1]. Here we hope to illustrate the usefullness of symbolic
computation to statistical mechanics, by focusing, as a case study, on the celebrated Ising model
(e.g. [5]).

2. A crash course in statistical mechanics

The general scenario of statistical mechanics consists of very many possible configurations, each
with a certain energy. Not all configurations are created equal, and some are much more likely
than others, as first realized by the Austrian scientific giant, Ludwig Boltzmann. The probability
of a configuration C, whose energy is E(C) is proportional to

e
−E(C)

kT ,

where k is Boltzmann’s constant, and T is the absolute temperature.

It follows that the higher the energy, the less likely it is to show up, the decay being exponential.

In order to get macroscopic (thermodynamic) (average) information, we form the famous Gibbs
Partition function

Z =
∑

C∈configurations

e
−E(C)

kT ,

and the ‘average’ energy (that physicists call internal energy) is obtained by taking the logarithmic
derivative. Other quantities of interest are obtained by taking higher order derivatives.

(Note that in taking the logarithmic derivative, Z shows up in the denominator, and this makes
sense, in order to normalize the sum of the probabilities to be 1).

Statistical mechanicians are fond of toy models that ‘simplify’ nature, and try to preserve the
qualitative features of the real world. Unfortunately, even these toy models are extremely difficult,
and with rare exceptions, intractable (or at least wide open), and people resort to approximations,
using numerical methods, sophisticated brilliant (but non-rigorous) renormalization theory cal-
culations, and most often, simulations (aka “Monte Carlo methods”).
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In this article we will show how symbolic computation may give a new approach to tackling these
difficult models.

3. The grandaddy of all models: The (two dimensional) Ising Model

Fix positive integers m and n, and letM(m,n) be the set (of cardinality 2mn) of all m×n matrices
whose entries are −1 or 1 (called ‘spin down’ and ‘spin up’, respectively).

Let

x = e
J
kT , y = e

H
kT

where J is the so-called coupling constant (and hence a (physical) constant) and H is another
input variable (in addition to T ) called the (strength of the) external magnetic field.

The energy associated to a specific matrix M ∈M(m,n) is defined as follows

E(M) := −J

 m∑
i=1

n∑
j=1

(Mi,jMi,j+1 +Mi,jMi,j+1)

−H
 m∑

i=1

n∑
j=1

Mi,j

 .

Here we use the ‘periodic’ convention that Mm+1,j = M1,j and Mi,n+1 = Mi,1.

It follows that the weight of a matrix is

weight(M) := exp(−E(M)

kT
) = x

∑m
i=1

∑n
j=1(Mi,jMi,j+1+Mi,jMi,j+1) · y

∑m
i=1

∑n
j=1 Mi,j .

Our first (modest!) goal is just to compute, for as large m and n that our computers and human
ingenuity would allow, the (Gibbs) Partition function (i.e. weight enumerator of the setM(m,n)).

Zm,n(x, y) :=
∑

M∈M(m,n)

weight(M) ,

a certain Laurent polynomial in the variables x (of degree 2mn and low-degree ≥ −2mn) and y
(of degree mn and low-degree −mn).

Later on we would be especially interested in the ‘square case’ (m = n), and the semi-infinite strip
case (n =∞).

4. Transfer matrices

A direct [4] way to compute Zm,n(x, y) is to simply construct the set M(m,n) consisting of all
2mn whose entries are drawn from the set {−1, 1} matrices, compute the weight for each and
every one of them, and add them all up. But there is a much more efficient way [5, 6], called the
transfer-matrix method.

Let’s associate for each integer i between 0 and 2m − 1 the m-dimensional {−1, 1} column vector

v(i) := (2b0 − 1, . . . , 2bm−1 − 1), where i =
∑m−1

j=0 bj2
j is the binary representation of i.

Define the 2m × 2m transfer matrix

T(m) := (Tij)0≤i,j≤2m−1 ,

where the typical entry Tij is as follows.

Tij := x
∑m

l=1 v(i)lv(j)l+
∑m−1

l=1 v(j)lv(j)l+1+v(j)mv(j)1 · y
∑m

l=1 v(j)l .

Using the transfer matrix, the desired polynomial Zm,n(x, y) can be expressed very succinctly as

Zm,n(x, y) = Tr [T(m)n ] .

It is well-known (and easy to see!) that exponentiation of a matrix is really fast (poly-log time,
using A2k = (Ak)2, A2k+1 = A2kA rather than Ak = Ak−1A), but for a numeric matrix. Here we
have a symbolic matrix, and a naive approach, (once m gets larger) would be unfeasible. But with
the method of homomorphic images, we can go pretty far.
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5. The Functions that physicists care about

For the finite (torodial) m× n lattice, one is interested in the Free energy, F

F = −kT logZ ,

Internal Energy, U

U = kT 2 ∂

∂T
logZ ,

and Specific heat

C =
∂U

∂T
.

