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Theorem: Consider a population of 2n men and 2n women where every individual is equally
attracted to either sex and chooses his or her mate according to other criteria. Also assume
that everyone gets married. Then the expectation of the random variable “Number of same-sex
marriages” is
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and its variance is
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Furthermore, this random variable is asymptotically normal.

Semi-Rigorous Proof: The probability generating function is (why?)

Pn(x) =
1
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n∑
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)2

(2n− 2k)!((2k)!/(k!2k))2x2k . (PGF )

By repeatedly applying the operation f(x) → xf ′(x), plugging in x = 1, for n = 1 to n = 200,
and fitting the data by a rational function of n, one gets in turn the mean, variance, and higher
moments, from which one easily gets the moments about the mean and the normalized moments (α
coefficients).

It turned out that the mean and variance are indeed as stated by the theorem. As for the higher
moments, we will show that the first 14 normalized moments tend (as n → ∞) to those of the
normal distribution, and the readers can go on as far as they please.
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The normalized third moment (about the mean) is
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the asymptotics of its square is:
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Note that it goes to 0, as it should, since the odd moments of the normal distribution are all 0.

The normalized fourth moment about the mean (alias kurtosis) is
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Its asymptotics is:
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Note that it converges to 4!/(22 · 2!) = 3, as it should, this being the fourth moment of the normal
distribution.

The normalized fifth moment about the mean can be viewed in
http://www.math.rutgers.edu/~zeilberg/tokhniot/oSameSexMarriages1, and the asymptotics of its square
is:
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Note that it goes to 0, as it should, since the odd moments of the normal distribution are all 0.

The normalized sixth moment about the mean can be viewed in
http://www.math.rutgers.edu/~zeilberg/tokhniot/oSameSexMarriages1 . Its asymptotics is:
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Note that it converges to 6!/(23 · 3!) = 15, as it should, this being the sixth moment of the normal
distribution.

Etc. etc. (See http://www.math.rutgers.edu/~zeilberg/tokhniot/oSameSexMarriages1 for evidence up to
the 14th moment, and you are welcome to modify http://www.math.rutgers.edu/~zeilberg/tokhniot/inSameSexMarriages1

and run it on your computer, if you want more evidence.)

Comments

1. It should be routine, once we found the average and variance as above (that even humans should
be able to do easily), to derive a local limit law, by using Stirling’s asymptotic formula. However, for
some reason, Maple refuses to take the appropriate limit. (It works for the binomial distribution).
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2. Another automatic, this time fully rigorous proof, can also be gotten using an extension of the
methods in [Z1], using the Maple package
http://www.math.rutgers.edu/~zeilberg/tokhniot/CLT. However, since the polynomials Pn(x)
are not closed-form, but rather satisfy a second-order linear recurrence (easily derived via the Zeil-
berger algorithm) one should be able to do it (but CLT has to be slightly extended).

3. The present approach follows [Z2] and the Maple package accompanying it:
http://www.math.rutgers.edu/~zeilberg/tokhniot/HISTABRUT.

4. Not directly related to the present article, but nevertheless highly recommended, are references
[AZ1], [Z3], [Z4], and [Z5].
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