Solution of 12022. (Proposed by Mircea Merca), by Shalosh B. Ekhad, ShaloshBEkhad@gmail.com

Let $F(n, k)$ be the summand. We have to prove that $a(n):=\sum_{k=0}^{n-1} F(n, k)$ equals n. We cleverly come up with $G(n, k)=-\left(1-x^{n}\right) \cdots\left(1-x^{n-k+1}\right)$, that satisfies $F(n+1, k)-F(n, k)=G(n, k+1)-G(n, k)($ check! $)$. Hence
$a(n+1)-a(n)=F(n+1, n)+\sum_{k=0}^{n-1}(F(n+1, k)-F(n, k))=F(n+1, n)+\sum_{k=0}^{n-1}(G(n, k+1)-G(n, k))$
$=F(n+1, n)+G(n, n)-G(n, 0)=\left(1-x^{n}\right) \cdots(1-x)+\left(-\left(1-x^{n}\right) \cdots(1-x)\right)-(-1)=1$.
Since $a(0)=0$, we have $a(n)=n$. The second identity is obtained from the first by replacing x by $1 / x$ and simplifying.