Physicists are also very interested in the Magnetization, M

M = − ∂F
∂H

,

and the Isothermal susceptibilty

χT =
∂M

∂H
.

At the “end of the day”, people take the limit as both m and n go to infinity, but one can already
get a rough idea on what is going on for small values of m and n, as we hope to show soon.

6. The Data for Zm,n(x, y)

For Zn,n(x, y) for 1 ≤ n ≤ 9 see:

http://www.math.rutgers.edu/~zeilberg/tokhniot/ising/Polys

Very impressively, Per Hakan Lundow[3], has already computed these for n ≤ 16

For Zm,n(x, y) for 1 ≤ m ≤ 5 , 1 ≤ n ≤ 11 see:

http://www.math.rutgers.edu/~zeilberg/tokhniot/ising/Polys1

7. The Semi-Infinite case

Physicists are not really interested in the polynomials Zm,n(x, y) for their own sake but in the
logarithm

logZm,n .

But, physicists (and chemists) that believe in the (fictional!) infinity, are really interested in the
free energy F(x, y)

F := −kT lim
m→∞

lim
n→∞

(mn)−1 logZm,n(x, y) .

For the case y = 1 (zero magnetic field), this is known explicitly, thanks to the mathematical
tour de force (using very abstract representation theory!) of 1968 Chemistry Nobelist, physicist
Lars Onsager. For general y this is a wide-open, possibly impossible, problem. So all we can hope
for, so far, is getting ‘close to infinity’.

But, following Onsager, we can try and do the semi-inifite case, and get explicit expressions for

Am(x, y) :=
1

m
lim

n→∞
n−1 logZm,n(x, y) .

It is well known [5] (and easy to see) that Am(x, y) is the largest root of the characteristic equation
of the transfer matrix T(m)

det(T(m)− λI) = 0 .

Hence, it is a solution of an algebaric equation (by an appropriate change of independent and
dependent variables, it could be viewed as formal power series). It also follows that the logarithm
(and of course, its derivatives with respect to both variables) are holonomic formal power series
(or functions) in both variables.
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8. How Onsager’s solution could have been conjectured via the C-finite ansatz

Onsager’s solution was an amazing tour de force using human ingenuity and lots of ad hoc tricks
to find an ‘explicit’ expression for the largest eigenvalue of the transfer matrix for the k× infinity
case for any (symbolic) k. It turned out this (at most) algebraic function of degree 2k can be
expressed as some explicit product of k algebraic functions of degree 2. Using the methods in our
previous paper [2], this fact could be deduced automatically, and we believe that with a little more
effort, the actual Onsager factorization would be automatically derivable for k ≤ 9, from which
it would be immediate to conjecture the Onsager factoriziation for symbolic (i.e. general k). Of
course, this would not be a rigorous proof, in the mathematical sense, but definitely good enough
for physicists.

9. How Onsager’s solution would be conjectured via the Holonomic ansatz

The exact value of the largest eigenvalue λ
(m)
1 of the 2m×2m transition matrix, is only a stepping

stone for the free energy, the limit of log λ
(m)
1 /m as m goes to infinity, viewed as a function of the

continuous parameter x (right now are only considering the zero magnetic field case, i.e. y = 1).

It follows from general theory, that for each m log λ
(m)
1 is holonomic (aka D-finite) in the variable

x, i.e. satisfies a linear differential equation with polynomial coefficients.

Alas, as m gets larger and larger, these differential equations get more and more complicated, (to
see them for 2 ≤ m ≤ 6) go to the webpage of this article.

Suprisingly the case of interest m =∞ satisfies a reasonale differential equation.

As is standard in the theory (see [5], Ch. 6), it is convenient to perform the change of variable

v =
x− x−1

x+ x−1
.

In terms of this the free energy satisfies the linear differential equation

(−13 v6 +70 v5−251 v4 +16 v3 +69 v2 +2 v−5)
d

dv
f(v)−v(v−1)(55 v5−309 v4 +328 v3 +220 v2−

87 v + 1)
d2

dv2
f(v)− v2(33 v4 − 172 v3 − 10 v2 + 116 v − 15)(v − 1)2

d3

dv3
f(v)

−4 v3v + 1)(v2 − 6 v + 1)(v − 1)3
d4

dv4
f(v) = 0 .
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